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ABSTRACT
Combinatorial auctions, where bidders can bid on bundles of items,
are known to be desirable auction mechanisms for selling items that
are complementary and/or substitutable. However, there are 2k−1
bundles, and each agent may need to bid on all of them to fully
express its preferences. We address this by showing how the auc-
tioneer can recommend to the agents incrementally which bundles
to bid on so that they need to only place a small fraction of all pos-
sible bids. These algorithms impose a great computational burden
on the auctioneer; we show how to speed them up dramatically. We
also present an optimal elicitor, which is intractable but may be the
basis for future algorithms. Finally, we introduce the notion of a
universal revelation reducer, demonstrate a randomized one, and
prove that no deterministic one exists.

The full paper is available in draft form at http://www.cs.
cmu.edu/˜sandholm/using_value_queries.pdf
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1. INTRODUCTION
Combinatorial auctions, where agents can submit bids on bun-

dles of items, are economically efficient mechanisms for selling
k items to n bidders, and are attractive when the bidders’ valu-
ations on bundles exhibit complementarity (a bundle of items is
worth more than the sum of its parts) and/or substitutability (a bun-
dle is worth less than the sum of its parts). Unfortunately, there
are 2k − 1 bundles, and each agent may need to bid on all of them
to fully express its preferences. In addition, evaluating a bundle’s
value may require the bidder to solve a computationally expensive
problem. Appropriate bidding languages can solve the communi-
cation overhead in some cases when the bidder’s utility function is
compressible. We focus on the case where agents’ valuation func-
tions are largely incompressible.

Our work uses a recently proposed scheme for incremental pref-
erence elicitation [1]. In this framework, the auctioneer elicits in-
formation from bidders about their valuation functions, using all
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Figure 1: Results of running our elicitors on synthetic data (de-
tailed in the full-length version). Top set of lines: Random elicita-
tion policy. Bottom set of lines: High-value policy. The elicitation
ratio is the number of bundles elicited divided by the total number
of bundles.

replies to previous queries in order to guide further questioning (the
auctioneer is thus also known as the elicitor). The elicitor stops
eliciting when it has gathered enough information to clear the auc-
tion. This information acts as a certificate for the optimality of the
final allocation.

We designed some algorithms within that scheme, limiting our
focus here to value queries (asking a bidder for its valuation of a
bundle). These map directly to the traditional notion of a bid in a
sealed-bid auction. As is typical in work on combinatorial auctions,
we assume the bidders have free disposal. This means that their
valuation for a bundle is at least as high as their valuation for any
subbundle (because at worst, they could throw away the extraneous
items for free).

2. RANDOM ELICITATION POLICY
The first policy we investigate simply asks random value queries.

In the beginning, we generate the set of all n(2k−1) value queries.
Whenever it is time to ask a query, the policy chooses a random
query from the set, ignoring those it has already asked or for which
the value can already be inferred. If it is possible to save elicitation,
then on average this policy saves elicitation:

PROPOSITION 1. Let Q = n(2k − 1) be the total number of
queries, and let qmin be the number of queries in the shortest cer-
tificate. For any problem instance, the expected number of queries
that the random elicitation policy asks is at most qmin

qmin +1
(Q+ 1).

Figure 1 shows that the elicitation ratio q/Q is indeed less than 1
in the experiments we ran. Also, the ratio slowly falls as the number
of items increases. Nevertheless, we would hope to do better: on
all the instance sizes we ran on, this algorithm asks more than half
of all the queries.

3. HIGH-VALUE ELICITATION POLICY
We examined several other policies that take into account vari-

ous reasonable heuristics for choosing better than randomly. The



best policy we have found so far – a modification of a policy re-
cently used in a combinatorial exchange setting [6] – attempts to
maximize its probability of reducing the upper bound of subopti-
mal allocations while simultaneously maximizing its possibility of
increasing the lower bound of the optimal allocation. In particular,
the elicitor finds the set of allocations which, given the information
it has elicited so far, may have the highest value of any other alloca-
tion. This defines a set of bundle-agent pairs: a pair (b, i) is in the
set if one of the high-value allocations allocates bundle b to agent i.
We further refine the set of pairs to include only those that may re-
duce the upper bound on the value of the most other bundles in the
set (given the free disposal assumption, this roughly corresponds to
picking larger bundles).
Representing allocations implicitly
In the general algorithm framework [1], the set of allocations is ex-
plicitly maintained. However, the size of the set grows as nk where
n is the number of agents and k is the number of items. When
n > 2, the size of the set of allocations even exceeds the total
number of bundles, n2k. We therefore designed a method of im-
plementing the policy described above, while avoiding the explicit
representation in order to scale better in the number of agents.

