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This combination of circumstances is most likely to beAbstract
found in situations involving the meta-data of storageRecoverable virtual memory refers to regions of a virtual
repositories. Thus RVM can benefit a wide range ofaddress space on which transactional guarantees are
applications from distributed file systems and databases, tooffered. This paper describes RVM, an efficient, portable,

and easily used implementation of recoverable virtual object-oriented repositories, CAD tools, and CASE tools.
memory for Unix environments.  A unique characteristic RVM can also provide runtime support for persistent
of RVM is that it allows independent control over the programming languages. Since RVM allows independent
transactional properties of atomicity, permanence, and control over the basic transactional properties of atomicity,
serializability. This leads to considerable flexibility in the permanence, and serializability, applications have
use of RVM, potentially enlarging the range of considerable flexibility in how they use transactions.
applications than can benefit from transactions.  It also
simplifies the layering of functionality such as nesting and It may often be tempting, and sometimes unavoidable, to
distribution. The paper shows that RVM performs well use a mechanism that is richer in functionality or better
over its intended range of usage even though it does not integrated with the operating system.  But our experience
benefit from specialized operating system support.  It also has been that such sophistication comes at the cost of
demonstrates the importance of intra- and inter- portability, ease of use and more onerous programming
transaction optimizations. constraints. Thus RVM represents a balance between the

system-level concerns of functionality and performance,
1. Introduction and the software engineering concerns of usability and
How simple can a transactional facility be, while remaining maintenance. Alternatively, one can view RVM as an
a potent tool for fault-tolerance?  Our answer, as elaborated exercise in minimalism.  Our design challenge lay not in
in this paper, is a user-level library with minimal conjuring up features to add, but in determining what could
programming constraints, implemented in about 10K lines be omitted without crippling RVM.
of mainline code and no more intrusive than a typical

We begin this paper by describing our experience with
runtime library for input-output. This transactional facility,

Camelot [10], a predecessor of RVM.  This experience, and
called RVM, is implemented without specialized operating

our understanding of the fault-tolerance requirements of
system support, and has been in use for over two years on a

Coda [16, 30] and Venari [24, 37], were the dominant
wide range of hardware from laptops to servers.

influences on our design. The description of RVM follows
RVM is intended for Unix applications with persistent data in three parts: rationale, architecture, and implementation.
structures that must be updated in a fault-tolerant manner. Wherever appropriate, we point out ways in which usage
The total size of those data structures should be a small experience influenced our design.  We conclude with an
fraction of disk capacity, and their working set size must evaluation of RVM, a discussion of its use as a building
easily fit within main memory. block, and a summary of related work.

This work was sponsored by the Avionics Laboratory, Wright Research 2. Lessons from Camelot
and Development Center, Aeronautical Systems Division (AFSC), U.S.
Air Force, Wright-Patterson AFB, Ohio, 45433-6543 under Contract 2.1. Overview
F33615-90-C-1465, ARPA Order No. 7597.  James Kistler is now

Camelot is a transactional facility built to validate theaffiliated with the DEC Systems Research Center, Palo Alto, CA.

thesis that general-purpose transactional support wouldThis paper appeared in ACM Transactions on Computer Systems, 12(1),
simplify and encourage the construction of reliableFeb. 1994 and Proceedings of the 14th ACM Symposium on Operating

Systems Principles, Dec. 1993. distributed systems [33]. It supports local and distributed
nested transactions, and provides considerable flexibility in
the choice of logging, synchronization, and transaction



commitment strategies.  Camelot relies heavily on the Camelot would be something of an overkill.  Yet we
external page management and interprocess persisted, because it would give us first-hand experience in
communication facilities of the Mach operating system [2], the use of transactions, and because it would contribute
which is binary compatible with the 4.3BSD Unix towards the validation of the Camelot thesis.
operating system [20]. Figure 1 shows the overall structure

We placed data structures pertaining to Coda meta-data in
of a Camelot node.  Each module is implemented as a 1recoverable memory on servers.  The meta-data included
Mach task and communication between modules is via

Coda directories as well as persistent data for replica
Mach’s interprocess communication facililty(IPC).

control and internal housekeeping.  The contents of each
Coda file was kept in a Unix file on a server’s local file
system. Server recovery consisted of Camelot restoring
recoverable memory to the last committed state, followed
by a Coda salvager which ensured mutual consistency
between meta-data and data.

2.3. Experience
The most valuable lesson we learned by using Camelot was
that recoverable virtual memory was indeed a convenient
and practically useful programming abstraction for systems
like Coda. Crash recovery was simplified because data
structures were restored in situ by Camelot.  Directory
operations were merely manipulations of in-memory data
structures. The Coda salvager was simple because the
range of error states it had to handle was small.  Overall,
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the encapsulation of messy crash recovery details into
This figure shows the internal structure of Camelot as well as its

Camelot considerably simplified Coda server code.relationship to application code.  Camelot is composed of several
Mach tasks:  Master Control, Camelot, and Node Server, as well

Unfortunately, these benefits came at a high price.  Theas the Recovery, Transaction, and Disk Managers. Camelot
provides recoverable virtual memory for Data Servers; that is, problems we encountered manifested themselves as poor
transactional operations are supported on portions of the virtual scalability, programming constraints, and difficulty ofaddress space of each Data Server.  Application code can be split

maintenance. In spite of considerable effort, we were notbetween Data Server and Application tasks (as in this figure), or
may be entirely linked into a Data Server’s address space.  The able to circumvent these problems.  Since they were direct
latter approach was used in Coda.  Camelot facilities are accessed

consequences of the design of Camelot, we elaborate onvia a library linked with application code.
these problems in the following paragraphs.Figure 1: Structure of a Camelot Node
A key design goal of Coda was to preserve the scalability

