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Abstract

The revelation principle is a cornerstone tool in mechanism design. It states that one can restrict
attention, without loss in the designer’s objective, to mechanisms in which A) the agents report their types
completely in a single step up front, and B) the agents are motivated to be truthful. We show that reasonable
constraints on computation and communication can invalidate the revelation principle. Regarding A, we
show that by moving to multi-step mechanisms, one can reduce exponential communication and computation
to linear—thereby answering a recognized important open question in mechanism design. Regarding B, we
criticize the focus on truthful mechanisms—a dogma that has, to our knowledge, never been criticized before
(besides on the basis of privacy reasons). First, we study settings where the optimal truthful mechanism is
NP -complete to execute for the center. In that setting we show that by moving to insincere mechanisms,
one can shift the burden of having to solve the NP -complete problem from the center to one of the agents.
Second, we study a new oracle model that captures the setting where utility values can be hard to compute
even when all the pertinent information is available—a situation that occurs in many practical applications.
In this model we show that by moving to insincere mechanisms, one can shift the burden of having to ask
the oracle an exponential number of costly queries from the center to one of the agents. In both cases
the insincere mechanism is equally good as the optimal truthful mechanism in the presence of unlimited
computation. More interestingly, whereas being unable to carry out either difficult task would have hurt the
center in achieving his objective in the truthful setting, if the agent is unable to carry out either difficult
task, the value of the center’s objective strictly improves.

1 Introduction

Systems, especially on the Internet, are increasingly being used by multiple self-interested parties with different
preferences. The coordination of these agents is of key importance, but one cannot assume that they will behave
in a way that is desirable systemwide. Rather, they will act in their own interest. Mechanism design, a subfield
of game theory, deals with designing the rules of the game (aka. a mechanism) so that a good systemwide
outcome will be achieved despite the fact that the agents act based on self-interest.

The revelation principle is a cornerstone tool in mechanism design. It states that one can restrict attention,
without loss in the designer’s objective, to mechanisms in which A) the agents report their types completely
in a single step up front, and B) the agents are motivated to be truthful. In settings where computation and
communication are free and unlimited, the argument for the revelation principle is valid.

However, in this paper we show that reasonable constraints on computation and communication can invali-
date the revelation principle. We separate the two prescriptions (A and B) of the revelation principle, and show
how each of them can fail. We address A in Section 2, and B in Section 3.

1.1 Mechanism design: Definitions

In the framework of mechanism design, there is a center to whom the agents reveal information. The center
makes sure that the rules of the game (e.g. rules of an auction) are followed, and in the end imposes an outcome
based on how the agents played the game. We now define the setting formally.
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Definition 1. A preference aggregation setting consists of a set of outcomes O,1 a set of agents A with |A| = N ,
and for each agent: A set of types Θi; A probability distribution pi over Θi; A utility function ui : Θi×O → <. 2

Though this follows standard game theory notation, the fact that agents have both utility functions and
types is perhaps confusing. The types encode the various possible preferences that agents may turn out to
have, and the agents’ types are not known by the center. The utility functions are common knowledge, but the
agent’s type is a parameter in the agent’s utility function. So, the utility of agent i is ui(θi, o), where o ∈ O is
the outcome and θi is the agent’s type.

The mechanism designer now has the choice between various game forms with consequences. This choice
will decide which actions are available to the agents in the game, and how their actions map to an outcome.

Definition 2. A strategic game form with consequences consists of a set of actions Ai for each agent, and an
outcome function o : A1 × A2 × . . . × AN → O.3 Of particular interest are direct-revelation games, where for
each agent i, Ai = Θi.

Once the game is chosen, each agent will adopt a strategy.

Definition 3. A strategy for agent i is a function si : Θi → Ai.4

A solution concept indicates which vectors of strategies are strategically stable. We discuss the two most
common solution concepts: implementation in dominant strategies, and implementation in Bayes-Nash equilib-
rium. We use the following standard notation. We write (for example) a−i for the vector of all players’ actions
besides i’s; and we write (for example) (a, a−i) for (a1, . . . , ai−1, a, ai+1, . . . , aN ). We also use the notation
Eθ←p[] to indicate that the expectation is taken over the probability distribution p for θ. That is, θ is drawn
from p.

