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Abstract

Markets are important coordination mechanisms for multia-
gent systems, and market clearing has become a key appli-
cation area of Al algorithms. We study optimal clearing in
the ubiquitous setting where there are multiple indistinguish-
able units for sale. The sellers and buyers express their bids
via supply/demand curves. Discriminatory pricing leads to
greater profit for the party who runs the market than non-
discriminatory pricing. We show that this comes at the cost
of computation complexity. For piecewise linear curves we
present a fast polynomial-time algorithm for nondiscrimina-
tory clearing, and show that discriminatory clearing\isP-
complete (even in a very special case). We then show that
in the more restricted setting of linear curves, even discrim-
inatory markets can be cleared fast in polynomial time. Our
derivations also uncover the elegant fact that to obtain the op-
timal discriminatory solution, each buyer’s (seller’s) price is
incremented (decrementegfjuallyfrom that agent'’s price in

the quantity-unconstrained solution.
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al. 2002) and combinatorial exchanges (Sandholm 2002b;
Sandholmet al. 2002). The clearing problem in a com-
binatorial market isN“P-complete (Rothkopf, Peke &
Harstad 1998), inapproximable (Sandholm 2002a), and in
certain variants even finding a feasible solutionA\isP-
complete (Sandholrat al. 2002). On the other hand, mar-
kets where there is only one unit of one item for sale are
trivial to clear.

In this paper we study a setting which is in between. We
study the ubiquitous market setting where there are multiple
indistinguishableunits of an item for sale. This setting is
common in markets for stocks, bonds, electricity, bandwidth
(e.g., RateXChange), oil, pork bellies, memory chips, CPU
time, etc. We study the problem where the bids are known
up front. This is the case in many business-to-business mar-
kets. The algorithms can also be used in markets where bids
arrive over time (and the market is cleared periodically, for
example, every 5 minutes, or after some number of bids have
arrived since the last clearing) and in multi-stage markets
(where a tentative clearing is carried out after each round of

Commerce is moving online to an increasing extent, and Pidding). o o
there has been a significant shift to dynamic pricing via ~ 1he naive approach to bidding in a multi-unit market
auctions (one seller, multiple buyers), reverse auctions (one Would require the bidders to express their offers as a list of
buyer, multiple sellers), and exchanges (multiple buyers, Points, for example ($2 for 1 unit) XOR ($5 for 2 units)
multiple sellers). These market types have also become key XOR ($6 for 3 units), etc. The mapping from quantities to
coordination methods in multiagent systems. These trends Prices can be represented more compactly by allowing each
have led to an increasing need for fast market clearing algo- Pidder to express his offer as a price-quantity curve (supply
rithms. Also, recent electronic commerce server prototypes curve for a seller, demand curve for a buyer). Such curves
such aeMediator(Sandholm 2002b) antiuctionBot(Wur- are natural ways of expressing preferences, are ubiquitousin
man, Wellman, & Walsh 1998) have demonstrated a wide €conomics (Mas-Colell, Whinston, & Green 1995), and are
variety of new market designs, leading to the need for new becoming common in electronic commerce as well (Sand-
clearing algorithms. holm 2002b; Lavi & Nisan 2000; Lupien & Rickard 1997).

There has been a recent surge of Al interest (e.g., (Sand- In classic economic theory of supply and demand curves
holm 2002a; Fujishima, Leyton-Brown, & Shoham 1999; (called partial equilibrium theory (Mas-Colell, Whinston, &
Hoos & Boutilier 2000)) in clearing combinatorial auctions ~ Green 1995)), the market is cleared as follows. First, the
where bids can be submitted on bundles of distinguishable Supply curves of the sellers are aggregated, and the demand
items, potentially multiple units of each (Sandholm 2002b; curves of the buyers are aggregated. Then, the market is
Leyton-Brown, Tennenholtz, & Shoham 2000; Sandhetm cleared at some per-unit price for which supply equals de-
al. 2002). There has also been recent work on clearing com- mand (there may be multiple solutions). This way of clear-
binatorial reverse auctions (Sandholm 2002b; Sandreim  ing the market maximizes social welfare.

