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Abstract

Markets are important coordination mechanisms for multia-
gent systems, and market clearing has become a key appli-
cation area of AI algorithms. We study optimal clearing in
the ubiquitous setting where there are multiple indistinguish-
able units for sale. The sellers and buyers express their bids
via supply/demand curves. Discriminatory pricing leads to
greater profit for the party who runs the market than non-
discriminatory pricing. We show that this comes at the cost
of computation complexity. For piecewise linear curves we
present a fast polynomial-time algorithm for nondiscrimina-
tory clearing, and show that discriminatory clearing isNP-
complete (even in a very special case). We then show that
in the more restricted setting of linear curves, even discrim-
inatory markets can be cleared fast in polynomial time. Our
derivations also uncover the elegant fact that to obtain the op-
timal discriminatory solution, each buyer’s (seller’s) price is
incremented (decremented)equallyfrom that agent’s price in
the quantity-unconstrained solution.

Introduction
Commerce is moving online to an increasing extent, and
there has been a significant shift to dynamic pricing via
auctions (one seller, multiple buyers), reverse auctions (one
buyer, multiple sellers), and exchanges (multiple buyers,
multiple sellers). These market types have also become key
coordination methods in multiagent systems. These trends
have led to an increasing need for fast market clearing algo-
rithms. Also, recent electronic commerce server prototypes
such aseMediator(Sandholm 2002b) andAuctionBot(Wur-
man, Wellman, & Walsh 1998) have demonstrated a wide
variety of new market designs, leading to the need for new
clearing algorithms.

There has been a recent surge of AI interest (e.g., (Sand-
holm 2002a; Fujishima, Leyton-Brown, & Shoham 1999;
Hoos & Boutilier 2000)) in clearing combinatorial auctions
where bids can be submitted on bundles of distinguishable
items, potentially multiple units of each (Sandholm 2002b;
Leyton-Brown, Tennenholtz, & Shoham 2000; Sandholmet
al. 2002). There has also been recent work on clearing com-
binatorial reverse auctions (Sandholm 2002b; Sandholmet
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al. 2002) and combinatorial exchanges (Sandholm 2002b;
Sandholmet al. 2002). The clearing problem in a com-
binatorial market isNP-complete (Rothkopf, Pekeˇc, &
Harstad 1998), inapproximable (Sandholm 2002a), and in
certain variants even finding a feasible solution isNP-
complete (Sandholmet al. 2002). On the other hand, mar-
kets where there is only one unit of one item for sale are
trivial to clear.

In this paper we study a setting which is in between. We
study the ubiquitous market setting where there are multiple
indistinguishableunits of an item for sale. This setting is
common in markets for stocks, bonds, electricity, bandwidth
(e.g., RateXChange), oil, pork bellies, memory chips, CPU
time, etc. We study the problem where the bids are known
up front. This is the case in many business-to-business mar-
kets. The algorithms can also be used in markets where bids
arrive over time (and the market is cleared periodically, for
example, every 5 minutes, or after some number of bids have
arrived since the last clearing) and in multi-stage markets
(where a tentative clearing is carried out after each round of
bidding).

The naive approach to bidding in a multi-unit market
would require the bidders to express their offers as a list of
points, for example ($2 for 1 unit) XOR ($5 for 2 units)
XOR ($6 for 3 units), etc. The mapping from quantities to
prices can be represented more compactly by allowing each
bidder to express his offer as a price-quantity curve (supply
curve for a seller, demand curve for a buyer). Such curves
are natural ways of expressing preferences, are ubiquitous in
economics (Mas-Colell, Whinston, & Green 1995), and are
becoming common in electronic commerce as well (Sand-
holm 2002b; Lavi & Nisan 2000; Lupien & Rickard 1997).

In classic economic theory of supply and demand curves
(called partial equilibrium theory (Mas-Colell, Whinston, &
Green 1995)), the market is cleared as follows. First, the
supply curves of the sellers are aggregated, and the demand
curves of the buyers are aggregated. Then, the market is
cleared at some per-unit price for which supply equals de-
mand (there may be multiple solutions). This way of clear-
ing the market maximizes social welfare.