Definition 4. The vector of strategies (s1, . . . , sN ) is a dominant strategy equilibrium if for every agent i, for
every type θi ∈ Θi, every alternative action ai ∈ Ai, and every action vector a−i ∈ A−i of the other agents,
we have ui(θi, o(si(θi), a−i)) ≥ ui(θi, o(ai, a−i)). In this case, we say that the game form (or the mechanism)
implements the social choice rule c : Θ1 ×Θ2 × . . .×ΘN → O given by c(θ1, . . . , θN ) = o(s1(θ1), . . . , sN (θN ))
in dominant strategies.

Thus, in dominant strategy equilibrium, the action prescribed by one’s strategy is optimal regardless of what
the other agents do. If it is optimal only given the other agents’ strategies, and given that one does not know
the other agents’ types, we have a Bayes-Nash equilibrium.

Definition 5. The vector of strategies (s1, . . . , sN ) is a Bayes-Nash equilibrium if for every agent i, for every
type θi ∈ Θi, and every alternative action ai ∈ Ai, we have Eθ−i←p−i [ui(θi, o(si(θi), s−i(θ−i)))] ≥
Eθ−i←p−i [ui(θi, o(ai, s−i(θ−i)))]. In this case, we say that the game form (or the mechanism) implements the
social choice rule c : Θ1 × Θ2 × . . . × ΘN → O given by c(θ1, . . . , θN ) = o(s1(θ1), . . . , sN (θN )) in Bayes-Nash
equilibrium.

Given the preference aggregation setting, the space of possible game forms, and the desired solution concept,
the mechanism designer attempts to choose the game form so as to maximize the expected value of some objective.
The most studied objective is social welfare, which is simply

∑N
i=1 ui(θi, o).

1.2 The revelation principle

The revelation principle states that in designing mechanisms, we only need to consider direct-revelation games,
where each agent reports his type directly (completely and in a single step up front). Additionally, we only need
to consider those games in which every agent reveals his type truthfully in equilibrium. Roughly, the argument

1Sometimes, it is possible for the agents to make side payments. If so, each outcome includes a specification of how much each
agent pays or receives. The results of this paper do not rely on side payments.

2The revelation principle, discussed shortly, also applies in more general settings, such as when the types are correlated, as well
as when the agents observe different signals and each agent’s utility depends on the others’ signals too. However, all of our results
go through even in the simple setting defined above (aka. the independent private types model).

3If the function o instead produces a probability distribution over outcomes, we say the mechanism is randomized. In this paper
we only discuss deterministic mechanisms.

4If an agent randomizes over strategies, he is said to use a mixed strategy. We present our subsequent definitions in terms of
pure strategies, but they are easily generalized to mixed strategies.
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is as follows. We show that given any mechanism, we can construct a truthful direct-revelation mechanism
whose performance is identical. Given a mechanism, we can build an interface layer between the agents and this
mechanism. The agents input (some report of) their types into the interface layer; subsequently, the interface
layer inputs the actions that the agents would have strategically played if their types were as declared, into the
original mechanism, and the resulting outcome is the outcome of the new mechanism. Since the interface layer
acts “strategically on each agent’s best behalf”, there is never an incentive to report falsely to the interface
layer. Hence, the actions played by the interface layer are the actions that would have been played without the
interface layer, so the results are exactly as they would have been with the original mechanism. We now state
the revelation principle formally for both of the solution concepts under discussion.

Revelation Principle, version 1 (Known). Suppose there is a strategic game form that implements a social
choice rule c : Θ1 ×Θ2 × . . .×ΘN → O in dominant strategies. Then there exists a direct-revelation game with
outcome function o that implements c in dominant strategies, where the dominant strategies equilibrium through
which it is implemented is truthful. That is, for any i and θi ∈ Θi, si(θi) = θi, which is a dominant strategy,
and o(θ1, . . . , θN ) = c(θ1, . . . , θN ).

Revelation Principle, version 2 (Known). Suppose there is a strategic game form that implements a social
choice rule c : Θ1 ×Θ2 × . . .×ΘN → O in Bayes-Nash equilibrium. Then there exists a direct-revelation game
with outcome function o that implements c in Bayes-Nash equilibrium, where the Bayes-Nash equilibrium through
which it is implemented is truthful. That is, for any i and θi ∈ Θi, si(θi) = θi, where these strategies constitute
a Bayes-Nash equilibrium, and o(θ1, . . . , θN ) = c(θ1, . . . , θN ).

For the interested reader, we present the (known) proofs of these two versions of the revelation principle in
an appendix.

We are now ready to begin our computational critique of the revelation principle.

2 Single-step vs. multi-step mechanisms

The revelation principle suggests that the designer can, without loss, restrict attention to mechanisms where
each agent reveals his preferences completely in a single step.5 However, complete revelation of preferences is
problematic in many applications in practice, due to several reasons.