2.2. Usage of AFS.  But a set of carefully controlled experiments
Our interest in Camelot arose in the context of the two- (described in an earlier paper [30]) showed that Coda was
phase optimistic replication protocol used by the Coda File less scalable than AFS.  These experiments also showed
System. Although the protocol does not require a that the primary contributor to loss of scalability was
distributed commit, it does require each server to ensure the increased server CPU utilization, and that Camelot was
atomicity and permanence of local updates to meta-data in responsible for over a third of this increase.  Examination
the first phase. The simplest strategy for us would have of Coda servers in operation showed considerable paging
been to implement an ad hoc fault tolerance mechanism for and context switching overheads due to the fact that each
meta-data using some form of shadowing.  But we were Camelot operation involved interactions between many of
curious to see what Camelot could do for us. the component processes shown in Figure 1.  There was no

obvious way to reduce this overhead, since it was inherentThe aspect of Camelot that we found most useful is its
in the implementation structure of Camelot.support for recoverable virtual memory [9]. This unique

feature of Camelot enables regions of a process’ virtual
address space to be endowed with the transactional
properties of atomicity, isolation and permanence.  Since
we did not find a need for features such as nested or

1distributed transactions, we realized that our use of For brevity, we often omit "virtual" from "recoverable virtual
memory" in the rest of this paper.
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A second obstacle to using Camelot was the set of count on the clean failure semantics of RVM, while the
programming constraints it imposed.  These constraints latter is only responsible for local, non-nested transactions.
came in a variety of guises.  For example, Camelot required

A second area where we have simplified RVM is
all processes using it to be descendants of the Disk

concurrency control. Rather than having RVM insist on a
Manager task shown in Figure 1.  This meant that starting

specific technique, we decided to factor out concurrency
Coda servers required a rather convoluted procedure that

control. This allows applications to use a policy of their
made our system administration scripts complicated and

choice, and to perform synchronization at a granularity
fragile. It also made debugging more difficult because

appropriate to the abstractions they are supporting.  If
starting a Coda server under a debugger was complex.

serializability is required, a layer above RVM has to
Another example of a programming constraint was that

enforce it.  That layer is also responsible for coping with
Camelot required us to use Mach kernel threads, even

deadlocks, starvation and other unpleasant concurrency
though Coda was capable of using user-level threads.

control problems.
Since kernel thread context switches were much more
expensive, we ended up paying a hefty peformance cost Internally, RVM is implemented to be multi-threaded and
with little to show for it. to function correctly in the presence of true parallelism.

But it does not depend on kernel thread support, and can be
A third limitation of Camelot was that its code size,

used with no changes on user-level thread
complexity and tight dependence on rarely used

implementations. We have, in fact, used RVM with three
combinations of Mach features made maintenance and

different threading mechanisms: Mach kernel threads [8],
porting difficult.  Since Coda was the sternest test case for

coroutine C threads, and coroutine LWP [29].
recoverable memory, we were usually the first to expose
new bugs in Camelot. But it was often hard to decide Our final simplification was to factor out resiliency to
whether a particular problem lay in Camelot or Mach. media failure.  Standard techniques such as mirroring can

be used to achieve such resiliency.  Our expectation is that
As the cumulative toll of these problems mounted, we

this functionality will most likely be implemented in the
looked for ways to preserve the virtues of Camelot while

device driver of a mirrored disk.
avoiding its drawbacks. Since recoverable virtual memory
was the only aspect of Camelot we relied on, we sought to RVM thus adopts a layered approach to transactional
distill the essence of this functionality into a realization that support, as shown in Figure 2.  This approach is simple and
was cheap, easy-to-use and had few strings attached. That enhances flexibility:  an application does not have to buy
quest led to RVM. into those aspects of the transactional concept that are

irrelevant to it.

3. Design Rationale
The central principle we adopted in designing RVM was to
value simplicity over generality. In building a tool that did
one thing well, we were heeding Lampson’s sound advice
on interface design [19]. We were also being faithful to the
long Unix tradition of keeping building blocks simple.  The
change in focus from generality to simplicity allowed us to
take radically different positions from Camelot in the areas
of functionality, operating system dependence, and
structure.

3.1. Functionality
Our first simplification was to eliminate support for nesting

Application Code

RVM
Atomicity

Permanence: process failure

Operating System
Permanence: media failure

Nesting Distribution Serializability

and distribution. A cost-benefit analysis showed us that
Figure 2: Layering of Functionality in RVM

each could be better provided as an independent layer on
2top of RVM . While a layered implementation may be less 3.2. Operating System Dependence

efficient than a monolithic one, it has the attractive To make RVM portable, we decided to rely only on a
property of keeping each layer simple.  Upper layers can small, widely supported, Unix subset of the Mach system

call interface.  A consequence of this decision was that we
could not count on tight coupling between RVM and the

2 VM subsystem.  The Camelot Disk Manager module runsAn implementation sketch is provided in Section 8.
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as an external pager [39] and takes full responsibility for 3.3. Structure
managing the backing store for recoverable regions of a The ability to communicate efficiently across address
process. The use of advisory VM calls (pin and unpin) spaces allows robustness to be enhanced without
in the Mach interface lets Camelot ensure that dirty sacrificing good performance. Camelot’s modular
recoverable regions of a process’ address space are not decomposition, shown earlier in Figure 1, is predicated on
paged out until transaction commit. This close alliance fast IPC. Although it has been shown that IPC can be
with Mach’s VM subsystem allows Camelot to avoid fast [4], its performance in commercial Unix
double paging, and to support recoverable regions whose implementations lags far behind that of the best
size approaches backing store or addressing limits. experimental implementations.  Even on Mach 2.5, the
Efficient handling of large recoverable regions is critical to measurements reported by Stout et al [34] indicate that IPC
Camelot’s goals. is about 600 times more expensive than local procedure

3call . To make matters worse, Ousterhout [26] reports that
Our goals in building RVM were more modest.  We were

the context switching performance of operating systems is
not trying to replace traditional forms of persistent storage,

not improving linearly with raw hardware performance.
such as file systems and databases.  Rather, we saw RVM
as a building block for meta-data in those systems, and in Given our desire to make RVM portable, we were not
higher-level compositions of them.  Consequently, we willing to make its design critically dependent on fast IPC.
could assume that the recoverable memory requirements on Instead, we have structured RVM as a library that is linked
a machine would only be a small fraction of its total disk in with an application. No external communication of any
storage. This in turn meant that it was acceptable to waste kind is involved in the servicing of RVM calls.  An
some disk space by duplicating the backing store for implication of this is, of course, that we have to trust
recoverable regions.  Hence RVM’s backing store for a applications not to damage RVM data structures and vice
recoverable region, called its external data segment, is versa.
completely independent of the region’s VM swap space.

