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Abstract 
 

As applications for artificially intelligent agents increase in 
complexity we can no longer rely on clever heuristics and 
hand-tuned behaviors to develop their programming. Even 
the interaction between various components cannot be 
reduced to simple rules, as the complexities of realistic 
dynamic environments become unwieldy to characterize 
manually. To cope with these challenges, we propose an 
architecture for inter-layer learning where each layer is 
constructed with a higher level of complexity and control.  
Using RoboCup soccer as a testbed, we demonstrate the 
potential of this architecture for the development of 
effective, cooperative, multi-agent systems. At the lowest 
layer, individual basic skills are developed and refined in 
isolation through supervised and reinforcement learning 
techniques.  The next layer uses machine learning to 
decide, at any point in time, which among a subset of the 
first layer tasks should be executed.  This process is 
repeated for successive layers, thus providing higher levels 
of abstraction as new layers are added. The inter-layer 
learning architecture provides an explicit learning model 
for deciding individual and cooperative tactics in a dynamic 
environment and appears to be promising in real-time 
competition. 

 

Introduction 
The real-world as a dynamic, unpredictable environment 
offers numerous challenges for a researcher. Past AI 
techniques involving multiple agents have traditionally 
focused on problems in static, deterministic environments 
with complete information accessibility. Since more 
interesting problems deal with the real-world scenario, it 
seems only logical to test with such an environment.   

To gauge whether an architecture is well-suited for an 
environment is difficult to accomplish, however, a 
common measure of performance is the time taken to 
finish the task.  The elapsed time can be significantly 
reduced with the implementation of a cooperative team of 
agents motivated towards a common goal (Schneider-
Fontan and Matarie 1998).  Realizing a set of user-defined 
rules for inter-agent cooperation can become quite 
complex as all possible scenarios must be investigated.  
Hence machine learning has become an ideal tool for the 

development of multi-agent behavior.  By having 
increasingly abstract layers of interaction between agents, 
a cooperative behavior emerges.  Thus, multi-agent 
architecture in concert with machine learning techniques 
seems a promising path to pursue. 

In order to study such real-world complexities in a 
limited domain the concept of RoboCup was introduced 
(Kitano et al. 1997). While maintaining an affordable 
problem size and research cost, RoboCup was designed in 
an attempt to provide a common task for the evaluation of 
various theories, algorithms, and architectures. This 
domain currently uses soccer as its "standard problem", in 
particular, the soccer simulator developed by Noda et al. 
(Noda, Matsubara and Hiraki 1998). This simulator 
incorporates many real-world complexities, such as limited 
vision, limited stamina, oral communication, and sensor 
noise, thus providing a convenient, yet non-trivial testbed 
for AI researchers. 

Among the existing architectures, role-based decision 
trees are a common approach (Coradeschi and Karlsson 
1998, Matsumoto and Nagai 1998). An agent’s action is 
selected according to prioritized rules organized in a 
decision tree. However, in these works, building a decision 
tree is based completely on the designer’s knowledge and 
experience, thus it would be difficult to cover all situations 
that might occur in a dynamic environment.  

Under the influence of Brooks’ work with the 

subsumption architecture (Brooks 1986), several layered 

architectures have been proposed. Matellan et al. 

(Matellan, Borrajo, and Fernndez 1998) used a two level 

structure: one composed of reactive skills capable of 

achieving simple actions on their own; the other based on 

an agenda used as an opportunistic planning mechanism to 

compound, activate, and coordinate the basic skills. Scerri 
and others (Scerri 1998; Westendorp, Scerri, and Cavedon 

1998) proposed a multi-layered behavior based system, 

made up of a number of structurally similar layers, in 

which upper layers control the activation and priority of 

behaviors in lower layers. These layered architectures are 

advantageous for management and coordination, however, 

they have serious drawbacks due to the hard-wired design. 

For example, how does one set the appropriate priorities? 

There is also the problem dealing with oscillations 



 

between behaviors when information indicates more than 
one behavior is applicable. Finally, handling uncertain 
information becomes yet another challenge.  