*This work was funded by, and conducted at, CombineNet, Inc., However, it turns out that trmjct_loneer(that is, the party
311 S. Craig St., Pittsburgh, PA 15213. w_ho runs the market—who is ne|th(_ar a buyer nor a seller)
Copyright © 2002, American Association for Artificial Intelli- will achieve greater (or equal) profit from the same sup-
gence (www.aaai.org). All rights reserved. ply/demand curves by reducing the number of units traded,



and charging one per-unit price to the buyers while paying a
lower per-unit price to the sellefswWe call such pricingnon-
discriminatorybecause each buyer pays the same amount
per unit, and each seller gets paid the same amount per unit.
The auctioneer’s profit can be further improved by moving
to discriminatorypricing where each seller and each buyer
can be cleared at a different per-unit price.

Interestingly, the pricing scheme and the shape of the sup-
ply/demand curves significantly impact the computational
complexity of clearing the market. We show that markets
with piecewise linear curves are clearable in polynomial
time under non-discriminatory pricing, btfP-complete to
clear under discriminatory pricing. With linear curves, eve
discriminatory markets can be cleared in polynomial time.

n

The Market Model

The market has sellers andn buyers. Without loss of gen-
erality, we assume that no agent is both a buyer and a seller
(if an agent is both, we treat him as two separate agents).
Each seller expresses his willingness to sell veupply
curves : RT — RT from non-negativainit prices to non-
negative supply quantity. Thus, if the unit priceyisthe
seller is willing to supplys(p) units of the good. Similarly,
each buyer submits@emand curve : Rt — R™T.
We assume that supply/demand curvesmaeeewise lin-
ear. Such curves can approximate any curve arbitrarily
closely. General supply/demand curves, however, can lead
to absurd results (infinite values, zero costs, etc. (Sandholm
& Suri 2001a)). Therefore, we make the usual assumption
that supply curvesareupward slopingand demand curves
aredownward sloping This is economically reasonable in

of buyerj. Then, for the solution to be feasible, supply
must equal demand_;_, s;(p}.,) = 272 d;j(pg;g)- Sub-
ject to this, the goal is to maximize the auctioneer’s profit:
Phia 2j—1 4 (Phia) — Pask 2oi—1 Si(Pask)- Thus the compu-
tational problem is to determine the clearing pripgs, and
Dhid-

Discriminatory Pricing

In a discriminatory market, the market can clear each seller
and each buyer at a distinct unit price. Specifically, suppose
selleri is cleared at unit price;, and buyer;j is cleared

at unit pricep;. Then, the feasibility condition of supply

meeting demand i87", s;(p;) = 71, d;(p}), and the
auctioneer’s profit to be maximized jg 37", d;(p;) —
pi Yo", si(p}). The computational problem is to determine
the clearing price for each seller and buyer.

The profit generated under discriminatory pricing is
greater (or equal) than that under non-discriminatory

pricing*

Clearing Preliminaries

We begin with the simple case ofane seller, one buyer
market, where the seller has an upward sloping linear supply
curveq = asp — b, and the buyer has a downward sloping
linear demand curve = —agp + by, Wherea,, ag > 0, and
bs,bq > 0. The following elementary lemmata will be use-
ful throughout the paper. (Observe that in a 1-seller, 1-buyer
market, non-discriminatory and discriminatory pricing are
identical.) Figure 1 illustrates the clearing in this setting.

that higher prices increase supply and decrease demand. We

do not assume that the curves are continuous—they could
have discrete “jumps”.

In this paper, we study clearing where the objective is
to maximize the auctioneer’s profit. We study two pricing
schemesnon-discriminatoryanddiscriminatory

Non-Discriminatory Pricing
In a non-discriminatory market, there are two clearing

prices, one shared by the sellers and one shared by the buy-

ers. Specifically, suppose the market clears the sellers at
the unit pricep? ., and the buyers at the unit prigg,,,.
These prices uniquely determine the quantity supplied by
each seller, and the quantity bought by each buyer, using
their supply/demand curves. In particular, suppeses

the supply curve of sellei, andd; is the demand curve

1The profit could be allocated entirely to the party who runs the
market, or it could be divided among the market participants. How
it is divided can affect the bidders’ incentives for revealing their
preferences, but we do not address incentives in this paper.

quantity

o]
*

unit price

Figure 1: 1-seller, 1-buyer market with linear sup-
ply/demand curves. The profit equals the area of the shaded
rectangle. The clearing occurs at quantity which is half

the height of the triangle formed by the supply and demand

2These issues have been settled for auctions (and part of reverselines.

auctions) (Sandholm & Suri 2001a). We settle the general case:
multiple buyers and sellers.