A less obvious implication is that applications cannot share
Crash recovery relies only on the state of the external data

a single write-ahead log on a dedicated disk.  Such sharing
segment. Since a VM pageout does not modify the

is common in transactional systems because disk head
external data segment, an uncommitted dirty page can be

movement is a strong determinant of performance, and
reclaimed by the VM subsystem without loss of

because the use of a separate disk per application is
correctness. Of course, good performance also requires

economically infeasible at present.  In Camelot, for
that such pageouts be rare.

example, the Disk Manager serves as the multiplexing
One way to characterize our strategy is to view it as a agent for the log. The inability to share one log is not a
complexity versus resource usage tradeoff. By being significant limitation for Coda, because we run only one
generous with memory and disk space, we have been able file server process on a machine.  But it may be a
to keep RVM simple and portable.  Our design supports the legitimate concern for other applications that wish to use
optional use of external pagers, but we have not RVM. Fortunately, there are two potential alleviating
implemented support for this feature yet.  The most factors on the horizon.
apparent impact on Coda has been slower startup because a

First, independent of transaction processing considerations,
process’ recoverable memory must be read in en masse

there is considerable interest in log-structured
rather than being paged in on demand.

implementations of the Unix file system [28]. If one were
Insulating RVM from the VM subsystem also hinders the to place the RVM log for each application in a separate file
sharing of recoverable virtual memory across address on such a system, one would benefit from minimal disk
spaces. But this is not a serious limitation.  After all, the head movement.  No log multiplexor would be needed,
primary reason to use a separate address space is to because that role would be played by the file system.
increase robustness by avoiding memory corruption.

Second, there is a trend toward using disks of small form
Sharing recoverable memory across address spaces defeats

factor, partly motivated by interest in disk array
this purpose.  In fact, it is worse than sharing (volatile)

technology [27]. It has been predicted that the large disk
virtual memory because damage may be persistent!  Hence,

capacity in the future will be achieved by using many small
our view is that processes willing to share recoverable
memory already trust each other enough to run as threads
in a single address space.

3430 microseconds versus 0.7 microseconds for a null call on a typical
contemporary machine, the DECStation 5000/200
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disks. If this turns out to be true, there will be considerably startup latency, as mentioned in Section 3.2.  In the future,
less economic incentive to avoiding a dedicated disk per we plan to provide an optional Mach external pager to copy
process. data on demand.

In summary, each process using RVM has a separate log. Restrictions on segment mapping are minimal.  The most
The log can be placed in a Unix file or on a raw disk important restriction is that no region of a segment may be
partition. When the log is on a file, RVM uses the fsync mapped more than once by the same process. Also,
system call to synchronously flush modifications onto disk. mappings cannot overlap in virtual memory.  These
RVM’s permanence guarantees rely on the correct restrictions eliminate the need for RVM to cope with
implementation of this system call.  For best performance, aliasing. Mapping must be done in multiples of page size,
the log should either be in a raw partition on a dedicated and regions must be page-aligned.
disk or in a file on a log-structured Unix file system.

Regions can be unmapped at any time, as long as they have
no uncommitted transactions outstanding.  RVM retains no

4. Architecture information about a segment’s mappings after its regions
The design of RVM follows logically from the rationale are unmapped.  A segment loader package, built on top of
presented earlier. In the description below, we first present RVM, allows the creation and maintenance of a load map
the major program-visible abstractions, and then describe for recoverable storage and takes care of mapping a
the operations supported on them. segment into the same base address each time.  This

simplifies the use of absolute pointers in segments.  A
4.1. Segments and Regions

recoverable memory allocator, also layered on RVM,
Recoverable memory is managed in segments, which are

supports heap management of storage within a segment.
loosely analogous to Multics segments.  RVM has been

64designed to accomodate segments up to 2 bytes long, 4.2. RVM Primitives
although current hardware and file system limitations The operations provided by RVM for initialization,

32restrict segment length to 2 bytes. The number of termination and segment mapping are shown in Figure
segments on a machine is only limited by its storage 4(a). The log to be used by a process is specified at RVM
resources. The backing store for a segment may be a file or initialization via the options_desc argument. The map
a raw disk partition. Since the distinction is invisible to operation is called once for each region to be mapped.  The
programs, we use the term ‘‘external data segment’’ to external data segment and the range of virtual memory
refer to either. addresses for the mapping are identified in the first

argument. The unmap operation can be invoked at any
time that a region is quiescent. Once unmapped, a region
can be remapped to some other part of the process’ address
space.

After a region has been mapped, memory addresses within
it may be used in the transactional operations shown in
Figure 4(b).  The begin_transaction operation
returns a transaction identifier, tid, that is used in all

0 232 - 1Unix Virtual Memory

• • •
0 264 - 1

Segment-1

• • •
0 264 - 1

Segment-2 further operations associated with that transaction.  The
set_range operation lets RVM know that a certain areaEach shaded area represents a region. The contents of a region

are physically copied from its external data segment to the virtual of a region is about to be modified.  This allows RVM to
memory address range specified during mapping.

record the current value of the area so that it can undo
Figure 3: Mapping Regions of Segments changes in case of an abort.  The restore_mode flag to

begin_transaction lets an application indicate that itAs shown in Figure 3, applications explicitly map regions
will never explicitly abort a transaction.  Such a no-restoreof segments into their virtual memory.  RVM guarantees
transaction is more efficient, since RVM does not have tothat newly mapped data represents the committed image of
copy data on a set-range. Read operations on mappedthe region.  A region typically corresponds to a related
regions require no RVM intervention.collection of objects, and may be as large as the entire

segment. In the current implementation, the copying of
data from external data segment to virtual memory occurs
when a region is mapped.  The limitation of this method is
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initialize(version, options_desc); begin_transaction(tid, restore_mode);

map(region_desc, options_desc); set_range(tid, base_addr, nbytes);

unmap(region_desc); end_transaction(tid, commit_mode);

terminate(); abort_transaction(tid);