However, it turns out that theauctioneer(that is, the party
who runs the market—who is neither a buyer nor a seller)
will achieve greater (or equal) profit from the same sup-
ply/demand curves by reducing the number of units traded,



and charging one per-unit price to the buyers while paying a
lower per-unit price to the sellers.1 We call such pricingnon-
discriminatorybecause each buyer pays the same amount
per unit, and each seller gets paid the same amount per unit.
The auctioneer’s profit can be further improved by moving
to discriminatorypricing where each seller and each buyer
can be cleared at a different per-unit price.

Interestingly, the pricing scheme and the shape of the sup-
ply/demand curves significantly impact the computational
complexity of clearing the market. We show that markets
with piecewise linear curves are clearable in polynomial
time under non-discriminatory pricing, butNP-complete to
clear under discriminatory pricing. With linear curves, even
discriminatory markets can be cleared in polynomial time.2

The Market Model
The market hasn sellers andm buyers. Without loss of gen-
erality, we assume that no agent is both a buyer and a seller
(if an agent is both, we treat him as two separate agents).

Each seller expresses his willingness to sell via asupply
curves : R+ → R+ from non-negativeunit prices to non-
negative supply quantity. Thus, if the unit price isp, the
seller is willing to supplys(p) units of the good.3 Similarly,
each buyer submits ademand curved : R+ → R+.

We assume that supply/demand curves arepiecewise lin-
ear. Such curves can approximate any curve arbitrarily
closely. General supply/demand curves, however, can lead
to absurd results (infinite values, zero costs, etc. (Sandholm
& Suri 2001a)). Therefore, we make the usual assumption
that supply curvesareupward slopinganddemand curves
aredownward sloping. This is economically reasonable in
that higher prices increase supply and decrease demand. We
do not assume that the curves are continuous—they could
have discrete “jumps”.

In this paper, we study clearing where the objective is
to maximize the auctioneer’s profit. We study two pricing
schemes:non-discriminatoryanddiscriminatory.

Non-Discriminatory Pricing
In a non-discriminatory market, there are two clearing
prices, one shared by the sellers and one shared by the buy-
ers. Specifically, suppose the market clears the sellers at
the unit pricep∗ask, and the buyers at the unit pricep∗bid.
These prices uniquely determine the quantity supplied by
each seller, and the quantity bought by each buyer, using
their supply/demand curves. In particular, supposesi is
the supply curve of selleri, and dj is the demand curve

1The profit could be allocated entirely to the party who runs the
market, or it could be divided among the market participants. How
it is divided can affect the bidders’ incentives for revealing their
preferences, but we do not address incentives in this paper.

2These issues have been settled for auctions (and part of reverse
auctions) (Sandholm & Suri 2001a). We settle the general case:
multiple buyers and sellers.

3The model also covers the possibility that the seller (buyer)
is willing to accept a higher (lower) price for the same quantity.
However, given our objective, in any optimal solution, each party
is cleared exactly on his supply/demand curve.

of buyer j. Then, for the solution to be feasible, supply
must equal demand:

∑n
i=1 si(p∗ask) =

∑m
j=1 dj(p∗bid). Sub-

ject to this, the goal is to maximize the auctioneer’s profit:
p∗bid

∑m
j=1 dj(p∗bid)−p∗ask

∑n
i=1 si(p∗ask). Thus the compu-

tational problem is to determine the clearing pricesp∗ask and
p∗bid.

Discriminatory Pricing
In a discriminatory market, the market can clear each seller
and each buyer at a distinct unit price. Specifically, suppose
seller i is cleared at unit pricep∗i , and buyerj is cleared
at unit pricep∗j . Then, the feasibility condition of supply
meeting demand is

∑n
i=1 si(p∗i ) =

∑m
j=1 dj(p∗j ), and the

auctioneer’s profit to be maximized isp∗j
∑m

j=1 dj(p∗j ) −
p∗i

∑n
i=1 si(p∗i ). The computational problem is to determine

the clearing price for each seller and buyer.
The profit generated under discriminatory pricing is

greater (or equal) than that under non-discriminatory
pricing.4

Clearing Preliminaries
We begin with the simple case of aone seller, one buyer
market, where the seller has an upward sloping linear supply
curveq = asp − bs, and the buyer has a downward sloping
linear demand curveq = −adp + bd, whereas, ad > 0, and
bs, bd ≥ 0. The following elementary lemmata will be use-
ful throughout the paper. (Observe that in a 1-seller, 1-buyer
market, non-discriminatory and discriminatory pricing are
identical.) Figure 1 illustrates the clearing in this setting.
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Figure 1: 1-seller, 1-buyer market with linear sup-
ply/demand curves. The profit equals the area of the shaded
rectangle. The clearing occurs at quantityq∗ which is half
the height of the triangle formed by the supply and demand
lines.