First, the agents may not know their preferences a priori, but rather may have to spend effort in determining
their preferences, for instance by computing or by gathering additional information. One important setting
where this occurs in practice is an auction where a bidder needs to solve his own planning problem (what
he would do with the items if he would win them in the auction) in order to determine his valuation for the
items that are being auctioned [38, 39, 23, 34]. One real-world application where this occurs is reverse auctions
for trucking services (e.g., [38]). In that setting, there is a buyer who wants to have a set of items (delivery
tasks) handled. Each bidder (a trucking company) can bid on any combinations of tasks. Each bid states how
cheaply the bidder is willing to handle that combination of tasks. If the auction is conducted using Vickrey-
Clarke-Groves (VCG) pricing (aka. the generalized Vickrey auction), and the bidders have quasilinear utility
functions, then each bidder is motivated to bid his true cost of handling the combination of tasks [43, 5, 17].
However, evaluating one’s cost of handling a combination of tasks involves solving an NP -hard vehicle routing
and scheduling problem (and furthermore, the number of combinations of tasks to consider is exponential in
the number of tasks).

Second, communicating complete preferences may waste bandwidth and is impossible in many practical
cases. For example, in a combinatorial auction, a bidder may need to bid on every bundle of goods to express
his preferences, and the number of bundles to bid on is exponential in the number of goods for sale.

Third, complete preference revelation is undesirable from a privacy perspective. It would be more desirable
to only have the agents reveal those parts of their preferences that are relevant for choosing the outcome.6

5This assumption has also been criticized on the basis that a broader class of social choice functions is implementable in subgame
perfect equilibrium [27], which is a more sophisticated type of equilibrium that takes into account the sequential structure of the
game. In this paper, we focus on simpler notions of equilibrium that do not concern themselves with the sequential structure of
the game. It is for these notions of equilibrium that the revelation principle holds (assuming free and unlimited computation and
communication).

6In some settings, the privacy issue can be mitigated by other techniques as well, such as secure function evaluation.
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To address these problems, it makes sense—unlike the revelation principle would suggest—to shift to using
multi-step mechanisms where the agents reveal their preferences incrementally, only on an as-needed basis.
There are several different types of mechanism for accomplishing this, such as

• incremental anytime mechanisms that have some feasible outcome ready at every step of the mechanism.
Quantity tatonnement for (resource/task) allocation problems is an example of this. There, at each iteration,
the center imposes a candidate allocation on the agents, and each agent responds with how much he would
pay (or would have to be paid) for his allotment in the allocation [27]. This is closely related to iterative
(resource/task) reallocation among agents (e.g., [38, 1]).
• price tatonnement mechanisms like ascending (or descending) auctions. In these types of mechanism,

the center, at every iteration, posts a price vector (prices on items or combinations of items) to each bidder,
and each bidder states which combination (potentially the empty combination) the bidder prefers at that price
vector [33, 35, 36, 44, 4, 28, 2, 15, 42]. The mechanism terminates in a solution where the bidders’ demands,
together, are feasible.
• explicit preference elicitation. In these mechanisms, the center explicitly queries the agents about specific

aspects of their preferences in light of what the center has learned about the agents’ preferences so far. This has
been applied to combinatorial auctions [7, 9, 8], and in practice only a vanishingly small fraction of the bidders’
valuation information needs to be revealed before the optimal allocation can be determined for certain [18].7

This approach has also been applied to preference elicitation in voting [11].

In multi-stage mechanisms, the agents get signals about each others’ actions so far, so the agents can
condition their actions on these signals. This potentially introduces additional opportunitiues for strategic
manipulation of the mechanism by the agents [11]. However, if the mechanism is social welfare maximizing
(assuming truthful revelation) and VCG pricing is used, then revealing one’s preferences (the part of the
preferences that the mechanism asks about) truthfully is an ex post equilibrium [7].8 9

While it is known that multi-step mechanisms can save revelation compared to single-step mechanisms, it has
not been clear whether these savings can be drastic. For one, Christos Papadimitriou recently (at the DIMACS
Fall 2001 workshop on Computational Issues in Game Theory and Mechanism Design) posed the question
of whether multi-step mechanisms can yield an exponential reduction in communication/computation.10 The
following theorem shows that this is the case even in very simple settings. This clearly demonstrates the
impracticality of the single-step mechanisms advocated by the revelation principle.