In order to cope with these problems, some effort has 
been made to incorporate machine learning into the 
layered structure. Noda et al. (Noda, Matsubara and Hiraki 
1996) implemented neural networks to train an agent to 
choose between two basic behaviors, shooting and passing.  
Balch (Balch 1998) used Q-learning to train individual 
behaviors to determine when and how to activate a 
particular skill, given a common set of hand-coded low-
level skills. Luke et al. (Luke et al. 1998) attempted 
genetic programming to "evolve" an entire soccer team 
from a set of low-level "basic" behavior functions to be 
used by individual agents.  These methods, however, did 
not fully exploit the use of machine learning for low-level 
behaviors. 

Stone and Veloso used neural networks to learn a basic 
behavior, ball interception, which was then incorporated 
via a decision tree into the learning of passing (Stone and 
Veloso 1998).  They further suggested an extension to 
incorporate learning into the decision between dribbling, 
passing, and shooting skills, though this higher level was 
not implemented.  In a later paper, they proposed a general 
framework named “layered learning” to deal with 

intractable tasks (Stone and Veloso 1999).  This approach 

decomposed the problem, i.e. passing the ball, into several 

simpler, learnable steps: ball interception, pass evaluation, 

and pass selection.  While this method provided an 
innovative framework for complex task decomposition, it 

did not, unfortunately, provide a mechanism for the 

learned selection among a set of lower-layer subtasks, such 

as that suggested earlier (Stone and Veloso 1998). 

As an extension of the behavior-based layered structure 

(Luke et al. 1998), a generic architecture is proposed to 

incorporate machine learning techniques into the decision 

making process for multi-agent systems.  This scheme is 

applicable to both individual and team cooperation in a 

dynamic environment. 

 

Inter-layer Learning Approach 
The general layout of the proposed architecture is a tree-

like structure, where each additional layer introduces a 

higher level of complexity and control.  As an example, a 

three-tier structure is shown in figure 1.  The team strategy 

layer determines for each agent which individual strategy 

is to be adopted.  Based on the individual strategy, an 
agent chooses an appropriate behavior from all possible 

basic behaviors in the lower level.  The ultimate action 

output of an agent is the result of a top-down decision 

making process.   

 Machine learning of this layered architecture is 

implemented in a bottom-up fashion.  Basic behaviors are 

learned first.  The individual strategy layer then learns to 

choose between basic behaviors.  Finally, the team strategy 

layer learns to coordinate a group of learned agents.   

This process could be continued as necessary to achieve 

the desired scale of control according to various demands 

of applications. For example, considering a number of 

agents as a single entity, an additional layer could be built 
to attain more complex, cooperative behaviors between 

these groups. 

The subdivision within a specific layer is done based on 

the perception of the world by the agent. For example, if 

an agent is to drive a car, one could divide the actions of 

parking and passing another vehicle on the highway, as 

each would become a viable option only under specific 

environmental conditions. The subdivisions within a layer 

are based on certain environmental variables which may be 

specific to that particular layer.  This presents the danger 

of information overload. To follow the design principle of 

minimalism (Werger 1999), each layer uses only 
information about the environment pertinent to itself to 

simplify the entire process (Westendorp, Scerri, and 

Cavedon 1998). It should also be noted that the choice of 

percepts and reward functions are user defined, therefore it 

is left for future work. 

The inter-layer learning architecture is used to design a 

team of soccer playing agents within the RoboCup 

simulator (Noda et al. 1998). The soccer team employs 

three distinct layers: basic skills, individual strategy, and a 

team strategy (Figure 1).  Supervised and reinforcement 

learning are used, although unsupervised learning is also a 
possible venue to explore when building the interaction 

between layers.  Each of these layers is discussed in further 

details in the following sections. 

 

Figure 1. Overview of the inter-layer learning agent 

architecture. Note that the branches denote choices not 

inputs. 
 

Basic Skills 
A machine learning approach is employed to develop the 

basic skills, as other RoboCup researchers have done in the 

past (Stone and Veloso 1998, Ohta 1998, Tambe et al. 
1998). The basic skills layer is subdivided into passing, 

dribbling, shooting on the goal, anticipating a pass, 

intercepting the ball, marking, and clearing. Neural 



 

networks are chosen for three of the skills, each based on a 
single action, intercept the ball, shoot on goal, and pass the 
ball. As it is possible to determine whether the action is 
appropriate soon after its execution, a supervised-learning 
algorithm is well suited for this type of scenario. 