4However, non-discriminatory markets offer fairness. Discrim-
inatory markets offer a weak form ofex antefairness: they are
anonymous in the sense that had two players swapped their bids,
their allocations would also have been swapped.



Lemma 1 (1-Seller, 1-Buyer Unconstrained Trading)
Consider a market of one seller, with upward sloping sup-
ply q = asp − bs, and one buyer, with downward sloping
demandq = −adp + bd, whereas, ad > 0, andbs, bd ≥ 0.
Then, the profit-maximizing trade occurs at quantity

q∗ =
1
2

(
asbd − adbs

as + ad

)

The clearing prices for the seller and the buyer are

p∗ask =
1
2

(
bs

as
+

bs + bd

as + ad

)
, p∗bid =

1
2

(
bd

ad
+

bs + bd

as + ad

)

PROOF. Consider a trade between the buyer and seller at
quantity q. The clearing prices for the seller and buyer
are determined from their curves:ps = (q + bs)/as and

pd = (−q + bd)/ad. The total profit isq
(
−q+bd

ad
− q+bs

as

)
.

Setting the first derivative of the profit (with respect toq) to
zero, we get− 2q

ad
+ bd

ad
− 2q

as
− bs

as
= 0, which gives the

profit-maximizing quantityq = q∗ = 1
2

(
asbd−adbs

as+ad

)
. (The

second derivative of the profit function is negative, implying
that the profit is maximized at this quantity.) The seller and
buyer clearing prices, namely,p∗ask andp∗bid are obtained by
substitutingq into the expressions forps andpd. 2

In general, when participants put price or quantity con-
straints on their curves, the trade will not occur at the “un-
constrained” optimal quantityq∗ determined by Lemma 1.
The following lemma determines the effect of moving the
traded quantity away fromq∗. We consider the same one-
seller, one-buyer market as above, and compute the profit
achieved when trade occurs at some quantityq∗ + ε, where
ε can be positive or negative. (We assume|ε| ≤ q∗, which
ensures that the trade is feasible and produces non-negative
profit.)

Lemma 2 In the 1-seller, 1-buyer market, if the trade oc-
curs at quantityq∗ + ε, then the profit is

q∗(p∗bid − p∗ask) − ε2

(
1
as

+
1
ad

)
.

That is, the profitshrinks(quadratically) with|ε|.
PROOF. Let us consider the case ofε > 0; the other case is
analogous. When the traded quantity is increased byε, the
seller’s clearing unit priceincreasesby ε/as, and the buyer’s
unit clearing pricedecreasesby ε/ad. The new profit, there-

fore, equals(q∗ + ε)
(
(p∗bid − ε

ad
) − (p∗ask + ε

as
)
)

, which

can be written asq∗(p∗bid−p∗ask) − ε2( 1
as

+ 1
ad

) + ε(p∗bid−
p∗ask) − εq∗( 1

as
+ 1

ad
). The proof is completed by showing

that the 3rd and the 4th terms of this expression are equal,
and therefore cancel each other out. To see this equality,
we substitute the expressions forq∗, p∗bid, andp∗ask from
Lemma 1.

ε(p∗bid − p∗ask) = ε

(
bd

2ad

+
bs + bd

2(as + ad)
− bs

2as
− bs + bd

2(as + ad)

)

=
ε

2

(
bd

ad

− bs

as

)

εq∗(
1

as

+
1

ad

) =
ε

2

(
asbd − adbs

as + ad

)(
1

as

+
1

ad

)
=

ε

2

(
bd

ad

− bs

as

)

Thus, the new profit isq∗(p∗bid− p∗ask) − ε2
(

1
as

+ 1
ad

)
. 2

Our next lemma states a corollary of Lemma 2 for the case
where the buyer and seller curves are quantity-constrained.
Suppose the buyer’s curve is the downward-sloping linear
functionq = −adp + bd, but restricts quantity to the range
[q′d, q

′′
d ], and the seller’s curve is the upward-sloping linear

function q = −adp + bd, but restricts the quantity to the
range[q′s, q

′′
s ]. What trade maximizes the profit? The only

feasible trades that can occur are those in the quantity range
that is common to both. So, assume that[q′, q′′] is the inter-
section of the intervals[q′d, q

′′
d ] and[q′s, q

′′
s ].

