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Abstract
Biological adaptation is a powerful mechanism that
makes many disorders hard to combat. In this pa-
per we study steering such adaptation through se-
quential planning. We propose a general approach
where we leverage Monte Carlo tree search to com-
pute a treatment plan, and the biological entity is
modeled by a black-box simulator that the planner
calls during planning. We show that the framework
can be used to steer a biological entity modeled
via a complex signaling pathway network that has
numerous feedback loops that operate at different
rates and have hard-to-understand aggregate behav-
ior. We apply the framework to steering the adapta-
tion of a patient’s immune system. In particular, we
apply it to a leading T cell simulator (available in
the biological modeling package BioNetGen). We
run experiments with two alternate goals: develop-
ing regulatory T cells or developing effector T cells.
The former is important for preventing autoimmune
diseases while the latter is associated with better
survival rates in cancer patients. We are especially
interested in the effect of sequential plans, an ap-
proach that has not been explored extensively in the
biological literature. We show that for the devel-
opment of regulatory cells, sequential plans yield
significantly higher utility than the best static ther-
apy. In contrast, for developing effector cells, we
find that (at least for the given simulator, objec-
tive function, action possibilities, and measurement
possibilities) single-step plans suffice for optimal
treatment.

1 Introduction
Biological adaptation is a powerful mechanism that makes
many disorders hard to combat. Recently Sandholm [2015;
2012] proposed the idea of steering biological evolution
and/or adaptation strategically by modeling the problem as
a two-player zero-sum multi-step (potentially incomplete-
information) game between the biological entity and a treater.
He proposed that treatment plans be computed by algo-
rithms that find game-theoretic solutions or by opponent-
exploitation algorithms.

We present, to our knowledge, the first implemented sys-
tem and first experimental results on steering biological adap-
tation using sequential plans. We show that the framework
can be used to steer a biological entity modeled, for example,
via a complex signaling pathway network that has numerous
feedback loops that operate at different rates and have hard-
to-understand aggregate behavior. We apply the framework
to steering the adaptation of a patient’s immune system—
specifically to steering T cell differentiation via sequential
planning. The end goal is to customize the patient’s immune
system to better battle the disease at hand (e.g., cancer) or to
reorient the immune system when it has gone astray (e.g., in
autoimmune diseases).

We do not use the overly conservative game-theoretic
worst-case assumption about the opponent. Instead, we
present an opponent-exploitation approach that leverages the
extensive work that has been done—and is being done to an
increasing extent—in constructing and calibrating biological
models. Specifically, we introduce a general approach where
we use Monte Carlo tree search (MCTS) to compute a treat-
ment plan, and the biological entity that is to be steered is
modeled by a black-box simulator that the planner calls dur-
ing planning.

In this paper we apply our framework to a leading T cell
model [Miskov-Zivanov et al., 2013; Hawse et al., 2015] that
is available in the modeling package BioNetGen. We conduct
experiments with two alternate goals: developing regulatory
T cells or developing effector T cells. The former is impor-
tant for preventing autoimmune diseases while the latter is
associated with better survival rates in cancer patients.

We are especially interested in the effect of sequential
plans, an approach that has not been explored extensively
in biology—with some notable exceptions in simpler models
such as analytical game-theoretic solutions to cancer treat-
ment with a cocktail of two drugs [Basanta et al., 2012;
Orlando et al., 2012], risk-averse planning in a test do-
main inspired by diabetes treatment [Chen and Bowling,
2012], computer experiments in a simplified HIV treatment
testbed [Adams et al., 2004; Pazis and Parr, 2013], and very
recent computer models of antibiotic resistance [Nichol et al.,
2015]. We show that for the development of regulatory T
cells, sequential plans yield significantly higher utility than
the best static therapy. In contrast, for developing effector T
cells, we find that (at least for the given simulator, objective



function, action possibilities, and measurement variables) 1-
step plans suffice to yield maximum utility.

There has been interesting work on exploiting the op-
ponent’s limited lookahead both in games of complete
(e.g., [Pearl, 1981; Ramanujan and Selman, 2011]) and in-
complete information [Kroer and Sandholm, 2015]. It has
been suggested that such techniques can be used to exploit bi-
ological opponents [Sandholm, 2015; 2012], but that has not
been done to date. The approach in this paper is also different
in that it does not require the opponent to be myopic.