We accomplish this by repeatedly solving an integer program
(IP) every time a query is to be selected—rather than explicitly rep-
resenting the set of allocations. We use the following IP to compute
the value of the highest-valued allocation:

maximize
∑
i∈N,b⊆K UBi(b)xi(b)

subject to xi(b) ∈ {0, 1} ∀i ∈ N, ∀b ⊆ K∑
b⊆K xi(b) ≤ 1 ∀i ∈ N∑

i∈N
∑
b3j xi(b) ≤ 1 ∀j ∈ K

That is, we maximize the sum of the upper bounds we can achieve
on the value of each bundle, constrained to picking only non-over-
lapping bundles and only one bundle per agent.

Upon solving the IP, the elicitor will know the value UBmax of
the allocations with greatest upper bound. Then, for each bundle-
agent pair (b, i) in turn, we force xi(b) = 1 and solve again. This
returns the value UBmax(b, i) of the allocations with greatest up-
per bound, constrained to only those allocations that allocate b to
agent i. If UBmax(b, i) = UBmax, then (b, i) is in a high-value
allocation. The elicitor now has the set of (b, i) that are in high-
value allocations, and can proceed as before (picking the bundles
that will reduce the value of the largest number of others). Imple-
mented naively, the policy solves the IP for each pair (b, i) every
time the elicitor needs to select a query. However, the solution to
the IP for (b, i) will often not change between queries; and even if
it does, since the IP is finding an upper bound, the solution value
can only fall. We therefore cache old solutions and thus avoid re-
computing the IP in many cases.

Our experiments show that in our implementation, the implicit
representation of allocations is faster than the explicit one already
with three agents (n = 3). With 5 agents, the implicit approach is
several orders of magnitude faster.

As Figure 1 shows, this elicitation policy asks only a small frac-
tion of the queries before the optimal allocation is found, and the
elicitation ratio decreases with the number of items in the auc-
tion. So, incremental preference elicitation is a promising avenue
to tackle the combinatorial auction problem in practice, although it
is known that the worst case communication complexity is expo-
nential (even to find an approximately optimal allocation) [4].

4. OPTIMAL ELICITATION ALGORITHM
We can easily design an optimal elicitation policy. The elici-

tor would like to incrementally choose the query that, given all the
information it knows, brings it closest to having a certificate (on av-

erage). To do this, the optimal algorithm checks, for each possible
query, the expected number of queries the elicitor would have to
make before it found an optimal allocation. That is, for each pos-
sible query, and for each possible answer to that query, how many
queries would be left on average?

Unfortunately, a full tree search is infeasible: at the root, the
branching factor of the algorithm is n(2k − 1) queries. At the
next level, the branching factor is equal to the number of possible
answers, which is large (for bounded integer valuations) or even
infinite (for general integer valuations, or continuous valuations).
For most of those answers, the algorithm branches on n(2k−1)−1
queries, and so on. Even with very aggressive pruning (namely,
cheating by always “guessing” the correct answer and thus only
branching on the queries), we can only solve this problem exactly
on tiny instances (n = k = 3).

5. UNIVERSAL REVELATION REDUCERS
So far we have presented elicitation policies that, on average over

instances, save a large amount of preference revelation. Now we
ask the question: Do there exist universal elicitors, that is, elicitors
that save revelation on all instances (excepting those where even an
elicitor guided by an oracle would reveal everything)?

DEFINITION 1. A universal revelation reducer is an elicitation
policy with the following property: given a problem instance, it can
guarantee (always in the deterministic case; in expectation over
the random choices in the randomized case) saving some elicita-
tion over full revelation—provided the shortest certificate is shorter
than full revelation.

PROPOSITION 2. The unrestricted random elicitation policy is
a universal revelation reducer.

PROPOSITION 3. No deterministic value query policy is a uni-
versal revelation reducer.

The proof is based on a fooling set. For any deterministic algo-
rithm, at least one of the elements of the fooling set will cause the
algorithm to ask all the questions, even though each element of the
fooling set could be cleared with fewer questions.

6. FUTURE RESEARCH
Future research includes studying additional query type for elic-

itation in combinatorial auctions [1–3], identifying special classes
of valuations for which elicitation can be done in polynomial time [7],
and better understanding the relationship between this work and
ascending auctions (e.g. [5]), which can be viewed as preference
elicitation using demand queries.
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