Lemma 3 (1-Seller, 1-Buyer Bounded Trading)
Consider the 1-seller, 1-buyer market, with linear sup-
ply/demand curves, where the buyer and the seller can only
trade in the quantity range[q′, q′′]. The profit-maximizing
trade occurs either atq∗ (if q∗ ∈ [q′, q′′]), or at that end-
point of the range[q′, q′′] which iscloserto q∗.

PROOF. If the unconstrained trade quantityq∗ is in the fea-
sible range, profit is maximized atq∗. Otherwise, Lemma 2
shows that the profit shrinks quadratically with the devia-
tion ε from q∗. Thus, the optimal trade occurs at the feasible
point closest toq∗, which is an endpoint of the range[q′, q′′].
2

Non-Discriminatory Markets
In this section, we show how to clear a market with mul-
tiple buyers and sellers, each withpiecewise linearde-
mand/supply curves, under non-discriminatory pricing. Our
approach is toaggregatethe demand and the supply curves
separately, and then reduce the problem to the 1-seller, 1-
buyer case. The single seller is the aggregate of all sellers,
and the single buyer is the aggregate of all buyers. The key
idea here is that sinceall buyers are cleared at the same
price p∗bid, we can infer quantities sold to each individual
buyer by evaluating their curves atp∗bid. The same holds for
the sellers.

Let us consider the aggregation of buyer curves; seller
curves are handled in the same way. Consider a set of
piecewise linear demand curvesd1, d2, . . . , dn. Their ag-
gregate curveis a piecewise linear functionD : R+ → R+

such thatD(p) is the total demand at unit pricep. That is,
D(p) = d1(p) + d2(p) + . . . + dn(p), wheredi(p) is the
demand by curvei at unit pricep. The aggregation oflinear
functions leads to a linear function. Thus, if a price interval
[p1, p2] does not contain thebreakpointsof any of the de-
mand curves, then the aggregate curve in the interval[p1, p2]
has the formq = (

∑
i ai)p +

∑
i bi, whereai andbi are the

coefficients of the component linear curves.
The breakpoints ofD are the union of the breakpoints

of the component curves—the aggregate demand curve
changes only when one of the component curves changes.
Thus, given a set ofn piecewise linear curves each of which
has at mostk pieces, their aggregate curveD has at mostnk
breakpoints.

Given n piecewise linear curves, their aggregate is eas-
ily computed inO(nk log(nk)) time, by a sweep-line algo-
rithm as follows. Letk be the maximum number of pieces



in any curve. Letp1, p2, . . . , pL, whereL ≤ nk, denote the
breakpoints of all the component curves, in sorted order. We
scan these breakpoints in right to left order (decreasing order
of price), and determine the linear aggregate curve between
two consecutive breakpoints. Initially, we compute the lin-
ear aggregate function in the range(pL,∞), in O(n) time.
Next, as we move to the next breakpoint, at most one linear
piece changes—one piece may end and another may begin.
(If multiple curves begin or end at the same point, we can
enforce an artificial order among those, and consider them
one at a time.) We can update the linear aggregate by delet-
ing the coefficients of the leaving curve and adding those
of the entering curve, and so each update takesO(1) time.
Thus, the complete aggregate curve can be determined in
timeO(nk), after an initial sorting cost ofO(nk log(nk)).

Despite the fact that the input demand curves are down-
ward sloping, the aggregate demand curve need not be
downward sloping. Similarly, the aggregate supply curve
need not be upward sloping. This can lead to the problem of
having multiple prices for a given quantity. We rectify this
by computing therightmostenvelope of the aggregate de-
mand curve, andleftmostenvelope of the aggregate supply
curve. In other words, for each quantityq, we just keep the
point with the maximum demand price, and the minimum
supply price. This does not affect the solution space since
in a profit-maximizing market, all clearings occur at these
envelopeprices.

Our non-discriminatory clearing algorithm can now be
described as follows (see Figure 2.):

.
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Figure 2:Non-discriminatory market. The figure shows de-
composition of the feasible region into four trapezoids. Each
trapezoid corresponds to a 1-seller, 1-buyer market. The ag-
gregate demand curve is intentionally drawn to be discon-
tinuous and not downward sloping (although each piece is
downward sloping).