Theorem 1. There exist preference aggregation settings (even when the objective is social welfare maximization,
there are only 2 agents, and the agents’ types are private and drawn independently), where

• each optimal single-step mechanism requires the communication of an exponential number of bits (and
thus exponential computation by the center to receive these bits) for every type vector, and

• there exists a multi-step (2-step) mechanism that implements the same social choice rule, requires only a
linear number of bits to be communicated, and uses only a linear amount of computation at the center.

This holds both for dominant strategy implementation and for Bayes-Nash implementation.

Proof. Consider a setting where the outcome is a string of n + 1 bits, so |O| = 2n+1. Let there be 2 agents.
Agent 1’s type θ1 is a string of n bits, so |Θ1| = 2n. The utility of agent 1 is u1(θ1, o) = 2 if the first n bits of
the outcome o agree with θ1, and 0 otherwise. Agent 2’s type θ2 is a mapping from the set of all n-bit strings to
a bit, that is θ2 : {0, 1}n → {0, 1}. The interpretation is that agent 2’s type defines how agent 2 wants the last
bit of the outcome set based on how the first n bits of the outcome are set. Define prefixn(s) to be the string

7This is despite the fact that in the worst case, to determine an (even approximately) optimal allocation in a combinatorial
auction requires exponential communication [32].

8Ex post equilibrium is a game-theoretic solution concept that is strictly stronger than Nash equilibrium and strictly weaker
than dominant strategy implementation. In short, a strategy profile is in ex post equilibrium if it is a Nash equilibrium for any
prior. The claim that we have an ex post equilibrium here relies on the fact that in the direct-revelation VCG mechanism, truthful
revelation is a dominant strategy, that is, an optimal strategy no matter what types the other agents reveal. So, if in the equilibrium
of the multi-step mechanism the other agents’ strategies are such that they always report the same type no matter what one does,
then truthful revelation is one’s optimal strategy. This holds for every agent. Therefore truthful revelation is in equilibrium (for
any prior).

9In some games of this type, there may be additional equilibria.
10In the theory of communication complexity (in a non-game-theoretic setting), it has already been shown that an exponential

communication gap can exist between the best single-step and the best multi-step communication protocol [20].
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of the first n bits of bit string s, and define last(s) to be the last bit of s. The utility of agent 2 is u2(θ2, o) = 1
if θ(prefixn(o)) = last(o), and 0 otherwise. As usual, the utility functions are known by the center as well,
but the types are privately known by the agents.

Let the mechanism’s objective be the maximization of social welfare, i.e.,
∑
i∈{1,2} ui(θi, o). The unique

optimal direct-revelation mechanism for this game elicits θ1 (that is, n bits) from agent 1 and θ2 (that is, 2n

bits) from agent 2, and chooses the outcome (θ1, θ2(θ1)). The outcome always maximizes social welfare.
It is easy to see that in this mechanism, each agent’s dominant strategy is to reveal his type truthfully.

Agent 1 unilaterally determines all of the aspects of the outcome that he cares about (that is, the first n bits
of the outcome), so his dominant strategy is to reveal θ1 truthfully. Agent 2 cannot affect the first n bits in
any way, and unilaterally determines the last bit of the outcome (conditional on what agent 1 does), so so his
dominant strategy is to reveal θ2 truthfully.

Now, any single-step mechanism that is guaranteed to find the social welfare maximizing outcome will have
to elicit this much information (θ1 and θ2), in the following sense. If the mechanism cannot distinguish whether
agent 1’s type is θ1 or θ′1, then the mechanism does not know how to set the first n bits of the outcome. On
the other hand, suppose the mechanism cannot distinguish whether agent 2’s type is θ2 or θ′2. If θ2 6= θ′2, then
there exists an n-bit string σ such that θ2(σ) 6= θ′2(σ), and if it happens that θ1 = σ, then the mechanism does
not know how to set the last bit of the outcome.

Now, consider a 2-step mechanism. In the first step the mechanism elicits θ1 (i.e., n bits). In the second
step, the mechanism elicits θ2(θ1) (i.e., 1 bit). The outcome again is (θ1, θ2(θ1)). For the same reasons as in
the single-step mechanism, each agent’s dominant strategy is to reveal his type truthfully. So, this multi-step
mechanism implements the same social choice rule as the single-step mechanism, but only elicits a linear number
of bits (n+ 1) instead of the exponential number required by the single-step mechanism (n+ 2n).