3The model also covers the possibility that the seller (buyer)
is willing to accept a higher (lower) price for the same quantity.
However, given our objective, in any optimal solution, each party
is cleared exactly on his supply/demand curve.

“However, non-discriminatory markets offer fairness. Discrim-
inatory markets offer a weak form @x antefairness: they are
anonymous in the sense that had two players swapped their bids,
their allocations would also have been swapped.



Lemma 1 (1-Seller, 1-Buyer Unconstrained Trading)
Consider a market of one seller, with upward sloping sup-
ply ¢ = asp — bs, and one buyer, with downward sloping
demand; = —agp + by, Whereas, ag > 0, andbg, by > 0.
Then, the profit-maximizing trade occurs at quantity

N 1 (asbg — agbs
¢ = 2 < as + aq )
The clearing prices for the seller and the buyer are
. 1 [ bs bs + by y ba bs + by
p‘”k—§<a_s + as—l-ad)’pl"d 2 <ad as—i-ad)

PrROOFE Consider a trade between the buyer and seller at
guantity q. The clearing prices for the seller and buyer
are determined from their curveg; = (¢ + bs)/as and

pa = (—q +bq)/aq. The total profit isy (%ﬁbd — atbe

as

Setting the first derivative of the profit (with respectao

zero, we get-2¢ 4 b _ 24 _ b — 0, which gives the
proflt-maX|m|zmg quantlt}q =q* %) (The

second derivative of the profit function is negative, implying
that the profit is maximized at this quantity.) The seller and
buyer clearing prices, namely; .. andp;,, are obtained by
substitutingg into the expressions far, andp,. |

In general, when participants put price or quantity con-
straints on their curves, the trade will not occur at the “un
constrained” optimal quantity* determined by Lemma 1.
The following lemma determines the effect of moving the
traded quantity away from*. We consider the same one-
seller, one-buyer market as above, and compute the profit
achieved when trade occurs at some quantity- ¢, where
e can be positive or negative. (We assupme< ¢*, which

Thus, the new profit ig*(p};,; — pl..) — €2 (ai + 4

Our next lemma states a corollary of Lemma 2 for the case
where the buyer and seller curves are quantity-constrained.
Suppose the buyer’s curve is the downward-sloping linear

functiong = —agp + by, but restricts quantity to the range
(¢} 441, and the seller’s curve is the upward-sloping linear
functionq = —agp + by, but restricts the quantity to the

range(q,, ¢”']. What trade maximizes the profit? The only
feasible trades that can occur are those in the quantity range
that is common to both. So, assume tlgatq”] is the inter-
section of the intervalgy,, ¢//] and|q’, ¢7/].

Lemma 3 (1-Seller, 1-Buyer Bounded Trading)

Consider the 1-seller, 1-buyer market, with linear sup-
ply/demand curves, where the buyer and the seller can only
trade in the quantity rangéy’, ¢”’]. The profit-maximizing
trade occurs either ag* (if ¢* € [¢/, ¢”]), or at that end-
point of the rangéq’, ¢”'] which iscloserto ¢*.

ProOF If the unconstrained trade quantify is in the fea-
sible range, profit is maximized at. Otherwise, Lemma 2
shows that the profit shrinks quadratically with the devia-
tione from ¢*. Thus, the optimal trade occurs at the feasible
point closest t@*, which is an endpoint of the rangg, ¢”].

O

Non-Discriminatory Markets

In this section, we show how to clear a market with mul-
tiple buyers and sellers, each witliecewise linearde-
mand/supply curves, under non-discriminatory pricing. Our
approach is t@aggregatehe demand and the supply curves
separately, and then reduce the problem to the 1-seller, 1-
buyer case. The single seller is the aggregate of all sellers,

ensures that the trade is feasible and produces non-negativeand the single buyer is the aggregate of all buyers. The key

profit.)