Algorithm ND-Market
1. Compute the piecewise linear aggregate demand curveD,

and the aggregate supply curveS.

2. Let thefeasible spacedenote the set of points(p, q) for
which D(p) andS(p) both exist andS(p) ≤ D(p); that
is, there is both aggregate demand and aggregate supply
for q, and the aggregate demand price is no smaller than
the aggregate supply price.

3. Decompose the feasible region into trapezoids, by “draw-
ing” horizontal lines through each breakpoint ofD or S.

4. The market clearing problem for each trapezoid cor-
responds to the 1-seller, 1-buyer bounded trade (cf.
Lemma 2), so it can be solved inO(1) time. Since there
areO(K) trapezoids, the time complexity of this step is
O(K).

5. The maximum-profit solution over all trapezoids is the op-
timal solution. Once the clearing prices,p∗bid andp∗ask, are
determined, we can evaluate each seller curve atp∗ask and
each buyer’s curve atp∗bid to determine the quantity sold
by each seller, and bought by each buyer.

We summarize this result in the following theorem.

Theorem 1 Consider a 1-item, multi-unit market with mul-
tiple sellers and buyers, where each seller (buyer) has an
upward (downward) sloping piecewise linear curve. Then,
a profit-maximizing clearing using non-discriminatory pric-
ing can be determined inO(K log K), whereK is the total
number of pieces in all of the piecewise linear curves.

Discriminatory Markets
We now study the complexity of discriminatory markets.

Intractability with Piecewise Linear Curves
In sharp contrast to a non-discriminatory market, we show
that clearing a discriminatory market with piecewise linear
curves isNP-complete. In fact, this complexity jump oc-
curs even for the simplest piecewise linear curves:step func-
tions. The reduction is from theknapsackproblem (Garey
& Johnson 1979), and applies even to the restricted case of
one seller and multiple buyers. We define astep function
demand curve as a tuple(pj , qj), indicating a buyer’s will-
ingness to buyqj units at or below the unit pricepj ; the
buyer is not willing to buy any units at price strictly greater
thanpj .

Theorem 2 Consider a discriminatory market where each
participant submits a step function supply or demand curve.
Determining a profit-maximizing clearing of the market is
NP-complete. This holds even if one side of the market has
only one participant—who submits a constant curve.

PROOF. We reduce theknapsack to our market clearing
problem, where there is one seller and multiple buyers. Let
{(s1, v1), (s2, v2), . . . , (sn, vn), Z} be an instance of the
knapsack problem—Z is the knapsack capacity,si andvi,
respectively, are the size and value of itemi. The goal is to
choose a subset of items of maximum value with total size
at mostZ. We create an instance of the discriminatory price
market, using step function demand curves, as follows.

The seller hasZ units of the goods, and we can scale the
prices so that his step function bid is(0, Z)—that is, the
seller can sellZ units at price0 or higher, but no more than
Z units at any price. The buyeri places a step function bid
(vi/si, si), meaning he is willing to buysi units at lot price
vi (or maximum unit pricevi/si), and no units for a higher
price. See Figure 3.
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Figure 3:Reduction from knapsack.

Since we are using discriminatory pricing, the goal is to
choose a subset of buyer bids maximizing the total revenue
subject to the quantity constraintZ, which is easily seen to
be equivalent to a solution of the knapsack. 2

Remark: We can modify the construction in the preceding
theorem so that it holds even when the demand curves are
continuous and downward concave, and the supply curves
are continuous and upward convex. Specifically, if a de-
mand curve is the step function(p, q), then we modify it into
a continuous, piecewise linear, downward concave function
as follows: the first piece starts at(0, q + ε) and ends at
(p, q); the second piece starts at(p, q) and ends at(p+ε′, 0),
for some arbitrarily smallε, ε′ > 0. Finally, we scale all
the numbers up so that all numbers become integral. Thus,
we conclude that if the curves have even one breakpoint per
curve, market clearing becomes intractable with discrimina-
tory pricing.