Our results serve as a proof of concept that existing signal-
ing pathway network models are already sufficient for sup-
porting the generation of sophisticated steering (treatment)
plans that perform significantly better than the best static ther-
apies. With the ability to do such experiments first in silico,
significant time and cost savings can be obtained by reducing
the needed in vitro and in vivo experimentation.

In the rest of the paper we first present the biological prob-
lem, then the planning technique, then the biological simu-
lation setup, and then the experimental results. Finally, we
present conclusions and future research directions.

2 Immune system basics and T cell model
The problem we are considering is that of steering a patient’s
immune system to more appropriately battle the disease that
the patient has. In particular, we study steering of T cell dif-
ferentiation.

T cells are a central component of the immune system. T
cells can differentiate into various effector T cells that can
effectively fight specific pathogens. Conversely, they can dif-
ferentiate into regulatory T cells that can suppress these ef-
fector functions. This is important since effector cells, while
effective at fighting pathogens, can also have adverse effects.
Thus, differentiation to either effector or regulatory cells is
desirable under different conditions. For example, in cancer,
more effector cells would be desirable while in autoimmune
diabetes more regulatory cells would be desirable. We will
present experiments on both problems: steering T cell differ-
entiation towards regulatory T cells or effector T cells.

The mechanism through which we consider this steering is
by activating or inhibiting cytokines, stimulating the T cell
receptor (TCR), and manipulating protein expression. We
present the exact action sets available to our steering strategy
in detail in the experimental section.

We show that one can take an existing models of a bio-
logical entity as a black box and use it to support sequential
planning. In particular, we show that one can use a com-
plex signaling pathway network model—that has numerous
feedback loops that operate at different rates and have hard-
to-understand aggregate behavior—as-is to support effective
sequential planning.

To model the T cell—and its responses to the steering
stimuli—we use a recent T cell model from the biology liter-
ature as is. We thank Penelope Morel, professor of immunol-
ogy, for providing significant immunology expertise regard-
ing the goals of the steering, what steering actions can realis-
tically be taken, etc.

An early version of the model was developed by Miskov-
Zivanov et al. [2013] and it was extended to become the
model used here by Hawse et al. [2015]. The model is
a Boolean logical network, where stochastic application of
logic update rules simulate the temporal response of the T
cell. Figure 1 shows the model. The green rectangle shows
the boundary of the cell wall. The elements that we stimu-
late are shown on the outside of the cell wall. The cell nu-
cleus is denoted by the red rectangle. As can be seen, the
cell is represented by a Boolean logical circuit, which models
the response propagation throughout the cell. Each biological
variable in the signaling network is converted to one or more
logic gates, as shown in the figure. How gates update dur-
ing simulation varies depending on the type. Gates between
biological variables update between iterations, whereas gates
within a single biological variable immediately update their
values as a single unit. As an example, consider PTEN Total
in Figure 1. PTEN Total is turned on if NEDD4 is off and
FOXO1 is on. A textual representation of the model be found
online1.

In this model, the state of the system is always a vector of
Boolean values. This corresponds to the state of a single cell.
To get concentrations of a cell population, many simulations
are run to see what a population would look like. However,
in most of our experiments, the cells converge to steady state,
where they all reach the same configuration.

2.1 T cell simulator
In order to simulate the process of T cell adaptation, we
use the biological modeling and simulation package BioNet-
Gen [Faeder et al., 2009; Harris et al., 2015]. BioNetGen
is a popular 2 software package for modeling and simulating
biological networks.

In order to simulate biological adaptation, a simulation al-
gorithm must be applied to the Boolean model. Our simu-
lation is performed according to the general asynchronous
update scheme [Saadatpour et al., 2010] for Boolean mod-
els, using Gillespie’s direct stochastic simulation algo-
rithm [Gillespie, 1976]. This is in line with the experiments
performed in the original development of this Boolean T cell
model, where the same algorithms were used and the model
was calibrated with wet lab experiments [Miskov-Zivanov et
al., 2013; Hawse et al., 2015]. Asynchronous updating means
that, at each simulation time step, a single rule is chosen at
random, and the “output” variables of that rule are chosen for
updating. This has been shown to better approximate the var-
ied time scale of different biological processes than updating
all rules at once [Saadatpour et al., 2010]. The T cell model
by Hawse et al. is designed to leverage this update scheme,
by introducing several chains of rules that mimic slower pro-
cesses. All of this simulation functionality is provided in
BioNetGen, and we use it as is, so that we do not introduce

1http://bionetgen.org/index.php/PTEN model.
Both a reduced model and full model are presented at that URL. We
use the full model.