Lemma 2 In the 1-seller, 1-buyer market, if the trade oc-
curs at quantityy* + ¢, then the profit is

q (pbid _pask) - 62 (a_ +
That is, the profishrinks(quadratically) with|e|.
PROOF Let us consider the case of> 0; the other case is
analogous. When the traded quantity is increased, ltlye
seller’s clearing unit pricencreasedy ¢/ a,, and the buyer’s
unit clearing pricalecrease®y =/a,4. The new profit, there-

fore, equaldq* + ¢) ((Pizd o) = ok + ai)) which
can be written ag* (pbld Do) — €2 (+ o) +e(0hia—

Digr) — €4 ( + - ) The proof is completed by showing

that the 3rd and the 4th terms of this expression are equal,
and therefore cancel each other out. To see this equality,
we substitute the expressions fgf, p;,,;, andp? . from
Lemma 1.

aqd

* * ba bs +ba bs bs + bg
e(Ppia — Pask) € (E m - E - m)
_ € bd bs
T2 (a_d - Z)
w1 1 e [asby —agbs 1 1 e [ by bs
corta = s () ()= (- 8)

idea here is that sincall buyers are cleared at the same
price p;,;,;, we can infer quantities sold to each individual
buyer by evaluating their curvesgy; ;. The same holds for
the sellers.

Let us consider the aggregation of buyer curves; seller
curves are handled in the same way. Consider a set of
piecewise linear demand curvés, ds, .. .,d,. Theirag-
gregate curves a piecewise linear functio® : Rt — RT
such thatD(p) is the total demand at unit prige That is,
D(p) = di(p) + d2(p) + ... + dn(p), whered;(p) is the
demand by curvéat unit pricep. The aggregation dinear
functions leads to a linear function. Thus, if a price interval
[p1,p2] does not contain thbreakpointsof any of the de-
mand curves, then the aggregate curve in the intésyab,|
has the formy = (3>, a;)p + >, bi, wherea; andb; are the
coefficients of the component linear curves.

The breakpoints ofD are the union of the breakpoints
of the component curves—the aggregate demand curve
changes only when one of the component curves changes.
Thus, given a set af piecewise linear curves each of which
has at mosk pieces, their aggregate curizehas at mostk
breakpoints.

Givenn piecewise linear curves, their aggregate is eas-
ily computed inO(nk log(nk)) time, by a sweep-line algo-
rithm as follows. Letk be the maximum number of pieces



in any curve. Lepq, po,...,pr, WhereL < nk, denote the
breakpoints of all the component curves, in sorted order. We
scan these breakpointsin right to left order (decreasing order

two consecutive breakpoints. Initially, we compute the lin-
ear aggregate function in the range,, c0), in O(n) time.

Next, as we move to the next breakpoint, at most one linear
piece changes—one piece may end and another may begin.

(If multiple curves begin or end at the same point, we can 5.

enforce an artificial order among those, and consider them
one at a time.) We can update the linear aggregate by delet-
ing the coefficients of the leaving curve and adding those
of the entering curve, and so each update takély time.
Thus, the complete aggregate curve can be determined in
time O(nk), after an initial sorting cost aD(nk log(nk)).

Despite the fact that the input demand curves are down-
ward sloping, the aggregate demand curve need not be
downward sloping. Similarly, the aggregate supply curve
need not be upward sloping. This can lead to the problem of
having multiple prices for a given quantity. We rectify this
by computing theightmostenvelope of the aggregate de-
mand curve, anteftmostenvelope of the aggregate supply
curve. In other words, for each quantitywe just keep the
point with the maximum demand price, and the minimum
supply price. This does not affect the solution space since
in a profit-maximizing market, all clearings occur at these
envelopeprices.

Our non-discriminatory clearing algorithm can now be
described as follows (see Figure 2.):

> Aggregate
g Demand

S| Adggregate Curve

< | Supply

Curve

/ """""" ">< Trapezoid

unit price

Figure 2:Non-discriminatory market. The figure shows de-

composition of the feasible region into four trapezoids. Each
trapezoid corresponds to a 1-seller, 1-buyer market. The ag-
gregate demand curve is intentionally drawn to be discon-
tinuous and not downward sloping (although each piece is
downward sloping).