(a) Initialization & Mapping Operations (b) Transactional Operations

query(options_desc, region_desc);
flush(); set_options(options_desc);
truncate(); create_log(options, log_len, mode);

(c) Log Control Operations (d) Miscellaneous Operations

Figure 4: RVM Primitives

A transaction is committed by end_transaction and 5. Implementation
aborted via abort_transaction. By default, a Since RVM draws upon well-known techniques for
successful commit guarantees permanence of changes building transactional systems, we restrict our discussion
made in a transaction.  But an application can indicate its here to two important aspects of its implementation: log
willingness to accept a weaker permanence guarantee via management and optimization. The RVM manual [22]
the commit_mode parameter of end_transaction. offers many further details, and a comprehensive treatment
Such a no-flush or ‘‘lazy’’ transaction has reduced commit of transactional implementation techniques can be found in
latency since a log force is avoided. To ensure persistence Gray and Reuter’s text [14].
of its no-flush transactions the application must explicitly

5.1. Log Managementflush RVM’s write-ahead log from time to time.  When
used in this manner, RVM provides bounded persistence, 5.1.1. Log Format
where the bound is the period between log flushes.  Note RVM is able to use a no-undo/redo value logging
that atomicity is guaranteed independent of permanence. strategy [3] because it never reflects uncommitted changes

to an external data segment.  The implementation assumesFigure 4(c) shows the two operations provided by RVM for
that adequate buffer space is available in virtual memorycontrolling the use of the write-ahead log.  The first
for the old-value records of uncommitted transactions.operation, flush, blocks until all committed no-flush
Consequently, only the new-value records of committedtransactions have been forced to disk.  The second
transactions have to be written to the log.  The format of aoperation, truncate, blocks until all committed changes
typical log record is shown in Figure 5.in the write-ahead log have been reflected to external data

segments. Log truncation is usually performed The bounds and contents of old-value records are known to
transparently in the background by RVM.  But since this is RVM from the set-range operations issued during a
a potentially long-running and resource-intensive transaction. Upon commit, old-value records are replaced
operation, we have provided a mechanism for applications by new-value records that reflect the current contents of the
to control its timing. corresponding ranges of memory.  Note that each modified

range results in only one new-value record even if thatThe final set of primitives, shown in Figure 4(d), perform a
range has been updated many times in a transaction.  Thevariety of functions.  The query operation allows an
final step of transaction commitment consists of forcing theapplication to obtain information such as the number and
new-value records to the log and writing out a commitidentity of uncommited transactions in a region.  The
record.set_options operation sets a variety of tuning knobs

such as the threshold for triggering log truncation and the No-restore and no-flush transactions are more efficient.
sizes of internal buffers. Using create_log, an The former result in both time and space spacings since the
application can dynamically create a write-ahead log and contents of old-value records do not have to be copied or
then use it in an initialize operation. buffered. The latter result in considerably lower commit

latency, since new-value and commit records can be
spooled rather than forced to the log.
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Figure 5: Format of a Typical Log Record
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This figure shows the organization of a log during epoch truncation.  The current tail of the log is to the right of the area marked "current epoch".
The log wraps around logically, and internal synchronization in RVM allows forward processing in the current epoch while truncation is in
progress. When truncation is complete, the area marked "truncation epoch" will be freed for new log records.

Figure 6: Epoch Truncation

5.1.2. Crash Recovery and Log Truncation undo/redo property of the log, pages that have been
Crash recovery consists of RVM first reading the log from modified by uncommitted transactions cannot be written
tail to head, then constructing an in-memory tree of the out to the recoverable data segment. RVM maintains
latest committed changes for each data segment internal locks to ensure that incremental truncation does
encountered in the log. The trees are then traversed, not violate this property.  Certain situations, such as the
applying modifications in them to the corresponding presence of long-running transactions or sustained high
external data segment. Finally, the head and tail location concurrency, may result in incremental truncation being
information in the log status block is updated to reflect an blocked for so long that log space becomes critical.  Under
empty log.  The idempotency of recovery is achieved by those circumstances, RVM reverts to epoch truncation.
delaying this step until all other recovery actions are
complete.

Truncation is the process of reclaiming space allocated to
log entries by applying the changes contained in them to
the recoverable data segment. Periodic truncation is
necessary because log space is finite, and is triggered
whenever current log size exceeds a preset fraction of its
total size. In our experience, log truncation has proved to
be the hardest part of RVM to implement correctly. To
minimize implementation effort, we initially chose to reuse R5R4R3
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Page Queue

Page Vector

head

log head log tail

tail
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Log Records

Dirty
Reserved

Uncommitted
Ref Cnt

P PPP
1

0 0

432

crash recovery code for truncation. In this approach,
referred to as epoch truncation, the crash recovery This figure shows the key data structures involved in incremental

truncation. R1 through R5 are log entries.  The reserved bit inprocedure described above is applied to an initial part of
page vector entries is used as an internal lock. Since page P1 is

the log while concurrent forward processing occurs in the at the head of the page queue and has an uncommitted reference
count of zero, it is the first page to be written to the recoverablerest of the log.  Figure 6 depicts the layout of a log while an
data segment.  The log head does not move, since P2 has theepoch truncation is in progress. same log offset as P1.  P2 is written next, and the log head is
moved to P3’s log offset.  Incremental truncation is now blocked

Although exclusive reliance on epoch truncation is a until P3’s uncommitted reference count drops to zero.
logically correct strategy, it substantially increases log