2It has the largest description on
en.wikipedia.org/wiki/Rule-based modeling .
Retrieved 2016-02-02.



Figure 1: The Boolean T cell model used in this paper. The green rectangle represents the cell wall. The red rectangle therein
represents the boundary of the cell nucleus. Elements are represented either by single logic gates (e.g., Raf) or by a combination
of multiple gates (e.g., Ras). In addition to standard elements of Boolean circuits, we have slowdown nodes. These represent
a slowdown of the value propagating along the edge. A slowdown on the activation of FOXP3 is modeled with the FOXP3
promoter variable. For example, if the value of STAT5 changes, it requires another update of the slowdown node before that
value is incorporated in the update rule for FOXP3.

artifacts that were not present in the original biology work
where the model was calibrated using wet lab experiments.

3 Planning approach
Formally, our problem of guiding T cell differentiation can
be described as a partially observable Markov decision pro-
cess (POMDP). We have a set of states, where each state con-
sists of the current assignment of values to all variables in the
Boolean model. At each time step, we are able to observe the

value of a subset of the variables. When we apply an action,
the simulator stochastically moves to a new state. However,
we do not know the transition probabilities associated with
the state-action pairs. Terminal states are reached after a pre-
specified number of actions have been taken, referred to as the
depth of the plan. The utility at a terminal state is a function
from the values of observable variables to a real number. In
this paper we consider linear functions, but any easily com-
putable function can be used. A sequential plan is a mapping



from the sequence of observed states and actions to an action.
So, note that the plan is not Markovian.

To solve the planning problem, we use Monte Carlo tree
search (MCTS). MCTS is a conceptually simple algorithm for
finding decisions in a sequential decision space. It works by
repeatedly sampling decisions, thereby iteratively construct-
ing the search tree for the decision problem at hand. We apply
the UCT algorithm [Kocsis and Szepesvári, 2006], which is
an instantiation of MCTS that uses the UCB1 criterion [Auer
et al., 2002] for choosing actions at a decision node v:

UCB1(v) = arg max
a∈A(v)

wa

na
+ c

√
lnnv
na

. (1)

Here A(v) is the set of actions available at the node, wa is the
sum of values received from taking action a at v in previous
iterations, na is the number of times action a has been taken,
and nv is the number of visits to node v. The value lnnv

na
is

usually taken to be∞ for na = 0, so that every action is taken
once before exploitation starts. The parameter c is chosen so
as to balance exploration and exploitation.

UCB1 balances exploration and exploitation by favoring
actions with high expected value (the term wi

ni
), but also

favoring actions that have been taken few times (the term

c
√

lnnv

na
). These two terms ensure that promising actions are

explored more thoroughly, while guaranteeing that we will
eventually find any undiscovered high-utility actions. Intu-
itively, UCB1 treats each decision node as a multi-armed ban-
dit problem, where the reward of an action is determined by
the sampled rewards from simulation in the tree below.

The pseudo-code for UCT for our setting is given in Al-
gorithm 1. The procedure UCT runs for as many iterations
as desired, here denoted by N . At each iteration, the recur-
sive method UCT-REC traverses the tree according to UCB1,
interleaving decision choices and sampling updates from the
black-box simulator of biological phenomena which we will
describe in detail in the next section. After N iterations, the

Algorithm 1 UCT that leverages a (biology) simulator
1: procedure UCT-REC(v)

2: a′ = argmaxa∈A(v)
wa

na
+ c
√

lnnv

na

3: v′ = SAMPLECHILD(v, a′)
4: res = UCT-REC(v′)
5: wa′ = wa′ + res
6: na′ = na′ + 1
7: return res
8: procedure UCT
9: for i = 1, . . . , N do

10: UCT-REC(root)
11: return GREEDYPOLICY(w)

function GREEDYPOLICY returns the best greedy policy: For
each node v, the action that has the highest expected utility
from past play is chosen. (For any unvisited node, a uniform
strategy is applied.) This is therefore an anytime algorithm: it
has a solution available at any time, and the algorithm keeps
adjusting the solution as more run time (UCT iterations) is

allowed. For an extensive survey of MCTS and UCT, see
Browne et al. [2012].

The SAMPLECHILD procedure is where the simulator is in-
corporated into our approach. For a given state, once MCTS
has chosen an action, that action is applied to the state repre-
sentation in BioNetGen. BioNetGen then performs t simula-
tion steps. Note that t is chosen ahead of time, and is not a
parameter that the planner optimizes over. The state resulting
from the t simulations is then the value returned by SAM-
PLECHILD.