Dribbling and anticipating a pass are learned using 
temporal difference Q-learning (Q-TD) as both of these 
skills involve a more complex state space and reward 
function. This choice is further motivated as Q-TD is an 
active reinforcement learning scheme that does not require 
the estimation of a world model, i.e. the state transition 
probabilities. 

Both marking and clearing are analytically derived due 
to the nature of the skills (Stone, Veloso, and Riley 1999). 

 In the following discussion, we examine in further 
details the skills of dribbling (Q-TD), passing (neural 
network), and anticipating a pass (Q-TD). 

Dribbling – Q-TD. The task of dribbling is not only to run 
with the ball towards the opponent’s goal, but also to avoid 
opponents. Given the delayed-reward aspect of this 
scenario, Q-TD was chosen for this skill. 

The learning agent is trained to dribble against an 
opponent that has been trained to intercept the ball. A state 
is defined by the following three variables: opponent’s goal 
direction, opponent’s distance, and opponent’s direction.  
The agent decides among five dribbling directions.  At the 
early stage of learning, decision-based exploration is used 
so that the agent chooses actions that have been picked less 
often. The reward is assigned to both intermediate and 
terminal states based on distance gained towards the 
opponent’s goal and time consumed.  The assignment of 

intermediate reward motivates the agent to dribble towards 

the opponent's goal, thus helping speed up the learning 

procedure. 
Figure 2 shows gained distance versus epochs during 

the Q-TD procedure. When the maximum distance the 

agent is able to reach stop increasing and the minimum 

distance is constantly above a certain threshold, which is 

20 in this case, we consider that the learning is finished. 

Therefore, in Figure 2, the learning ended after 

approximately 400 epochs. 

 
Figure 2.  Q-TD procedure for dribble skill. 

 
In a real soccer competition, the agent will use the 

learning result, without further Q-value updating, to 

dribble around the closest visible opponent. If no opponent 

is visible, the agent will remember the last visible 

opponent and behave accordingly. This learned dribble 
skill also has the added benefit of an emergent collision 

detection function as the player learns to avoid the 

opponents when it has possession of the ball. 

Passing – BPNN. The challenge of passing the ball is in 
choosing the appropriate teammate to receive the pass. 
Since passing is not a continuous behaviour but a single 
action, for which active reinforcement learning is difficult 
to set up, the back-propagation neural network (BPNN) 
was chosen to learn this skill. 

The passing skill is learned in a simplified environment 
with a passing agent, one teammate, and one opponent. 
Both the teammate and the opponent have learned to 
intercept the ball through a neural network at this point. 
Before learning begins, the passing agent simply passes the 
ball to its teammate while the opponent tries to intercept 
the ball. The agent’s visual data is then used to train a BP 
neural network for the passing skill. 

The input values for the neural network are the 
teammate’s distance and direction as well as the 

opponent’s distance and direction.  The neural network 

converged after 292 iterations as shown in Figure 3. 

Figure 3.  BP neural network training procedure for 

passing skill 

 
 In a real soccer competition, an agent has to choose to 

pass the ball to one of m teammates in the presence of n 

opponents, where m and n are arbitrary numbers. The 

trained neural network discussed above can be used as 

follows: First, compute the matrix S of probabilities of a 

successful pass to teammate i given the position of 

opponent j.  Then, select teammate i* with the highest 

probability of success, to receive the pass, where: 

 

Si* = maxi minj Sij. 



 

This technique is similar to assigning confidence values to 
each of the choices (Stone and Veloso 1998).  

For evaluation, the neural network choice was compared 
to a random choice with three teammates and three 
opponents in the passing agent’s field of view. The results 
are shown in Table 1. The successful passing rate increases 
by 6.7%. While the effect is marginal, it does nevertheless 
demonstrate improved performance. 

 
 Success Failure Success rate 
Random choice 254 75 77.2% 
Neural network 276 53 83.9% 

Table 1.  Comparison of passing results by random choice 
and NN learning. 