Fast Algorithms for Linear Curves

In this section we show that in the more restricted setting
where supply/demand curves arelinear, even discrimina-
tory markets can be cleared in polynomial time. As we show,
the discriminatory market clearing problem is a convex
quadratic program with linear constraints, which could be
solved in polynomial time using general techniques. How-
ever, we present fast (O(N log N)) and simple specialized
algorithms. In addition, our algorithms lend insight into the
structure of the problem, such as closed-form expressions
for prices.

We begin with the simpler problems:reverse auctions
where one buyer is matched with multiple sellers, andauc-
tionswhere one seller is matched with multiple buyers.

Reverse Auction: One Buyer, Multiple Sellers Say n
sellers bid in a reverse auction to sell multiple indistin-
guishable units of an item. There is one buyer in the mar-

ket. He wants to acquire at leastQ units, at minimum to-
tal cost. Each seller has an upward sloping supply curve:
q = aip − bi, whereai > 0 and bi ≥ 0. The clearing
problem is

min
n∑

i=1

piqi s.t. qi = aipi−bi and
n∑

i=1

qi ≤ Q

Eliminating pi’s from the objective yields the quadratic

function
∑

qi

(
qi+bi

ai

)
, leaving

∑
qi ≥ Q as the only con-

straint. Since the seller curves are upward sloping, it is clear
that the quantity constraint is tight on optimality. Thus, we
can use the method of Lagrangian multipliers to optimize

min
(

q2
i

ai
+

biqi

ai

)
+ λ(Q−

n∑
i=1

qi).

Setting each partial derivative with respect toqi to zero
gives2qi = aiλ− bi. Since

∑n
i=1 qi = Q, we get

λ =
2Q +

∑
bi∑

ai
(1)

Substituting the value ofλ into qi yields the clearing
quantities and prices:

qi = − bi

2
+

ai

2

(
2Q +

∑
bi∑

ai

)
, pi =

bi

2ai

+
1

2

(
2Q +

∑
bi∑

ai

)
(2)

There is only one difficulty in this solution: some of the
quantitiesqi may be negative (because we ignored the non-
negativity constraint from the mathematical program). In
particular, if the quantityaiλ is smaller thanbi, thenqi < 0.
Such a solution could easily arise even in the case of two
sellers, where it might be advantageous tobuy some ex-
tra units from one, and sell to the other the excess over
Q. For a simple example, consider two sellers, with curves
q = 100p − 100 andq = p − 100, and supposeQ = 50.
In this case, the Lagrangian method givesq1 = 98.5 and
q2 = −48.5, which is clearly infeasible. We show below
how to control the Lagrangian solution to keep it feasible.
Basically, we show that sellers whose clearing quantity in
Eq. (2) is negative must sell zero quantity in any optimal
solution.

Algorithm D-ReverseAuction

1. Index the sellers by increasing value of their smallest fea-
sible price, namely,bi/ai. Let Si denote the set of sellers
{1, 2, . . . , i}.

2. Fori = 1, 2, . . . , n do

• Compute clearing prices and quantities for the setSi

given by Eq. (2).
• If any qj < 0, terminate, and output the clearing com-

puted for setSi−1.
• If the maximum clearing price among all sellers is less

thanbi+1/ai+1, or if i = n,
terminate and output the solution.



Of course, if none of the clearings involve negative quan-
tities, then the Lagrangian method ensures the correctness of
the solution. If all sellers inSi clear for less thanbi+1/ai+1,
which is the minimum feasible price fori + 1, then we can
obviously terminate. What remains to be shown is that as
soon as some quantity becomes negative, say, for the setSj ,
we can disregard the sellersj throughn.

Lemma 4 Suppose in the algorithmD-ReverseAuction,
the first occurrence of a negative clearing quantity is forSj ,
then all the sellersj, j +1, . . . , n sell zero quantity in an op-
timal solution of the one-sided 1-buyer, multi-seller market.

PROOF. Let j be the smallest index for which some quan-
tity in the Lagrangian solution is negative. It is in fact
easy to show that the negative quantity isqj , the quantity
of seller j. Let λj andλj−1 denote the values of the La-
grangian multipliers forSj andSj−1, respectively. Since
qj = 1

2 (ajλj−bj) < 0, we obtainλj <
bj

aj
. This implies

that theminimum feasible priceof sellerj is strictly larger

thanλj . Sinceλj =
2Q+

∑
j

i=1
bi∑

j

i=1
ai

, andλj−1 =
2Q+

∑
j−1

i=1
bi∑

j−1

i=1
ai

,

simple algebra shows that

λj−1 <
bj

aj
(3)

We now consider theaggregatesupply curve of the sellers
in Sj−1.5 The aggregate linear function has the equation
q =

∑j−1
i=1 ai p − ∑j−1

i=1 bi. The clearing price forq = Q
units is

Q +
∑j−1

i=1 bi∑j−1
i=1 ai

<
2Q +

∑j−1
i=1 bi∑j−1

i=1 ai

<
bj

aj
.