4 Experimental setup
We conducted extensive computational experiments to test
whether sequential planning can lead to better outcomes in
the Boolean model of immune system adaptation, and to see
what the generated plans are like. We will first describe the
general setup, and then consider two particular cases: steer-
ing T cell differentiation toward regulatory cells or toward
effector cells.

States and state abstraction (measured variables)
At any point, the state of the (simulated) biological system is
an assignment of Boolean values to all the variables. The
variables are the variables named in Figure 1, as well as
additional variables (black unnamed rectangles in Figure 1)
that represent slowdown in certain sequences of the model to
make those paths take longer to pass activation through, as
they take longer in the real biological system. These model-
ing choices had been made by immunologists and calibrated
in in vivo and in vitro wet lab experiments [Miskov-Zivanov
et al., 2013; Hawse et al., 2015]. They had been incorporated
into the simulation model in BioNetGen, and we took it as a
given.

The number of Boolean variables in the model (Figure 1) is
59. Thus, the size of the underlying state space is 259. Some
of the states are unreachable.

We use the same “neutral” start state as Hawse et
al. [2015]. In that start state, the following variables are
active (true): CD28, TSC, CD122, CD132, PTEN total,
FOXP3 PROMOTER (where FOXP3 PROMOTER is a
“slow-down variable” on one of the activation paths to
FOXP3). All other variables are set to inactive (false). TCR is
initially set to high, but the planner can immediately change
this in its first action if it deems that to be desirable.

In order to limit the size of the state space for computa-
tional tractability—and for the practical medical reason that
tests are costly—we include in the planner’s observed state
description the values of only two proteins: FOXP3 and IL-2.
When it is time to choose an action, the planner can condi-
tion its action choice only on the values of those two vari-
ables, as well as which actions were taken in the past. We
do not condition on past states in order to make plans smaller.
Those variables were chosen because they are clearly relevant
to both objective functions that we consider (described later
in detail), one for steering toward regulatory T cells and one
for steering toward effector T cells.

Actions
Based on the T cell model—Figure 1—and in consultation
with immunologists, we decided to include the following can-



didate actions for consideration in the treatment plans be-
cause these concentrations are sensed at the cell surface, and
thus do not require any manipulations inside the cell wall.
This makes these actions relatively easy and inexpensive to
apply in practice. (For example, these are used in vitro and in
vivo [Hawse et al., 2015] wet lab experiments.) We consider
the following set of base actions:

• TCR: high or low

• CD28: activate or inhibit

• TGFβ: activate or inhibit

• IL-2: activate or inhibit

At any given decision point, the planner can choose any sub-
set of these four variables and any combination of values for
the chosen variables. The total number of actions at each de-
cision point is therefore

∑4
i=0

(
4
i

)
2i = 81.

For TCR, CD28, and TGFβ, any action applied is persis-
tent: to turn off an activated entity, the planner must apply
an inhibitor at a later stage, and vice versa. For IL-2, actions
merely change the current state of the variable. This latter
choice was made because we want IL-2 to be able to fluctu-
ate, while still being manipulable. It is needed for turning on
some important other variables such as FOXP3, but we also
want it to be able to turn back off, as its levels are an indirect
indicator of regulatory and effector cell development.

Simulation
We experimented with four different simulation times t:
36, 72, 360, and 1080 in order to vary how much time the
T cells have to adjust after each treatment action. We consid-
ered treatment plans of depth 1, 2, and 3. For any simulation
time length t and plan depth d, our experiments were con-
ducted as follows. First, an action is chosen. Then t

d time
steps of simulation are applied. This is repeated d− 1 times.
Finally, the d’th action is applied, and t simulation steps are
applied. This scheme, where we apply t simulation steps
after the last action regardless of plan depth, was chosen—
conservatively against our multi-step planning approach—in
order to minimize the chance that a longer plan depth would
perform better simply because of the ability to set desirable
unstable variables closer to the end of the simulation.

UCT setup
For each experiment, we ran UCT for 3000 iterations. At ev-
ery 100th iteration, we took the current greedy policy and
sampled an expected value by performing 100 rollouts of
BioNetGen simulations with that strategy.

We repeated each experiment 7 times, and report the aver-
age expected values over the 7 experiments.