Anticipating a Pass – Q-TD. The most difficult of the 
basic skills to implement is how to anticipating a pass. In a 
real game of soccer, a player must attempt to visualize the 
field from the perspective of its teammate with possession 
of the ball. In the RoboCup environment, the individual 
agents have a fixed viewing arc in which they gather visual 
percepts. In an attempt to learn this skill, the idea of a 
viewcone (Figure 4) is introduced in order to discretize the 
percepts as well as to create a simple but effective visual 
model along the lines of the minimalist design approach 
(Werger 1999). 

 

Figure 4.  Viewcone of labeled arcs 
 

The player first converts all of its information about the 
other players’ positions on the field into global 
coordinates. These values are then converted to a relative 

coordinate system with respect to the passer. Finally, a 

viewcone is constructed whereby the passer parses its 90° 

visual field into 15° arcs and weights them according to 
the closest player. If a teammate and an opponent appear in 

the same arc, the closer of the two to the passer will 

determine the weight. These weights are entered into a Q 

value temporal difference learning scheme to determine 

the best possible action to perform. Another value used is 

if the passer has an unobstructed view of the player.  

The four possible actions available to the player are to 

remain still, dash forward towards the passer, turn right 

and dash, or turn left and dash. In order for the player to 

choose the best possible actions, a unique reward system is 

devised. To encourage the player to dash to a location 

where it is open for a pass, the maximum reward is granted 

when the passer has an unobstructed view of the player 

and has two null arcs on either side (which would appear 

as 0, +1, 0 in the viewcone), in which case the player has 

no immediate threat of opponents. The reward decreases as 

teammates replace these null arcs, and the player is 
punished for being beside opponents, out of the viewcone 

of the passer, or within the passer’s viewcone but behind 

another player.  

After teaching the agent in a scenario with four 

teammates and five opponents randomly placed on one 

half of the field for over 28000 iterations, (with a state 

space of 5103 states), the player gradually chose an 

appropriate direction. With Q-value learning in this 

scenario, it is difficult to show the convergence, as the 

reward given after each step may produce the best action, 

but still results in an ineffective position. For example, if 

the player is outside the passer’s viewcone, it may take 
several actions before it can achieve an improved position 

and hence escape from the low reward states.  However, in 

comparing the learned skill against a random behavior, the 

learned skill moved in an appropriate direction 

approximately 70% more often. 

 

Individual Strategy Layer 
The individual strategy layer involves choosing amongst 

basic skills from a higher-level viewpoint (Noda et al. 

1996). This layer is subdivided into four types. The first 

division dictates whether the agent has possession of the 

ball (aggressive) or not (auxiliary). This is further 

categorized into offensive and defensive depending on 

whether the agent's home area is on its own side of the 

field or its opponent's side (see Figure 1). The home area 

refers to the center of a circular region in which the agent 
may move. These regions are overlapped to accommodate 

agent interaction. The individual strategy examined here 

will be aggressive-defensive, which implies that the agent 

must choose among dribbling, passing, and clearing. As 

the choice to clear the ball is made analytically, when no 

other course of action is possible, in this instance the 

decision learning is between that of dribbling versus 

passing. This is useful for both aggressive-offensive and 

aggressive-defensive players. 

Dribble/Pass. A learning agent is surrounded by four 

teammates and four opponents. All these players have been 

trained to dribble, pass, and intercept the ball. To simplify 
the learning situation, the teammate will only dribble after 

receiving a pass. The players pass or dribble the ball as far 

as possible towards the opponent's goal until an opponent 

successfully intercepts the ball.  

The visual information of the learning agent is gathered 

to train a back-propagation neural network. Viewcone 

quantization is used here again to simplify the visual 



 

information of the learning agent. The weighted viewcone 
arc values discussed earlier as well as the direction of the 
opponent’s goal are fed into the neural network.   

In order to obtain the desired output of the neural 

network, both decisions of dribbling and passing are tested 

for the same configurations. The reward of each decision is 
calculated as: 

reward=(distance gained)-0.01×(time consumed) 

For each configuration, the decision with the higher reward 

determines the desired output of the neural network.  