Algorithm ND-Market

1. Compute the piecewise linear aggregate demand dpyve
and the aggregate supply curse

2. Let thefeasible spaceenote the set of point®, ¢) for
which D(p) and.S(p) both exist andS(p) < D(p); that

3. Decompose the feasible region into trapezoids, by “draw-

ing” horizontal lines through each breakpointiofor S.

of price), and determine the linear aggregate curve between4' The market clearing problem for each trapezoid cor-

responds to the 1-seller, 1-buyer bounded trade (cf.
Lemma 2), so it can be solved ®(1) time. Since there
areO(K) trapezoids, the time complexity of this step is

The maximum-profit solution over all trapezoids is the op-
timal solution. Once the clearing prices, , andp;. ., are
determined, we can evaluate each seller curyg atand
each buyer’s curve af;,;, to determine the quantity sold
by each seller, and bought by each buyer.

We summarize this result in the following theorem.

Theorem 1 Consider a 1-item, multi-unit market with mul-
tiple sellers and buyers, where each seller (buyer) has an
upward (downward) sloping piecewise linear curve. Then,
a profit-maximizing clearing using non-discriminatory pric-
ing can be determined i®(K log K), whereK is the total
number of pieces in all of the piecewise linear curves.

Discriminatory Markets
We now study the complexity of discriminatory markets.

Intractability with Piecewise Linear Curves

In sharp contrast to a non-discriminatory market, we show
that clearing a discriminatory market with piecewise linear
curves isN"’P-complete. In fact, this complexity jump oc-
curs even for the simplest piecewise linear curgésp func-
tions The reduction is from thknapsack problem (Garey

& Johnson 1979), and applies even to the restricted case of
one seller and multiple buyers. We definestap function
demand curve as a tuple,, ¢;), indicating a buyer’s will-
ingness to buyy; units at or below the unit pricg;; the
buyer is not willing to buy any units at price strictly greater
thanp;.

Theorem 2 Consider a discriminatory market where each
participant submits a step function supply or demand curve.
Determining a profit-maximizing clearing of the market is
NP-complete. This holds even if one side of the market has
only one participant—who submits a constant curve.

PROOF We reduce th&knapsack to our market clearing
problem, where there is one seller and multiple buyers. Let
{(s1,v1), (82,v2),...,(sn,vn), Z} be an instance of the
knapsack problem—# is the knapsack capacity; andv;,
respectively, are the size and value of itenThe goal is to
choose a subset of items of maximum value with total size
at mostZ. We create an instance of the discriminatory price
market, using step function demand curves, as follows.
The seller hag units of the goods, and we can scale the
prices so that his step function bid (8, Z)—that is, the
seller can sell units at priced or higher, but no more than
Z units at any price. The buyéiplaces a step function bid

is, there is both aggregate demand and aggregate supply(v;/s;, s;), meaning he is willing to buy; units at lot price

for ¢, and the aggregate demand price is no smaller than
the aggregate supply price.

v; (Or maximum unit pricey; /s;), and no units for a higher
price. See Figure 3.
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Figure 3:Reduction from knapsack.

Since we are using discriminatory pricing, the goal is to
choose a subset of buyer bids maximizing the total revenue
subject to the quantity constraifit which is easily seen to
be equivalent to a solution of the knapsack. |
Remark: We can modify the construction in the preceding

theorem so that it holds even when the demand curves are

continuous and downward concawend the supply curves
are continuous and upward convexSpecifically, if a de-
mand curve is the step functidp, ¢), then we modify it into

a continuous, piecewise linear, downward concave function
as follows: the first piece starts &, ¢ + <) and ends at

(p, q); the second piece starts(at ¢) and ends atp+¢’, 0),

for some arbitrarily smalk, e’ > 0. Finally, we scale all

the numbers up so that all numbers become integral. Thus,
we conclude that if the curves have even one breakpoint per
curve, market clearing becomes intractable with discrimina-
tory pricing.

