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Abstract

The computational characterization of game–theoretic
solution concepts is a prominent topic in computer sci-
ence. The central solution concept isNash equilibrium
(NE). However, it fails to capture the possibility that
agents can form coalitions.Strong Nash equilibrium
(SNE) refines NE to this setting. It is known that finding
an SNE isNP–complete when the number of agents is
constant. This hardness is solely due to the existence of
mixed–strategy SNEs, given that the problem of enu-
merating all pure–strategy SNEs is trivially inP . Our
central result is that, in order for ann–agent game to
have at least one non–pure–strategy SNE, the agents’
payoffs restricted to the agents’ supports must lie on an
(n − 1)–dimensional space. Small perturbations make
the payoffs fall outside such a space and thus, unlike
NE, finding an SNE is in smoothed polynomial time.

Introduction
The central solution concept provided by game theory is
Nash equilibrium(NE). Finding an NE of a strategic–form
(aka normal–form) game isPPAD–complete (Daskalakis
et al. 2006) even with just two agents (Chenet al. 2009).
Although PPAD ⊆ NP , it is generally believed that
PPAD 6= P and therefore that there does not exist any
polynomial–time algorithm to find an NE unlessP =
NP . Furthermore, 2–agent games do not have a fully
polynomial–time approximation scheme unlessPPAD ⊆
P (Chenet al.2009) and finding an NE is not in smoothedP
unlessPPAD ⊆ RP (Chenet al.2006) and, therefore, by
definition of smoothed complexity, game instances remain
hard even if subjected to small perturbations.

NE captures the situation in which no agent can gain more
by unilaterally changing her strategy. When agents can form
coalitions and change their strategies multilaterally in aco-
ordinated way, the most natural solution concept isstrong
Nash equilibrium(SNE) (Aumann 1960). An SNE is a strat-
egy profile from which no coalition can deviate in a way
that benefits each of the deviators. Thus, a strategy pro-
file is an SNE when it is weakly Pareto efficient over the
space of all the strategy profiles for each possible coali-
tion. An SNE is not assured to exist. Finding an SNE (de-
termining whether one exists) isNP–complete when the
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number of agents is constant;NP–hardness was proven
in (Conitzer and Sandholm 2008) and membership inNP
in (Gatti et al. 2013b). Unlike for NE, the literature has
very few algorithms for SNE and almost all of them focus
only on pure–strategy SNEs for specific classes of games,
e.g., congestion games (Holzman and Law-Yone 1997;
Hayrapetyanet al. 2006; Rozenfeld and Tennenholtz 2006;
Hoefer and Skopalik 2010), connection games (Epsteinet
al. 2007), maxcut games (Gourvès and Monnot 2009), and
continuous games (Nessah and Tian 2012). The only algo-
rithms for finding mixed–strategy SNEs with general games
are presented in (Gattiet al. 2013a; 2013b). SNE hardness
is only due to the existence of mixed–strategy equilibria.

In this paper, we show that if there is a mixed–strategy
SNE, then the payoffs restricted to the actions in the sup-
port must satisfy strict geometric conditions. For example,
in 2–agent games, they must lie on the same line in agents’
utilities space. Leveraging this result, we show that finding
an SNE is in smoothedP since, in the generic case (i.e., in
all except knife–edge cases), all SNEs are pure.

Preliminaries
A strategic–form game is a tuple(N,A,U) where (Shoham
and Leyton-Brown 2008):N = {1, . . . , n} is the set of
agents (we denote byi a generic agent);A = A1× . . .×An

is the set of agents’ joint actions andAi is the set of agenti’s
actions (we denote a generic action bya, and bymi the num-
ber of actions inAi); U = {U1 . . . , Un} is the set of agents’
utility arrays whereUi(a1, . . . , an) is agenti’s utility when
the agents play actionsa1, . . . , an. We denote byxi(ai) the
probability with which agenti plays actionai ∈ Ai and by
xi the vector of probabilitiesxi(ai) of agenti. We denote
by∆i the space of well–defined probability vectors overAi.
We denote bySi the support of agenti, that is, the set of
actions played with positive probability.

Games and mixed–strategy SNEs
We study the properties of mixed–strategy SNEs. We first
discuss the 2–agent case and then then–agent case. We
denote byPmix and by Pcor the sets of points in the
agents’ utility spacesE[U1] × E[U2] that are on the Pareto
frontier when the agents playmixedandcorrelatedstrate-
gies, respectively. Obviously, points inPcor non–strictly
Pareto dominate points inPmix, given that mixed strate-
gies constitute a subset of correlated strategies. We denote



by Pmix(S1, S2) andPcor(S1, S2) the Pareto frontiers in
mixed and correlated strategies, respectively, when all the
actions outside supportsS1 andS2 are removed.
Theorem 1 Consider a non–degenerate 2–agent game with
two actions per agent. If there is a mixed–strategy SNE, then
Pmix = Pcor.
Proof. We can write down the game as follows:

agent 2
ag

en
t1 a3 a4

a1 p1, q1 p2, q2

a2 p3, q3 p4, q4

Since there is a mixed–strategy NE:

x2(a3) · p1 + x2(a4) · p2 = x2(a3) · p3 + x2(a4) · p4

x1(a1) · q1 + x1(a2) · q3 = x1(a1) · q2 + x1(a3) · q4

Moreover, being an SNE, the mixed–strategy profile has to
satisfy the Karush–Kuhn–Tucker conditions necessary con-
ditions for local weak Pareto efficiency (Miettinen 1999):