5 Experimental results
In this section we present results from our computational ex-
periments. The first subsection covers experiments where the
goal is to steer T cell adaptation toward regulatory cells. The
second subsection will cover experiments where the goal is to
steer T cell adaptation toward effector cells.

5.1 Steering toward regulatory cells
For regulatory cell development, we used a utility function
consisting of the following sum over Boolean variables:

FOXP3 + PTEN Active + CD25− IL-2−MTORC1.

These are variables that are generally thought to be positively
(the first three) or negatively (the last two) associated with
regulatory T cell development [Fontenot et al., 2003; Ma et
al., 2012; Höfer et al., 2012; Pandiyan et al., 2007; Miskov-
Zivanov et al., 2013; Hawse et al., 2015].3

Figure 2 shows the results of running UCT on this util-
ity function. The x-axis shows the number of UCT itera-
tions performed. Note that the x-axis does not correspond
to steps of the plan. The y-axis shows the expected value of
the currently computed greedy policy, measured according to
the utility function described above. The four figures show
the expected value for four different allowed total simulation
steps t. The upper left figure shows t = 36. The upper right
shows t = 72. The lower left shows t = 360. The lower right
shows t = 1080.

For each simulation time, we see an increase in expected
value from longer plan depth. This shows that there is signifi-
cant extra power from multi-step contingency plans compared
to static immunotherapies.

The increase in expected utility is increasing in simulation
time until t = 360. For t = 360 and t = 1080 the gains
are comparable. This latter observation fits with the fact that,
from manual inspection, it seemed that a simulation time of
360 was usually enough to reach a steady state in the simula-
tion, and thus the remaining 720 simulation steps would not
have much of an effect.

Table 1 shows the generated 1-step and 2-step plans. (The
generated 3-step plans are fairly large so they cannot be pre-
sented here. All the plans are available online 4 .) For a plan
depth of 1, we found that the single action of setting TCR
concentration to high was preferred. For plan depth of 2, at
time step lengths 360 and 1080, we get very similar plans:
TGFβ is turned on early, TCR is set to high later, and IL-2 is
turned off either initially or at the end. We also see that only
a single state is ever reach after taking the initial action; al-
ready around a simulation time of 180, the simulation seems
to reach a steady state. For simulation times of 36 and 72
we get more uncertainty in the plans. Three to four differ-
ent states are potentially reached, and the action taken differs
based on which state is reached.

5.2 Steering toward effector cells
For effector cell development, we used a utility function con-
sisting of the following sum over Boolean variables:

IL-2− FOXP3

These two variables are generally thought to be positively
and negatively associated with effector T cell development,

3We also reran the experiment with the objective without “– IL-
2”. The results were similar except that maximum average utility
was already achieved with 2-step plans, that is, there was no further
benefit to using 3-step plans.

4http://www.cs.cmu.edu/∼ckroer/files/
ijcai16-strategies/
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Figure 2: Average utility as a function of the number of UCT iterations (nodes touched in the tree) for regulatory T cell
production. Top left: 36 total time steps, top right: 72 total time steps, bottom left: 360 total time steps, bottom right: 1080
total time steps. Error bars show 95% confidence intervals. If no error bar is visible, variance is close to zero.

respectively [Höfer et al., 2012; Pandiyan et al., 2007;
Miskov-Zivanov et al., 2013; Hawse et al., 2015].

Figure 3 shows the results of running UCT on this utility
function. The x-axis shows the number of UCT iterations.
The y-axis shows the expected value of the currently com-
puted greedy policy.

The results for steering toward effector cells are very dif-
ferent than those for regulatory cells. We found no benefit to
increasing plan depth beyond 1. Optimized single-step plans
reached utility 1.0, which is the highest possible utility be-
cause the utility function is IL-2 - FOXP3 and both variables
therein are Boolean. (For time steps of size 36, there was
slight noise over utility so it was not always 1, probably due to
the shorter time horizon leading to lower probability of reach-
ing a stable Boolean configuration.) For all four time-step
lengths, we found that increased plan depth hurts expected
utility somewhat. This is because it takes longer to learn the
very simple optimal plan when the plan space is larger.