Fast Algorithms for Linear Curves

In this section we show that in the more restricted setting
where supply/demand curves dieear, even discrimina-
tory markets can be cleared in polynomial time. As we show,
the discriminatory market clearing problem is a convex
guadratic program with linear constraints, which could be
solved in polynomial time using general techniques. How-
ever, we present fast( N log N)) and simple specialized
algorithms. In addition, our algorithms lend insight into the
structure of the problem, such as closed-form expressions
for prices.

We begin with the simpler problemseverse auctions
where one buyer is matched with multiple sellers, and-
tionswhere one seller is matched with multiple buyers.

Reverse Auction: One Buyer, Multiple Sellers Sayn
sellers bid in a reverse auction to sell multiple indistin-
guishable units of an item. There is one buyer in the mar-

ket. He wants to acquire at leaGtunits, at minimum to-

tal cost. Each seller has an upward sloping supply curve:
q = a;p — b;, wherea; > 0 andb; > 0. The clearing
problem is

n n
min Zpi(h s.t. ¢ = a;p;—b; and ZQi <Q
i=1 =1

Eliminating p;'s from the objective yields the quadratic
function_ ¢; (qai) leaving " ¢; > @ as the only con-
straint. Since the seller curves are upward sloping, it is clear

that the quantity constraint is tight on optimality. Thus, we
can use the method of Lagrangian multipliers to optimize
@

min (a ) + )\(Q—izn;qi).

Setting each partial derivative with respectgtoto zero
gives2q; = a; A — b;. Sinced_"" | ¢; = Q, we get
2Q+ > b;
> ai

Substituting the value oh into ¢; yields the clearing
guantities and prices:
) ) Pi ( > @

<2Q+Ebi 2Q+ > bi
2ai 2 ai

There is only one difficulty in this solution: some of the
quantitiesg; may be negative (because we ignored the non-
negativity constraint from the mathematical program). In
particular, if the quantity; \ is smaller tharb;, theng; < 0.
Such a solution could easily arise even in the case of two
sellers, where it might be advantageousbttyy some ex-
tra units from one, and sell to the other the excess over
Q. For a simple example, consider two sellers, with curves
q = 100p — 100 andq = p — 100, and suppos€) = 50.

In this case, the Lagrangian method givges= 98.5 and

g2 = —48.5, which is clearly infeasible. We show below
how to control the Lagrangian solution to keep it feasible.
Basically, we show that sellers whose clearing quantity in
Eqg. (2) is negative must sell zero quantity in any optimal
solution.

biq;

%

+

K3

A = 1)

1

2

. b;
qi = D)

a;
2

b

- 2ai

Algorithm D-ReverseAuction

1. Index the sellers by increasing value of their smallest fea-
sible price, namely; /a;. Let S; denote the set of sellers

{1,2,...,i}.

2. Fori=1,2,...,ndo

e Compute clearing prices and quantities for the $et
given by Eq. (2).

e If anyg; < 0, terminate, and output the clearing com-
puted for setS;_;.

o Ifthe maximum clearing price among all sellers is less
thanbiﬂ/aiﬂ, orifi =n,
terminate and output the solution.



Of course, if none of the clearings involve negative quan-

Auction: One Seller, Multiple Buyers A similar solu-

tities, then the Lagrangian method ensures the correctness oftion holds when the market has one seller, withunits to

the solution. If all sellers iry; clear for less thah; 1 /a; 11,
which is the minimum feasible price fér+ 1, then we can
obviously terminate. What remains to be shown is that as
soon as some quantity becomes negative, say, for thg set
we can disregard the sellefshroughn.

Lemma 4 Suppose in the algorithnD-ReverseAuction
the first occurrence of a negative clearing quantity is $or
then all the sellerg, j+1, ..., n sell zero quantity in an op-
timal solution of the one-sided 1-buyer, multi-seller market.