−λ1 · (x2(a3) · p1 + x2(a4) · p2) − λ2 · (x2(a3) · q1 + x2(a4) · q2) = ν1

−λ1 · (x2(a3) · p3 + x2(a4) · p4) − λ2 · (x2(a3) · q3 + x2(a4) · q4) = ν1

−λ1 · (x1(a1) · p1 + x1(a3) · p3) − λ2 · (x1(a1) · q1 + x1(a3) · q3) = ν2

−λ1 · (x1(a1) · p2 + x1(a2) · p4) − λ2 · (x1(a1) · q2 + x1(a3) · q4) = ν2

By combining the above conditions and excluding degen-
erate cases, we obtain:

p1 − p2

p4 − p3

=
q1 − q2

q4 − q3

p1 − p3

p4 − p2

=
q1 − q3

q4 − q2

We can give a simple geometric interpretation of the
above conditions. CallRi = (pi, qi). EachRi is a point in
the spaceE[U1]× E[U2]. The above conditions state that:
• R1R2 is parallel toR3R4,
• R1R3 is parallel toR2R4,
and thereforeR1, R2, R3, R4 are the vertices of a parallelo-
gram, see Fig. 1(a). Given that
• a mixed–strategy NE is strictly inside the parallelogram

(it being the convex (non–degenerate) combination of the
vertices), see Fig. 1(a), and that

• it must be on a Pareto efficient edge (since, if it is
strictly inside the parallelogram—as in Fig. 1(a)—then it
is Pareto dominated by some point on some edge),

we have thatR1, R2, R3, R4 must be aligned according to a
line of the formE[U1]+φ·E[U2] = const with φ ∈ (−1, 0),
see, e.g., Fig. 1(b). Thus, the combination ofR1, R2, R3, R4

through every mixed–strategy profile lies on the line con-
necting the two extreme vertices; e.g., in Fig. 1(b) the ex-
treme vertices areR2 andR1. Thus,Pmix = Pcor. �
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Figure 1: Examples used in the proof of Theorem 1.

We now extend the previous result to the setting in which
each agent hasm actions and|S1| = |S2| = 2.

Corollary 2 Consider a non–degenerate 2–agent game
with m actions per agent. If there is a mixed–strategy SNE
with support sizes|S1| = |S2| = 2, thenPmix(S1, S2) =
Pcor(S1, S2).
Proof. We can split the NE constraints and KKT conditions
into two groups: those generated considering deviations to-
wards pure or mixed strategies over the supportsS1 andS2

and those generated considering deviations towards pure or
mixed strategies over actions off the supportsS1 andS2. The
constraints belonging to the first group are the same as in
the case with two actions per agent considered in the proof
of Theorem 1. The second group overconstrains the prob-
lem and it is not necessary for the proof. Thus, restricting
the game to the actions inS1 andS2, Theorem 1 holds and
thereforePmix(S1, S2) = Pcor(S1, S2). �

The extension to the general case follows.
Corollary 3 Consider a 2–agent game,if there is a mixed–
strategy SNE in which agents’ supports areS1, S2, then
Pmix(S1, S2) = Pcor(S1, S2).
We will now discuss how the above results extend to
more than two agents. For example, in the 3–agent setting,
the vector of payoffs for each action profile isRi,j,k =
(U1(i, j, k), U2(i, j, k), U3(i, j, k)). The crucial result is that
necessary conditions, generated for only the actions in the
supports, for mixed–strategy SNEs forced by NE constraints
with KKT conditions for all the coalitions (i.e.,{1, 2},
{1, 3}, {2, 3}, {1, 2, 3}) require that all theRi,j,k lie on a
plane (withn–agent games, all the payoff vectors on the sup-
port must lie on an(n− 1)–dimensional hyperplane). Thus:
Theorem 4 Consider ann–agent game. If there is a mixed–
strategy SNE with in which agents’ supports areS1, S2, then
Pmix(S1, S2) = Pcor(S1, S2).
Leveraging the above results we can state the following.
Theorem 5 Given n agents, searching for an SNE is in
smoothedP .
Proof sketch. With non–degenerate games, we can develop a
support–enumeration algorithm scanning the pure strategies
first and then, if no pure SNE exists, it checks whether there
are payoffs on supports|S1| = |S2| = 2 that are aligned.
If there are no such payoffs, the algorithm terminates, oth-
erwise it enumerates all the possible supports. This algo-
rithm goes into the exponential support enumeration with
zero probability and therefore its expected compute time is
polynomial. The case with degenerate games is similar.�

Future research
In future research we plan to study the computational com-
plexity of approximating SNE and to design algorithms to
do so. We also plan to study computational issues related to
strong correlated equilibrium. This concept should present
different properties than SNE, e.g., the convexity of the
Pareto frontier with this solution concept could make the
computation of an equilibrium easier and could make equi-
libria not sensitive to small perturbations.
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