That is, the minimum unit price for sellerj is strictly larger
than thenon-discriminatoryprice at whichQ units can be
bought from the firstj−1 sellers. Thus, using discriminatory
price clearing also, it never helps to buy from the sellerj. 2

Finally, algorithm D-ReverseAuction can be implemented
to run inO(n log n) time, forn sellers, as follows. The key
is to maintain the Lagrangian multiplierλi at each iteration
of the algorithm, which takesO(1) time to update. Since
the sellers are sorted in increasing order ofbi/ai, the high-
est clearing price belongs to the most recently added seller
i. Similarly, since we only need to check ifi’s quantity is
negative, we only need to computeqi in roundi of the al-
gorithm, which takesO(1) time. Thus, the run time of the
algorithm is dominated by the initial sorting. Put together,
we have:

Theorem 3 Consider a reverse auction withn sellers,
where each seller has an upward sloping linear supply
curve. We can determine the minimum-cost discriminatory-
price clearing for buyingQ units in total timeO(n log n).

5Since the maximum clearing price forSj−2 is at least
bj−1/aj−1, buying Q units in the aggregate involves allj − 1
sellers.

Auction: One Seller, Multiple Buyers A similar solu-
tion holds when the market has one seller, withQ units to
sell, and many buyers.6 The goal is to maximize the seller’s
revenue. Let the (downward sloping) demand curve of the
jth buyer beq = −ajp + bj , for j = 1, 2, . . . , n, where
aj > 0, bj ≥ 0. The unconstrainedsolution for the mar-
ket is to sell exactly1

2bj units to buyerj. However, if
the total number of units available is insufficient, that is,
Q < 1

2

∑
j bj , then we solve the problem using the La-

grangian multiplier method, and obtain the following clear-
ing quantities and prices:

qi =
bi

2
− ai

2

(∑
bi − 2Q∑

ai

)
, pi =

bi

2ai
+

1

2

(∑
bi − 2Q∑

ai

)
(4)

In other words, if the unconstrained solution is quantity-
infeasible, we increase the price for each buyerby the same
amount until the demand reduces toQ. In increasing the
price, if some buyer’s curve reaches a point of infeasibility
(its demand goes to zero), then we remove that buyer from
the set, and recalculate the Lagrangian multiplier. To sum-
marize:

Theorem 4 ((Sandholm & Suri 2001a))Consider an auc-
tion with n buyers who have downward sloping linear de-
mand curves. We can determine the revenue-maximizing
discriminatory-price clearing for selling (at most)Q units
in timeO(n log n).

Exchange: Multiple Sellers, Multiple Buyers We now
describe how to clear discriminatory-price exchanges using
auctions and reverse auctions as building blocks. We plot the
“aggregate quantity vs. aggregate revenue” curve for both
the sellers and the buyers. On the demand side, letD(q)
denote the maximum revenue achieved by selling exactlyq
units to the buyers. On the supply side, letS(p) denote the
minimum cost of procuringq units from the sellers. Assume
that both the sellers and buyers are sorted in increasing order
of bi

ai
(these are the roots of the supply and demand curves,

that is, themaximumfeasible prices for buyers, and themin-
imumfeasible prices for sellers).

For theD curve, the starting point is the quantityqmax =∑m
j=1 bj/2, which is the optimal quantity sold when quan-

tity is unconstrained, as was discussed in Section . The cor-

responding revenue isD(qmax) =
∑ b2j

4aj
. To determine

the aggregate revenue as we decrease the aggregate demand,
we use the clearing expressions in Eq. (4). So, the clearing
price of each buyer is uniformly increased by1

2λ0, where

λ0 = 1
2

(∑
m

j=1
bj−2q∑

m

j=1
aj

)
is a function of the quantityq being

sold. Consequently, the revenueD(q) is a quadraticfunc-
tion of q.