PROOF Let j be the smallest index for which some quan-
tity in the Lagrangian solution is negative. It is in fact
easy to show that the negative quantityyjs the quantity
of sellerj. Let A; and\;_; denote the values of the La-
grangian multipliers forS; and S;_1, respectively Since

qj = %(aj\;—b;) < 0,weobtain\; < -Z. Thisimplies
that theminimum feasible pricef sellerj |s strictly larger

than),;. Since); = % ,and\;_; = 2Q+_7Z_;:1_ ,
simple algebra shows that -
b,
o1 < L 3
a;

We now consider thaggregatesupply curve of the sellers
in S;_1.5 The aggregate linear function has the equation
= /"l aip — YJZ) bi. The clearing price fog = Q
unlts is

Q+Zj’1bz _ 2Q+Zj*1
21 10’Z 21 10’Z

That is, the minimum unit price for sellgris strictly larger
than thenon-discriminatoryprice at which@ units can be
boughtfrom the firsfj—1 sellers. Thus, using discriminatory
price clearing also, it never helps to buy from the sejlen
Finally, algorithm D-ReverseAuction can be implemented

to run inO(n logn) time, forn sellers, as follows. The key
is to maintain the Lagrangian multiplier; at each iteration
of the algorithm, which take§)(1) time to update. Since
the sellers are sorted in increasing ordebgtu;, the high-

bi < ﬁ.
a;

est clearing pnce belongs to the most recently added seller responding revenue iB(gmax)

1. Similarly, since we only need to checkiié quantity is
negative, we only need to computgin round: of the al-
gorithm, which take€)(1) time. Thus, the run time of the
algorithm is dominated by the initial sorting. Put together,
we have:

Theorem 3 Consider a reverse auction with sellers,
where each seller has an upward sloping linear supply
curve. We can determine the minimum-cost discriminatory-
price clearing for buyingy units in total timeO(n log n).

®Since the maximum clearing price fof;_» is at least
bj—1/aj—1, buying @ units in the aggregate involves gll— 1
sellers.

sell, and many buyefsThe goal is to maximize the seller’s
revenue. Let the (downward sloping) demand curve of the
jth buyer beg = —a;p + b;, forj = 1,2,...,n, where

a; > 0,b; > 0. Theunconstrainedsolution for the mar-
ket is to sell exactlylb; units to buyerj. However, if
the total number of units available is insufficient, that is,
Q < %Zj b;, then we solve the problem using the La-
grangian multiplier method, and obtain the following clear-

ing quantities and prices:
. b; — 2
L + l (M) )
2a73 2 Zai

o (hio2Q)
5 S P =

In other words, if the unconstrained solution is quantity-
infeasible, we increase the price for each buyethe same
amount until the demand reduces t9. In increasing the
price, if some buyer’s curve reaches a point of infeasibility
(its demand goes to zero), then we remove that buyer from
the set, and recalculate the Lagrangian multiplier. To sum-
marize:

Theorem 4 ((Sandholm & Suri 2001a)) Consider an auc-

tion with n buyers who have downward sloping linear de-
mand curves. We can determine the revenue-maximizing
discriminatory-price clearing for selling (at mosf) units
intimeO(nlogn).

b;
q/i:;*

Exchange: Multiple Sellers, Multiple Buyers We now
describe how to clear discriminatory-price exchanges using
auctions and reverse auctions as building blocks. We plot the
“aggregate quantity vs. aggregate revenue” curve for both
the sellers and the buyers. On the demand sideDIet
denote the maximum revenue achieved by selling exactly
units to the buyers. On the supply side, $p) denote the
minimum cost of procuring units from the sellers. Assume
that both the sellers and buyers are sorted in increasing order
of ” (these are the roots of the supply and demand curves,
that is, themaximunfeasible prices for buyers, and then-
imumfeasible prices for sellers).

For the D curve, the starting point is the quantifyi.. =
E;’;l b; /2, which is the optimal quantity sold when quan-
tity is unconstrainegdas was discussed in Section . The cor-

2

> 4%77 To determine
the aggregate revenue as we decrease the aggregate demand,
we use the clearing expressions in Eq. (4). So, the clearing
price of each buyer is uniformly increased @9\0, where
1 Z:";l b;—2q

— 5 m
0 2 e

sold. Consequently, the revenii¥q) is a quadraticfunc-
tion of ¢.