Figure 7: Incremental Truncation
traffic, degrades forward processing more than necessary,
and results in bursty system performance. Now that RVM Figure 7 shows the two data structures used in incremental
is stable and robust, we are implementing a mechanism for truncation. The first data structure is a page vector for each
incremental truncation during normal operation.  This mapped region that maintains the modification status of
mechanism periodically renders the oldest log entries that region’s pages.  The page vector is loosely analogous
obsolete by writing out relevant pages directly from VM to to a VM page table:  the entry for a page contains a dirty bit
the recoverable data segment.  To preserve the no- and an uncommited reference count. A page is marked
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dirty when it has committed changes. The uncommitted 6. Status and Experience
reference count is incremented as set_ranges are RVM has been in daily use for over two years on hardware
executed, and decremented when the changes are platforms such as IBM RTs, DEC MIPS workstations, Sun
committed or aborted. On commit, the affected pages are Sparc workstations, and a variety of Intel 386/486-based
marked dirty. The second data structure is a FIFO queue of laptops and workstations. Memory capacity on these
page modification descriptors that specifies the order in machines ranges from 12MB to 64 MB, while disk
which dirty pages should be written out in order to move capacity ranges from 60MB to 2.5GB.  Our personal
the log head.  Each descriptor specifies the log offset of the experience with RVM has only been on Mach 2.5 and 3.0.
first record referencing that page. The queue contains no But RVM has been ported to SunOS and SGI IRIX at MIT,
duplicate page references: a page is mentioned only in the and we are confident that ports to other Unix platforms will
earliest descriptor in which it could appear. A step in be straightforward. Most applications using RVM have
incremental truncation consists of selecting the first been written in C or C++, but a few have been written in
descriptor in the queue, writing out the pages specified by Standard ML.  A version of the system that uses
it, deleting the descriptor, and moving the log head to the incremental truncation is being debugged.
offset specified by the next descriptor.  This step is

Our original intent was just to replace Camelot by RVM onrepeated until the desired amount of log space has been
servers, in the role described in Section 2.2.  But positivereclaimed.
experience with RVM has encouraged us to expand its use.
For example, transparent resolution of directory updates5.2. Optimizations
made to partitioned server replicas is done using a log-Early experience with RVM indicated two distinct
based strategy [17]. The logs for resolution are maintainedopportunities for substantially reducing the volume of data
in RVM.  Clients also use RVM now, particularly forwritten to the log. We refer to these as intra-transaction
supporting disconnected operation [16]. The persistence ofand inter-transaction optimizations respectively.
changes made while disconnected is achieved by storing

Intra-transaction optimizations arise when set-range replay logs in RVM, and user advice for long-term cache
calls specifying identical, overlapping, or adjacent memory management is stored in a hoard database in RVM.
addresses are issued within a single transaction.  Such

An unexpected use of RVM has been in debugging Codasituations typically occur because of modularity and
servers and clients [31]. As Coda matured, we ran intodefensive programming in applications. Forgetting to issue
hard-to-reproduce bugs involving corrupted persistent dataa set-range call is an insidious bug, while issuing a
structures. We realized that the information in RVM’s logduplicate call is harmless. Hence applications are often
offered excellent clues to the source of these corruptions.written to err on the side of caution.  This is particularly
All we had to do was to save a copy of the log beforecommon when one part of an application begins a
truncation, and to build a post-mortem tool to search andtransaction, and then invokes procedures elsewhere to
display the history of modifications recorded by the log.perform actions within that transaction.  Each of those

procedures may perform set-range calls for the areas of The most common source of programming problems in
recoverable memory it modifies, even if the caller or some using RVM has been in forgetting to do a set-range
other procedure is supposed to have done so already. call prior to modifying an area of recoverable memory.
Optimization code in RVM causes duplicate set-range The result is disastrous, because RVM does not create a
calls to be ignored, and overlapping and adjacent log new-value record for this area upon transaction commit.
records to be coalesced. Hence the restored state after a crash or shutdown will not

reflect modifications by the transaction to that area ofInter-transaction optimizations occur only in the context of
memory. The current solution, as described in Section 5.2,no-flush transactions. Temporal locality of reference in
is to program defensively.  A better solution would beinput requests to an application often translates into locality
language-based, as discussed in Section 8.of modifications to recoverable memory. For example, the

command "cp d1/* d2" on a Coda client will cause as
many no-flush transactions updating the data structure in 7. Evaluation
RVM for d2 as there are children of d1. Only the last of A fair assessment of RVM must consider two distinct
these updates needs to be forced to the log on a future issues. From a software engineering perspective, we need
flush. The check for inter-transaction optimization is to ask whether RVM’s code size and complexity are
performed at commit time.  If the modifications being commensurate with its functionality. From a systems
committed subsume those from an earlier unflushed perspective, we need to know whether RVM’s focus on
transaction, the older log records are discarded. simplicity has resulted in unacceptable loss of performance.
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To address the first issue, we compared the source code of paging performance occurs when accesses are sequential.
RVM and Camelot.  RVM’s mainline code is The worst case occurs when accesses are uniformly
approximately 10K lines of C, while utilities, test programs distributed across all accounts. To represent the average
and other auxiliary code contribute a further 10K lines. case, the benchmark uses an access pattern that exhibits
Camelot has a mainline code size of about 60K lines of C, considerable temporal locality.  In this access pattern,
and auxiliary code of about 10K lines.  These numbers do referred to as localized, 70% of the transactions update
not include code in Mach for features like IPC and the accounts on 5% of the pages, 25% of the transactions
external pager that are critical to Camelot. update accounts on a different 15% of the pages, and the

remaining 5% of the transactions update accounts on the
Thus the total size of code that has to be understood,

remaining 80% of the pages.  Within each set, accesses are
debugged, and tuned is considerably smaller for RVM.

uniformly distributed.
This translates into a corresponding reduction of effort in

7.1.2. Resultsmaintenance and porting.  What is being given up in return
Our primary goal in these experiments was to understandis support for nesting and distribution, as well as flexibility
the throughput of RVM over its intended domain of use.in areas such as choice of logging strategies — a fair trade
This corresponds to situations where paging rates are low,by our reckoning.
as discussed in Section 3.2. A secondary goal was to

To evaluate the performance of RVM we used controlled observe performance degradation relative to Camelot as
experimentation as well as measurements from Coda paging becomes more significant.  We expected this to
servers and clients in actual use.  The specific questions of shed light on the importance of RVM-VM integration.
interest to us were:

To meet these goals, we conducted experiments for account• How serious is the lack of integration between
arrays ranging from 32K entries to about 450K entries.RVM and VM?
This roughly corresponds to ratios of 10% to 175% of total• What is RVM’s impact on scalability?
recoverable memory size to total physical memory size.  At

• How effective are intra- and inter-transaction each account array size, we performed the experiment for
optimizations? sequential, random, and localized account access patterns.