Figure 5 illustrates the training procedure which 

converged after 15228 iterations to under 5% error. This 

behavior during our actual soccer competition proved 

highly effective at eluding the opposing team. 

Figure 5.  BP neural network training procedure for 
Dribble vs. Pass 

Team Strategy Layer 
This layer of learning investigates the performance of 

emergent team behavior. In order to adapt to different 

opponents and different scenarios, an effective team must 
learn to become more defensive or offensive during the 

match (Tambe 1996). In this particular scenario, a model-

based approach to team strategy is adopted (Tambe 1996, 

Tambe et al. 1998) as opposed to a strictly behavior-based 

strategy (Werger 1999). This becomes the first layer of 

cooperation between the agents, and can potentially be 

expanded to further layers.  

Three types of strategies; offensive, defensive, and 

half/half, are defined by three possible sets of home areas 

of the players (Figure 6).  

(a)                         (b)                        (c) 
 

Figure 6.  Team Strategies: (a) half/half, (b) offensive,  

(c) defensive 

To facilitate the learning of an appropriate team 

strategy, a captain agent is introduced.  This individual 

agent would carry the burden of deciding which team 

strategy to adopt based on its own visual cues and relays 

its decision to the rest of the team. In order to account for 

players outside the captain’s field of view, the concept of 
temporal decay is applied (Westendorp, Scerri, and 

Cavedon 1998).  

Once the captain has received its visual information, a 

world-model is created. Based on this world-model, Q-TD 

is applied to learn the team strategy.  

The positional percepts that define the state values must 

be discretized in order to reduce the state space to a 

manageable size.  To maintain useful information 

regarding team positions and local densities of players, a 

field mean and pseudo variance are calculated by dividing 

the field into six partitions in the x-direction.  These 

figures are then used to determine the regions 
corresponding to the average position of both teams.  This 

approach is similar to the tolerance design technique 

(Werger 1999). For example, in Figure 7, the mean of team 

A (white) lies in region 2 and team B (black) in region 5. 

The pseudo-variance varies with the number of agents 

present in the mean region. 

Figure 7.  Discretized field 

 
The final piece of data used by the learning algorithm is 

the ball location, which is also needed to create the 

appropriate reward. The reward relies solely on the amount 

the ball advanced or retreated during 100 ticks of the game 

clock. The choice of this time is completely heuristic.  

After learning, the captain chooses between offensive, 

defensive, and half/half strategies according to the state of 

the game, and broadcasts this choice to the team. Each 

player picks a different home area corresponding to the 

new strategy, which determines whether the player will 

focus more on the opponent’s side of the field (offensive) 
or on its own (defensive). 

Results and Conclusions 
Once all of the layers were integrated into a complete 

soccer playing agent, our team was entered into the 1999 

RoboCup competition at McGill University, outscoring the 

competition by a total of 12:0.  The inter-layer learning 

architecture appears to be a reasonable structure for a 
multi-agent, cooperative task.  Employing the agents to 

learn cooperative behaviors, as opposed to taking an 

analytical approach, allowed emergent team strategies to 

be adopted. 



 

 It should be noted that although the final behavior is 
emergent, the human designer is still responsible for the 
division of the sub-tasks as well as the choice of training 
data.  However, this approach extends the application of 
machine learning from the acquisition of individual tasks 
to the learning of the appropriate selection criteria for 
choosing between them. Expanding this architecture to 
cooperation between sub-teams working collectively 
appears possible, and an implementation of such a 
structure is left for further research.   

 

Acknowledgements 
We would like to thank Sorin Lerner for all of his help 
with the RoboCup soccer server, without whom we would 
never have gotten our players to see, let alone kick the ball.  
 

References 
Balch, T. 1998. Integrating Learning with Motor Schema-
Based Control for a Robot Soccer Team. RoboCup-97: 
Robot Soccer. World Cup I. 483-491. Berlin, Germany: 
Springer-Verlag. 
 
Brooks, R. A. 1986. A Robust Layered Control System for 
a Mobile Robot. IEEE Journal of Robotics and 
Automation, RA-2(1):14-23. 
 