The parameten changes when the first buyer’s price
reaches the upper bound (his quantity goes to zero); the first

is a function of the quantity being

5This case was recently solved (Sandholm & Suri 2001a). We
summarize some of the key results here because we will use them
as components for deriving the algorithm for clearing discrimina-
tory exchanges.



buyer is the one with the smalleist/a; term. We then up-

"y
date) to the new value\; = 1 (%
j=2
pute the quadratic revenue function, and so on. Thl(g)
consists ofm quadratic pieces, starts at quantity.. and

ends at the origin. See Figure 4.

), and recom-

Demand

Aqggregate revenue

Supply

Aggregate quantity Umax

Figure 4:Discriminatory exchange clearing.

Similarly, we determine the aggregate supply cus{e),
which starts at the origin and ends@t... We determine
the maximum quantity that can be purchased from the first
seller subject to the price being at most the root of the sec-
ond seller's supply curve which i&/as (below this root
only the first seller’'s curve is active). This quantity is deter-
mined using Equations (2), and the revenue is obtained by
multiplying the quantity by the price. The first piece$(fy)
is a quadratic curve that starts from the origin and ends at
this point. The curve is obtained from Equations (2). The
second piece of(q) extends from the end point of the first
to the quantity that can be purchased using thetfiretsell-
ers at maximum pricés/as (where the 3rd seller’s curve

and classical economic setting where each seller’s supply in-
creases and each buyer's demand decreases as the price in-
creases (otherwise, absurd outcomes can occur (Sandholm
& Suri 2001a)). Discriminatory pricing leads to greater (or
equal) profit for the auctioneer than non-discriminatory pric-
ing. However, we showed that this comes at the cost of com-
putational complexity.

We first studied the case where the supply/demand
curves are piecewise linear and not necessarily continuous
(such curves can approximate any curve arbitrarily closely).
We presented a®) (K log K') algorithm for clearing non-
discriminatory markets, and showed that clearing discrimi-
natory markets isV’P-complete (even if there is only one
player on one side of the market, that player has a constant
supply (demand) curve, and the players on the other side of
the market have step function demand (supply) curves).

We then showed that in the more restricted setting of lin-
ear supply/demand curves, even discriminatory markets can
be cleared in polynomial time(N log N)). Our deriva-
tions also uncovered the interesting fact that to obtain the
optimal discriminatory solution, each buyer’s (seller’s) price
is incremented (decrementeelually from her individual
price in the quantity-unconstrained solution. As this price
change proceeds, some players’ quantities go to zero, at
which point those players are excluded from the market.
There is no need to consider re-entry of those players’ curves
in the process.

Future research includes studying other restrictions be-
sides linearity that may allow polynomial-time clearing of
discriminatory markets, such as continuity assumptions and
conditions on second (or higher) derivatives of the sup-
ply/demand curves. Also, the question of polynomial-time
clearability under other types of supply/demand curves be-
sides piecewise linear ones remains open for both discrim-
inatory and non-discriminatory markets. Yet another inter-
esting question is the impact of side constraints on the com-
plexity of clearing the market (Sandholm & Suri 2001b).

We also plan to desigincremental clearing algorithms
for these settings. Finally, we plan to designline clear-
ing algorithmsthat do nearly as well, without knowing all

enters), and so on. We stop when the quantity purchased the supply and demand in advance, as the best clearing al-

reachegmax.

Once we haveD(q) andS(q), the former withm pieces
and the latter wit, pieces, the maximum profit is the max-
imum vertical distance between them, which can be com-
puted easily irO(n 4+ m) time. Computing the curveB(q)
and S(q) takesO(mlogm) and O(nlogn) time, respec-
tively. The following theorem summarizes our result.

Theorem 5 In a multi-buyer, multi-seller discriminatory-
price exchange with linear supply/demand curves, a profit-
maximizing clearing can be determinedMN log N) time,
whereN is the number of participants.

Conclusions and Future Research

We studied profit-maximizing clearing of markets in the
ubiquitous setting where there are multiple indistinguish-
able units for sale. The sellers and buyers express their
bids via supply/demand curves. We focused on the natural

gorithm in hindsight. (Online clearing of exchanges with
single-unit bids has already been addressed (Blum, Sand-
holm, & Zinkevitch 2002).)
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