Table 1 and Figure 8 present our results.  Hardware and7.1. Lack of RVM-VM Integration
other relevant experimental conditions are described inAs discussed in Section 3.2, the separation of RVM from
Table 1.the VM component of an operating system could hurt

performance. To quantify this effect, we designed a variant For sequential account access, Figure 8(a) shows that RVM
of the industry-standard TPC-A benchmark [32] and used it and Camelot offer virtually identical throughput. This
in a series of carefully controlled experiments. throughput hardly changes as the size of recoverable

memory increases.  The average time to perform a log7.1.1. The Benchmark
force on the disks used in our experiments is about 17.4The TPC-A benchmark is stated in terms of a hypothetical
milliseconds. This yields a theoretical maximumbank with one or more branches, multiple tellers per
throughput of 57.4 transactions per second, which is withinbranch, and many customer accounts per branch.  A
15% of the observed best-case throughputs for RVM andtransaction updates a randomly chosen account, updates
Camelot.branch and teller balances, and appends a history record to

an audit trail. When account access is random, Figure 8(a) shows that
RVM’s throughput is initially close to its value forIn our variant of this benchmark, we represent all the data
sequential access.  As recoverable memory size increases,structures accessed by a transaction in recoverable
the effects of paging become more significant, andmemory. The number of accounts is a parameter of our
throughput drops.  But the drop does not become seriousbenchmark. The accounts and the audit trail are
until recoverable memory size exceeds about 70% ofrepresented as arrays of 128-byte and 64-byte records
physical memory size. The random access case is preciselyrespectively. Each of these data structures occupies close
where one would expect Camelot’s integration with Machto half the total recoverable memory. The sizes of the data
to be most valuable.  Indeed, the convexities of the curvesstructures for teller and branch balances are insignificant.
in Figure 8(a) show that Camelot’s degradation is more

Access to the audit trail is always sequential, with wrap- graceful than RVM’s.  But even at the highest ratio of
around. The pattern of accesses to the account array is a recoverable to physical memory size, RVM’s throughput is
second parameter of our benchmark. The best case for better than Camelot’s.
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No. of Rmem RVM (Trans/Sec) Camelot (Trans/Sec)
Accounts Pmem Sequential Random Localized Sequential Random Localized

32768 12.5% 48.6 (0.0) 47.9 (0.0) 47.5 (0.0) 48.1 (0.0) 41.6 (0.4) 44.5 (0.2)

65536 25.0% 48.5 (0.2) 46.4 (0.1) 46.6 (0.0) 48.2 (0.0) 34.2 (0.3) 43.1 (0.6)

98304 37.5% 48.6 (0.0) 45.5 (0.0) 46.2 (0.0) 48.9 (0.1) 30.1 (0.2) 41.2 (0.2)

131072 50.0% 48.2 (0.0) 44.7 (0.2) 45.1 (0.0) 48.1 (0.0) 29.2 (0.0) 41.3 (0.1)

163840 62.5% 48.1 (0.0) 43.9 (0.0) 44.2 (0.1) 48.1 (0.0) 27.1 (0.2) 40.3 (0.2)

196608 75.0% 47.7 (0.0) 43.2 (0.0) 43.4 (0.0) 48.1 (0.4) 25.8 (1.2) 39.5 (0.8)

229376 87.5% 47.2 (0.1) 42.5 (0.0) 43.8 (0.1) 48.2 (0.2) 23.9 (0.1) 37.9 (0.2)

262144 100.0% 46.9 (0.0) 41.6 (0.0) 41.1 (0.0) 48.0 (0.0) 21.7 (0.0) 35.9 (0.2)

294912 112.5% 46.3 (0.6) 40.8 (0.5) 39.0 (0.6) 48.0 (0.0) 20.8 (0.2) 35.2 (0.1)

327680 125.0% 46.9 (0.7) 39.7 (0.0) 39.0 (0.5) 48.1 (0.1) 19.1 (0.0) 33.7 (0.0)

360448 137.5% 48.6 (0.0) 33.8 (0.9) 40.0 (0.0) 48.3 (0.0) 18.6 (0.0) 33.3 (0.1)

393216 150.0% 46.9 (0.2) 33.3 (1.4) 39.4 (0.4) 48.9 (0.0) 18.7 (0.1) 32.4 (0.2)

425984 162.5% 46.5 (0.4) 30.9 (0.3) 38.7 (0.2) 48.0 (0.0) 18.2 (0.0) 32.3 (0.2)

458752 175.0% 46.4 (0.4) 27.4 (0.2) 35.4 (1.0) 47.7 (0.0) 17.9 (0.1) 31.6 (0.0)

This table presents the measured steady-state throughput, in transactions per second, of RVM and Camelot on the benchmark described in Section
7.1.1. The column labelled "Rmem/Pmem" gives the ratio of recoverable to physical memory size.  Each data point gives the mean and standard
deviation (in parenthesis) of the three trials with most consistent results, chosen from a set of five to eight.  The experiments were conducted on a
DEC 5000/200 with 64MB of main memory and separate disks for the log, external data segment, and paging file.  Only one thread was used to
run the benchmark.  Only processes relevant to the benchmark ran on the machine during the experiments.  Transactions were required to be fully
atomic and permanent.  Inter- and intra-transaction optimizations were enabled in the case of RVM, but not effective for this benchmark. This
version of RVM only supported epoch truncation; we expect incremental truncation to improve performance significantly.

Table 1: Transactional Throughput
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These plots illustrate the data in Table 1.  For clarity, the average case is presented separately from the best and worst cases.