The parameterλ changes when the first buyer’s price
reaches the upper bound (his quantity goes to zero); the first

6This case was recently solved (Sandholm & Suri 2001a). We
summarize some of the key results here because we will use them
as components for deriving the algorithm for clearing discrimina-
tory exchanges.



buyer is the one with the smallestbj/aj term. We then up-

dateλ to the new valueλ1 = 1
2

(∑
m

j=2
bj−2q∑

m

j=2
aj

)
, and recom-

pute the quadratic revenue function, and so on. Thus,D(q)
consists ofm quadratic pieces, starts at quantityqmax and
ends at the origin. See Figure 4.
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Figure 4:Discriminatory exchange clearing.

Similarly, we determine the aggregate supply curveS(q),
which starts at the origin and ends atqmax. We determine
the maximum quantity that can be purchased from the first
seller subject to the price being at most the root of the sec-
ond seller’s supply curve which isb2/a2 (below this root
only the first seller’s curve is active). This quantity is deter-
mined using Equations (2), and the revenue is obtained by
multiplying the quantity by the price. The first piece ofS(q)
is a quadratic curve that starts from the origin and ends at
this point. The curve is obtained from Equations (2). The
second piece ofS(q) extends from the end point of the first
to the quantity that can be purchased using the firsttwo sell-
ers at maximum priceb3/a3 (where the 3rd seller’s curve
enters), and so on. We stop when the quantity purchased
reachesqmax.

Once we haveD(q) andS(q), the former withm pieces
and the latter withn pieces, the maximum profit is the max-
imum vertical distance between them, which can be com-
puted easily inO(n + m) time. Computing the curvesD(q)
and S(q) takesO(m log m) and O(n log n) time, respec-
tively. The following theorem summarizes our result.

Theorem 5 In a multi-buyer, multi-seller discriminatory-
price exchange with linear supply/demand curves, a profit-
maximizing clearing can be determined inO(N log N) time,
whereN is the number of participants.

Conclusions and Future Research
We studied profit-maximizing clearing of markets in the
ubiquitous setting where there are multiple indistinguish-
able units for sale. The sellers and buyers express their
bids via supply/demand curves. We focused on the natural

and classical economic setting where each seller’s supply in-
creases and each buyer’s demand decreases as the price in-
creases (otherwise, absurd outcomes can occur (Sandholm
& Suri 2001a)). Discriminatory pricing leads to greater (or
equal) profit for the auctioneer than non-discriminatory pric-
ing. However, we showed that this comes at the cost of com-
putational complexity.

We first studied the case where the supply/demand
curves are piecewise linear and not necessarily continuous
(such curves can approximate any curve arbitrarily closely).
We presented anO(K log K) algorithm for clearing non-
discriminatory markets, and showed that clearing discrimi-
natory markets isNP-complete (even if there is only one
player on one side of the market, that player has a constant
supply (demand) curve, and the players on the other side of
the market have step function demand (supply) curves).

We then showed that in the more restricted setting of lin-
ear supply/demand curves, even discriminatory markets can
be cleared in polynomial time (O(N log N)). Our deriva-
tions also uncovered the interesting fact that to obtain the
optimal discriminatory solution, each buyer’s (seller’s) price
is incremented (decremented)equally from her individual
price in the quantity-unconstrained solution. As this price
change proceeds, some players’ quantities go to zero, at
which point those players are excluded from the market.
There is no need to consider re-entry of those players’ curves
in the process.

Future research includes studying other restrictions be-
sides linearity that may allow polynomial-time clearing of
discriminatory markets, such as continuity assumptions and
conditions on second (or higher) derivatives of the sup-
ply/demand curves. Also, the question of polynomial-time
clearability under other types of supply/demand curves be-
sides piecewise linear ones remains open for both discrim-
inatory and non-discriminatory markets. Yet another inter-
esting question is the impact of side constraints on the com-
plexity of clearing the market (Sandholm & Suri 2001b).

We also plan to designincremental clearing algorithms
for these settings. Finally, we plan to designonline clear-
ing algorithmsthat do nearly as well, without knowing all
the supply and demand in advance, as the best clearing al-
gorithm in hindsight. (Online clearing of exchanges with
single-unit bids has already been addressed (Blum, Sand-
holm, & Zinkevitch 2002).)
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