3 Truthful vs. insincere mechanisms

The fact that multi-step mechanisms have computational and communication advantages over single-step mech-
anisms has been observed before and explored to a certain extent already, as discussed above. However, the
revelation principle has another questionable facet: it states that restricting attention to truthful mechanisms
comes at no loss. In this section we show that, interestingly, under limited computational resources, this
restriction does incur a loss.

3.1 Computational complexity in truthful vs. insincere mechanisms

In many real-world mechanism design settings, the center faces an intractable optimization problem in trying
to execute the mechanism. For example, the problem of determining the winners of a combinatorial auction is
NP -complete [37] and inapproximable [40]. Recently there has been a surge of research in developing faster
algorithms for optimally executing mechanisms, e.g., winner determination algorithms for combinatorial auctions
(e.g., [37, 40, 16, 29, 25, 41]). There has also been considerable recent work (called algorithmic mechanism design)
on designing mechanisms that 1) can be executed with polynomial effort, 2) yield an outcome that is provably
within a bound from optimal, and 3) where the agents have incentive to act truthfully (see, e.g., [30, 31, 26]).
A third interesting avenue of research in this area is automated mechanism design, where the mechanism is
generated automatically (i.e., designed computationally) for the setting at hand [10]. Each of these three
strands of research follows the revelation principle’s prescription that attention should be restricted to truthful
mechanisms.

In this subsection, we question the focus on truthful mechanisms when the setting requires the solution of
computationally hard problems. In particular, we show that there are settings where by abandoning truthful
mechanisms, we can shift a computationally hard problem from the center to one of the agents. Additionally,
whereas not being able to cope with the issue of computational hardness would have hurt the center in achieving
his objective, if the agent is unable to cope with it, this actually helps the designer in achieving his objective.

We first observe that dominant strategy implementation and Bayes-Nash implementation differ only on what
agents can be expected to know about each others’ types and actions. An interesting special case is games where
only one agent needs to choose an action. In this case, the acting agent always knows everything there is to
know about the other agent’s actions (namely, nothing). So, both solution concepts coincide here. We prove the
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remaining two theorems for this types of game, so the results hold both for dominant strategy implementation
and Bayes-Nash implementation.

Theorem 2. Suppose that the center is trying to maximize social welfare, and neither payments nor random-
ization is allowed. Then, even with only two agents (one of whom does not even report a type, so dominant
strategy implementation and Bayes-Nash implementation coincide), there exists a family of preference aggrega-
tion settings such that:

• the execution of any optimal truthful mechanism is NP -complete for the center, and

• there exists an insincere mechanism which 1) requires the center to carry out only polynomial computa-
tion, and 2) makes finding any beneficial insincere revelation NP -complete for the type-reporting agent.
Additionally, if the type-reporting agent manages to find a beneficial insincere revelation, or no beneficial
insincere revelation exists, the social welfare of the outcome is identical to the social welfare that would be
produced by any optimal truthful mechanism. Finally, if the type-reporting agent does not manage to find
a beneficial insincere revelation where one exists, the social welfare of the outcome is strictly greater than
the social welfare that would be produced by any optimal truthful mechanism.

Put in perspective, the mechanism designer would reap two benefits from using the second, insincere mech-
anism rather than a truthful mechanism:

1. Doing so shifts the computational hardness from the center to the agent. This can also be seen as a
statement about how the social welfare that can be obtained by truthful mechanisms compares to the
social welfare that can be obtained by insincere mechanisms, as follows. If it is computationally infeasible
to execute the optimal truthful mechanism, the designer might resort to another truthful mechanism which
merely approximates the social welfare obtained by the optimal truthful mechanism (this is exactly the
approach taken in algorithmic mechanism design).

2. If the agent cannot consistently solve instances of an NP -complete problem, then, even if the agent is
trying to act strategically, using the second mechanism improves social welfare in some cases (and never
decreases it).

Hence, (by the second argument) the insincere mechanism—which is computationally feasible to execute—
outperforms the optimal truthful mechanism, which (by the first argument) in turn outperforms any computa-
tionally feasible truthful mechanism.

We now present the proof.