Figure 8: Transactional Throughput

For localized account access, Figure 8(b) shows that data in Table 1 indicates that applications with good
RVM’s throughput drops almost linearly with increasing locality can use up to 40% of physical memory for active
recoverable memory size.  But the drop is relatively slow, recoverable data, while keeping throughput degradation to
and performance remains acceptable even when less than 10%.  Applications with poor locality have to
recoverable memory size approaches physical memory restrict active recoverable data to less than 25% for similar
size. Camelot’s throughput also drops linearly, and is performance. Inactive recoverable data can be much
consistently worse than RVM’s throughput. larger, constrained only by startup latency and virtual

memory limits imposed by the operating system.  The
These measurements confirm that RVM’s simplicity is not

comparison with Camelot is especially revealing.  In spite
an impediment to good performance for its intended

of the fact that RVM is not integrated with VM, it is able to
application domain.  A conservative interpretation of the

outperform Camelot over a broad range of workloads.
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These plots depict the measured CPU usage of RVM and Camelot during the experiments described in Section 7.1.2.  As in Figure 8, we have
separated the average case from the best and worst cases for visual clarity.  To save space, we have omitted the table of data (similar to Table 1)
on which these plots are based.

Figure 9: Amortized CPU Cost per Transaction

Although we were gratified by these results, we were feasible because server hardware has changed
puzzled by Camelot’s behavior.  For low ratios of considerably. Instead of IBM RTs we now use the much
recoverable to physical memory we had expected both faster Decstation 5000/200s.  Repeating the original
Camelot’s and RVM’s throughputs to be independent of experiment on current hardware is also not possible,
the degree of locality in the access pattern. The data shows because Coda servers now use RVM to the exclusion of
that this is indeed the case for RVM.  But in Camelot’s Camelot.
case, throughput is highly sensistive to locality even at the

Consequently, our evaluation of RVM’s scalability is based
lowest recoverable to physical memory ratio of 12.5%.  At

on the same set of experiments described in Section 7.1.
that ratio Camelot’s throughput in transactions per second

For each trial of that set of experiments, the total CPU
drops from 48.1 in the sequential case to 44.5 in the

usage on the machine was recorded.  Since no extraneous
localized case, and to 41.6 in the random case.

activity was present on the machine, all CPU usage
Closer examination of the raw data indicates that the drop (whether in system or user mode) is attributable to the
in throughput is attributable to much higher levels of running of the benchmark.  Dividing the total CPU usage
paging activity sustained by the Camelot Disk Manager. by the number of transactions gives the average CPU cost
We conjecture that this increased paging activity is induced per transaction, which is our metric of scalability.  Note
by an overly aggressive log truncation strategy in the Disk that this metric amortizes the cost of sporadic activities like
Manager. During truncation, the Disk Manager writes out log truncation and page fault servicing over all
all dirty pages referenced by entries in the affected portion transactions.
of the log.  When truncation is frequent and account access

Figure 9 compares the scalability of RVM and Camelot for
is random, many opportunities to amortize the cost of

each of the three access patterns described in Section 7.1.1.
writing out a dirty page across multiple transactions are

For sequential account access, RVM requires about half the
lost. Less frequent truncation or sequential account access

CPU usage of Camelot. The actual values of CPU usage
result in fewer such lost opportunities.

remain almost constant for both systems over all the
recoverable memory sizes we examined.7.2. Scalability

As discussed in Section 2.3, Camelot’s heavy toll on the For random account access, Figure 9(a) shows that both
scalability of Coda servers was a key influence on the RVM and Camelot’s CPU usage increase with recoverable
design of RVM.  It is therefore appropriate to ask whether memory size.  But it is astonishing that even at the limit of
RVM has yielded the anticipated gains in scalability.  The our experimental range, RVM’s CPU usage is less than
ideal way to answer this question would be to repeat the Camelot’s. In other words, the inefficiency of page fault
experiment mentioned in Section 2.3, using RVM instead handling in RVM is more than compensated for by its
of Camelot.  Unfortunately, such a direct comparison is not lower inherent overhead.
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Machine Machine Transactions Bytes Written Intra-Transaction Inter-Transaction Total
name type committed to Log Savings Savings Savings

grieg server 267,224 289,215,032 20.7% 0.0% 20.7%
haydn server 483,978 661,612,324 21.5% 0.0% 21.5%
wagner server 248,169 264,557,372 20.9% 0.0% 20.9%
mozart client 34,744 9,039,008 41.6% 26.7% 68.3%
ives client 21,013 6,842,648 31.2% 22.0% 53.2%
verdi client 21,907 5,789,696 28.1% 20.9% 49.0%
bach client 26,209 10,787,736 25.8% 21.9% 47.7%
purcell client 76,491 12,247,508 41.3% 36.2% 77.5%
berlioz client 101,168 14,918,736 17.3% 64.3% 81.6%

This table presents the observed reduction in log traffic due to RVM optimizations.  The column labelled "Bytes Written to Log" shows the log
size after both optimizations were applied.  The columns labelled "Intra-Transaction Savings" and "Inter-Transaction Savings" indicate the
percentage of the original log size that was supressed by each type of optimization.  This data was obtained over a 4-day period in March 1993
from Coda clients and servers.

Table 2: Savings Due to RVM Optimizations

For localized account access, Figure 9(b) shows that CPU those machines tend to be selected on the basis of size,
usage increase linearly with recoverable memory size for weight, and power consumption rather than performance.
both RVM and Camelot.  For all sizes investigated, RVM’s

7.4. Broader AnalysisCPU usage remains well below that of Camelot’s.
A fair criticism of the conclusions drawn in Sections 7.1

Overall, these measurements establish that RVM is and 7.2 is that they are based solely on comparison with a
considerably less of a CPU burden than Camelot. Over research prototype, Camelot.  A favorable comparison with
most of the workloads investigated, RVM typically well-tuned commercial products would strengthen the
requires about half the CPU usage of Camelot.  We claim that RVM’s simplicity does not come at the cost of
anticipate that refinements to RVM such as incremental good performance.  Unfortunately, such a comparison is
truncation will further improve its scalability. not currently possible because no widely used commercial

product supports recoverable virtual memory.  Hence aRVM’s lower CPU usage follows directly from our
performance analysis of broader scope will have to awaitdecision to structure it as a library rather than as a
the future.collection of tasks communicating via IPC.  As mentioned

in Section 3.3, Mach IPC costs about 600 times as much as
8. RVM as a Building Blocka procedure call on the hardware we used for our
The simplicity of the abstraction offered by RVM makes itexperiments. Further contributing to reduced CPU usage
a versatile base on which to implement more complexare the substantially smaller path lengths in various RVM
functionality. In principle, any abstraction that requirescomponents due to their inherently simpler functionality.
persistent data structures with clean local failure semantics