Coradeschi, S., and Karlsson, L. 1998. A role-based 
decision-mechanism for teams of reactive and coordinating 
agents. RoboCup-97: Robot Soccer. World Cup I. 99-111. 
Berlin, Germany: Springer-Verlag. 
 
Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E., 
and Matsubara, H. 1997.  RoboCup: A Challenge Problem 
of AI.  AI Magazine. 18:73-85. 
 
Luke, S., Hohn, C., Farris, J., Jackson, G., and Hendler, J. 
1998. Co-evolving Soccer Softbot Team Coordination with 
Genetic Porgramming. RoboCup-97: Robot Soccer. World 
Cup I. 398-411. Berlin, Germany: Springer-Verlag. 
 
Matellan, V., Borrajo, D., and Fernndez, C. 1998.  Using 
ABC2 in the RoboCup domain. RoboCup-97: Robot 
Soccer. World Cup I. 475-482. Berlin, Germany: Springer-
Verlag. 
 
Matsumoto, A., and Nagai, H. 1998. Decision making by 
the characteristics and the interaction in multi-agent 
robotics soccer. RoboCup-97: Robot Soccer. World Cup I. 
132-143. Berlin, Germany: Springer-Verlag. 
 
Noda, I., Matsubara, H. and Hiraki, K.  1996.  Learning 
Cooperative Behavior in Multi-Agent Environment – A 

Case Study of Choice of Play-plans in Soccer. Proceedings 
of the 4th Pacific Rim International Conference on 
Artificial Intelligence. 570-579. 
 

Noda, I., Matsubara, H., Hiraki, K., and Frank, I. 1998. 

Soccer Server: A Tool for Research on Multiagent 
Systems. Applied Artificial Intelligence 12(2-3):233-250. 

 

Ohta, M. 1998. Learning Cooperative Behaviors in 

RoboCup Agents. RoboCup-97: Robot Soccer. World Cup 
I. 412-419. Berlin, Germany: Springer-Verlag. 

 

Scerri, P. 1998. A Multi-layered Behavior-Based System 

for Controlling RoboCup Agents. RoboCup-97: Robot 
Soccer. World Cup I. 467-474. Berlin, Germany: Springer-

Verlag. 

  

Schneider-Fontan, M. and Matarie, M. 1998.  Territorial 
Multi-Robot Task Division.  IEEE Transactions on 
Robotics and Automation. 14(5):815-822. 

 

Stone, P. and Veloso, M. 1998. A Layered Approach to 

Learning Client Behaviors in the RoboCup Soccer Server.  

Applied Artificial Intelligence 12:165-188. 

 

Stone, P. and Veloso, M. 1999. Layered Learning.  

International Joint Conference on Artificial Intelligence 
Workshop on Learning About, From, and With Other 
Agents.  
 

Stone, P., Veloso, M. and Riley, P. 1999. The CMUnited-

98 Champion Simulator Team. RoboCup-98: Robot 
Soccer. World Cup II. Berlin, Germany: Springer-Verlag. 

At URL: http://www.cs.cmu.edu/afs/cs/usr/pstone/public/ 

papers/98springer/final-champ/final-champ.html. 

 

Tambe, M. 1996. Tracking Dynamic Team Activity. In 

Proceedings of the thirteenth Conference on Artificial 

Intelligence Applications. 11:80-87. Cambridge, U.S.A.: 

MIT Press. 

 
Tambe, M., Adibi, J., Al-Onaizan, Y., Erdem, A., 

Kaminka, G., Marsella, C., and Muslea, I. 1998. Building 

Agent Teams Using an Explicit Teamwork Model and 

Learning.  Artificial Intelligence. 110(2):215-239. 

 

Werger, B. 1999. Cooperation Without Deliberation: A 

Minimal Behavior-Based Approach to Multi-Robot 

Teams. Artificial Intelligence. 110(2):293-320. 

 

Westendorp, J., Scerri P., and Cavedon L. 1998. Strategic 

Behaviour-Based Reasoning with Dynamic, Partial 
Information. RoboCup-97: Robot Soccer. World Cup I. 
297-308. Berlin, Germany: Springer-Verlag. 