6 Conclusions and future research
We presented, to our knowledge, the first built system and the
first experimental results on guiding evolution or biological
adaptation using sequential plans. In particular, we showed
how T cell differentiation can be exploited via sequential
planning for steering the adaptation of a patient’s immune
system. We introduced a general approach where we lever-
age Monte Carlo tree search to compute a treatment plan,
and the biological entity that is to be steered is modeled by
a black-box simulator that the planner calls during planning.
We applied our framework to a leading T cell simulator that
is available in the biological modeling package BioNetGen.
We ran experiments with two alternate goals: developing reg-
ulatory T cells or developing effector T cells. The former is

important for preventing autoimmune diseases while the lat-
ter is associated with better survival rates in cancer patients.

We were especially interested in the effect of sequential
plans, an approach that has not been extensively explored in
biology. We showed that for the development of regulatory
cells, sequential plans yield significantly higher utility than
the best static therapy. In contrast, for developing effector
cells, we find that (at least for the given simulator, objective
function, action possibilities, and measurement variables) 1-
step plans suffice to yield maximum utility.

We showed that one can use a complex signaling path-
way network model—that has numerous feedback loops that
operate at different rates and have hard-to-understand ag-
gregate behavior—as-is to support effective sequential plan-
ning. These results serve as a proof of concept that exist-
ing signaling pathway models, which are typically qualitative
(Boolean) and undoubtedly still incomplete, are already suffi-
cient for supporting the generation of sophisticated treatment
plans that perform significantly better than the best static ther-
apies. To verify that the plans are effective in reality, future
work involves evaluating them in vitro and in vivo as well.

In future work it would be interesting to also consider ac-
tions with longer durations, although that is partially captured
in our experiments where the same action can be applied in
multiple consecutive steps of our plans (the difference is that
there is simulation in between actions). Future work also in-
volves testing our approach on quantitative biological mod-
els, such as those where the activations of nodes are charac-
terized by ordinary differential equations.

There is also ample opportunity to study which actions
should be included in the action sets available for planning,
and which state variables should be measured. Both of these
choices involve a tradeoff between possible solution quality
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Figure 3: Average utility as a function of the number of UCT iterations (nodes touched in the tree) for effector T cell production.
Top left: 36 total time steps, top right: 72 total time steps, bottom left: 360 total time steps, bottom right: 1080 total time steps.

Observed state Action to apply
1-step plans
All four BioNetGen
simulation steps
Initial state (depth 0): TCR=1
2-step plans
36 BioNetGen sim. steps
Initial state (depth 0): TCR=1, TGFβ=1, IL-2=0
Depth 1, FOXP3=0, IL-2=0: nothing
Depth 1, FOXP3=0, IL-2=1: TCR=0 , CD28=0
Depth 1, FOXP3=1, IL-2=0: CD28=0
Depth 1, FOXP3=1, IL-2=1: TCR=0 , CD28=0 , IL-2=1
2-step plans
72 BioNetGen sim. steps
Initial state (depth 0): TCR=1, TGFβ=0 , IL-2=0
Depth 1, FOXP3=0, IL-2=0: nothing
Depth 1, FOXP3=0, IL-2=1: TCR=0, CD28=0, TGFβ=1
Depth 1, FOXP3=1, IL-2=0: CD28=0, TGFβ=1, IL-2=1
2-step plans
360 BioNetGen sim. steps
Initial state (depth 0): TGFβ=1, IL-2=0
Depth 1, FOXP3=0, IL-2=1: TCR=1
2-step plans
1080 BioNetGen sim. steps
Initial state (depth 0): TGFβ=1
Depth 1, FOXP3=0, IL-2=1: TCR=1, IL-2=0

Table 1: Generated plans for regulatory cell development. For
depth 2, omitted rows denote configurations that are never
reached. In the “action to apply” column, TCR, 1/0 denotes
high/low respectively; for other variables 1/0 denotes acti-
vate/inhibit, respectively.

and computational effort, and the latter also affects testing

costs. With the ability to do those and other experiments first
in silico, significant time and cost savings can be obtained by
reducing the needed in vitro and in vivo experimentation.

Future work also involves using our multi-step steering ap-
proach for steering other biological entities beyond T cells,
such as steering the evolution of bacteria or viruses into states
where they can be effectively tackled, steering cancer cell
populations to states where they can be destroyed without
leaving persistors, or, in synthetic biology, steering bacteria
into states where they perform useful tasks (such as consum-
ing oil spills) without introducing foreign genetic material
into the bacteria, which is costly and risky.

Finally, there are opportunities for better performance by
considering other, more sophisticated, planning algorithms.
For example, algorithms such as POMCP [Silver and Veness,
2010] or DESPOT [Somani et al., 2013] could allow better
scalability, and thereby enable analysis of larger models.
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