7.3. Effectiveness of Optimizations can be built on top of RVM.  In some cases, minor
To estimate the value of intra- and inter-transaction extensions of the RVM interface may be necessary.
optimizations, we instrumented RVM to keep track of the

For example, nested transactions could be implementedtotal volume of log data eliminated by each technique.
using RVM as a substrate for bookkeeping state such as theTable 2 presents the observed savings in log traffic for a
undo logs of nested transactions. Only top-level begin,representative sample of Coda clients and servers in our
commit, and abort operations would be visible to RVM.environment.
Recovery would be simple, since the restoration of

The data in Table 2 shows that both servers and clients committed state would be handled entirely by RVM.  The
benefit significantly from intra-transaction optimization. feasibility of this approach has been confirmed by the
The savings in log traffic is typically between 20% and Venari project [37].
30%, though some machines exhibit substantially higher

Support for distributed transactions could also be providedsavings. Inter-transaction optimizations typically reduce
by a library built on RVM.  Such a library would providelog traffic on clients by another 20-30%. Servers do not
coordinator and subordinate routines for each phase of abenefit from this type of optimization, because it is only
two-phase commit, as well as for operations such asapplicable to no-flush transactions.  RVM optimizations
beginning a transaction and adding new sites to ahave proved to be especially valuable for good
transaction. Recovery after a coordinator crash wouldperformance on portable Coda clients, because disks on
involve RVM recovery, followed by approriate termination
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of distributed transactions in progress at the time of the of techniques for achieving high performance in OLTP
crash. The communication mechanism could be left environments with very large data volumes and poor
unspecified until runtime by using upcalls from the library locality [12].
to perform communications.  RVM would have to be

In contrast to those efforts, RVM represents a "back to
extended to enable a subordinate to undo the effects of a

basics" movement.  Rather than embellishing the
first-phase commit if the coordinator decides to abort.  One

transactional abstraction or its implementation, RVM seeks
way to do this would be to extend end_transaction to

to simplify both. It poses and answers the question "What
return a list of the old-value records generated by the

is the simplest realization of essential transactional
transaction. These records could be preserved by the

properties for the average application?" By doing so, it
library at each subordinate until the outcome of the two-

makes transactions accessible to applications that have
phase commit is clear.  On a global commit, the records

hitherto balked at the baggage that comes with
would be discarded.  On a global abort, the library at each

sophisticated transactional facilities.
subordinate could use the saved records to construct a
compensating RVM transaction. The virtues of simplicity for small databases have been

extolled previously by Birrell et al [5]. Their design is is
RVM can also be used as the basis of runtime systems for

even simpler than RVM’s, and is based upon new-value
languages that support persistence.  Experience with

logging and full-database checkpointing.  Each transaction
Avalon [38], which was built on Camelot, confirms that

is constrained to update only a single data item.  There is
recoverable virtual memory is indeed an appropriate

no support for explicit transaction abort.  Updates are
abstraction for implementing language-based local

recorded in a log file on disk, then reflected in the in-
persistence. Language support would alleviate the problem

memory database image.  Periodically, the entire memory
mentioned in Section 6 of programmers forgetting to issue

image is checkpointed to disk, the log file deleted, and the
set-range calls: compiler-generated code could issue

new checkpoint file renamed to be the current version of
these calls transparently.  An approximation to a language-

the database. Log truncation occurs only during crash
based solution would be to use a post-compilation

recovery, not during normal operation.
augmentation phase to test for accesses to mapped RVM
regions and to generate set-range calls. The reliance of Birrell et al’s technique on full-database

checkpointing makes the technique practical only for
Further evidence of the versatility of RVM is provided by

applications which manage small amounts of recoverable
the recent work of O’Toole et al [25]. In this work, RVM

data and which have moderate update rates.  The absence
segments are used as the stable to-space and from-space of

of support for multi-item updates and for explicit abort
the heap for a language that supports concurrent garbage

further limits its domain of use.  RVM is more versatile
collection of persistent data. While the authors suggest

without being substantially more complex.
some improvements to RVM for this application, their
work establishes the suitability of RVM for a very different Transaction processing monitors (TPMs), such as
context from the one that motivated it. Encina [35, 40] and Tuxedo [1, 36], are important

commercial products.  TPMs add distribution and support
services to OLTP back-ends, and integrate heterogeneous9. Related Work
systems. Like centralized database managers, TPM back-The field of transaction processing is enormous.  In the
ends are usually monolithic in structure.  They encapsulatespace available, it is impossible to fully attribute all the
all three of the basic transactional properties and providepast work that has indirectly influenced RVM.  We
data access via a query language interface. This is intherefore restrict our discussion here to placing RVM’s
contrast to RVM, which supports only atomicity and thecontribution in proper perspective, and to clarifying its
process failure aspect of permanence, and which providesrelationship to its closest relatives.
access to recoverable data as mapped virtual memory.

Since the original identification of transactional properties
A more modular approach is used in the Transarc TPand techniques for their realization [13, 18], attention has
toolkit, which is the back-end for the Encina TPM.  Thebeen focused on three areas. One area has been the
functionality provided by RVM corresponds primarily toenrichment of the transactional concept along dimensions
the recovery, logging, and physical storage modules of thesuch as distribution, nesting [23], and longevity [11]. A
Transarc toolkit.  RVM differs from the correspondingsecond area has been the incorporation of support for
Transarc toolkit components in two important ways.  First,transactions into languages [21], operating systems [15],
RVM is structured entirely as a library that is linked withand hardware [6]. A third area has been the development
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