Proof. We present the family of settings in “story form” to improve readability; the presentation is easily
transcribed into formal notation. The head of an organization has to decide on a team of k employees to send
on a project. n employees are available. In deciding on a team, the head of organization is trying to aggregate
the preferences of two parties: the job manager of the project (who is already known), and the head of recruiting.
(Note that, in this example, we are not interested in the preferences of the employees who may actually be sent
on the project.) Some of the employees are “old friends”; this relationship can be represented in a graph, where
the vertices represent the employees, and an edge is drawn between two vertices if the employees they represent
are old friends. (This graph is common knowledge.) The only interest that the head of recruiting has in the
selection of the team is that she would like at least two members of the team to be old friends, because this will
make for a nice story in the next recruiting brochure. She gets a utility of 2 if there is a pair of old friends in
the team, and a utility of 0 otherwise. (This is common knowledge, so the head of recruiting need not report
a type.) The job manager, on the other hand, prefers it if there are no old friends in the team, because he
feels that this will lead to an unprofessional atmosphere. He gets a utility of 0 if there is a pair of old friends
in the team, and a utility of 1 otherwise. Again, this is common knowledge. However, the job manager may
also have detailed knowledge about which team of employees would collectively have a skill set appropriate for
the project. If this is the case, and this exact team of employees is selected to go on the project (whether this
team has old friends in it or not), the job manager gets an additional utility of 3. Whether the job manager
believes a particular team is ideal, and if so, which team it is, is not common knowledge. Hence, this information
needs to be reported by the job manager; and thus, the job manager has a type set of size

(
n
k

)
+ 1 (one type

for each possible team, indicating that the job manager believes that this team is ideal for the project, and
one additional type indicating that the job manager does not believe any particular team is ideal). Let the
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probability distribution over this type set be uniform. Now let us consider the problem of creating a mechanism
for such a setting that uses neither payments nor randomization.

First, we claim that all optimal truthful mechanisms are of the following form.

• If the job manager reports a type corresponding to a particular team, then choose this exact team;

• If the job manager reports the type indicating that he does not believe that any particular team is ideal,
then 1) if a team without any old friends exists (corresponding to an independent set of size k in the
graph), choose such a team; or 2) if no such team exists, choose any team (it does not matter which).

It is straightforward to verify that mechanisms of this form act in the job manager’s best interest, i.e., they
always choose one of the outcomes that are optimal for the job manager given his type. Hence, the job manager
never has any incentive to misreport his type, so these mechanisms are truthful. All that remains to show is
that all other truthful mechanisms have strictly less expected social welfare than these. We first observe that
the only case in which we get less than the optimal social welfare with the mechanisms of the given form is
when the job manager has the type that corresponds to no team, and an independent set of size k exists. In
this case, the mechanisms of the given form choose an independent set as the team, leading to a social welfare
of 1; whereas a social welfare of 2 could have been obtained by choosing a team with friends in it. It follows
that the expected social welfare that we get from one of the mechanisms in the given form is at most 1

(nk)+1

below the maximal expected social welfare that we could have obtained if the agents did not play strategically.
Now consider an alternative truthful mechanism that, for some team, does not choose this team when the job
manager reports the type corresponding to that team. In this case, this mechanism can obtain a social welfare of
at most 2, whereas the optimal social welfare in this case is at least 4. It follows that the expected social welfare
we get from this mechanism is at least 2

(nk)+1
below the maximal expected social welfare that we could have

obtained if the agents did not play strategically. Hence, all optimal truthful mechanisms always choose the team
corresponding to the type that the job manager reports, when the type corresponds to a team. But then, if an
independent set in the friendship graph exists, an optimal truthful mechanism must choose such an independent
set in the case where the job manager reports the type corresponding to no team: because if it does not, then
when the job manager has this type, he would benefit from misreporting his type as a type corresponding to the
independent set—and the mechanism would no longer be truthful. Thus, we have established that all optimal
truthful mechanisms are of the given form. We observe that executing such a mechanism requires solving an
NP -complete problem, because we have to construct an independent set if it exists.

Now consider the following mechanism:

• If the job manager reports a type corresponding to a particular team, then choose this exact team;

• If the job manager reports the no-team type, then choose some team with at least a pair of friends.

We observe that this mechanism is computationally easy to execute. Also, this mechanism is not truthful if
there is an independent set, because in this case, if the job manager has the type corresponding to no team,
the job manager would be better off reporting the type corresponding to the independent set. However, there
are no other beneficial insincere revelations. Thus, it is straightforward to verify that if the job manager always
reports the type that is strategically optimal for him, the outcome of this mechanism is always identical to that
of one of the optimal truthful mechanisms. Of course, in order for the job manager to always report the type
that is strategically optimal for him, he needs to construct an independent set (if possible) when he has the
type corresponding to no team. Because this problem is NP-complete, it is reasonable to suspect that the job
manager will not always be able to construct such a set even when it exists. If the job manager indeed fails
to construct an independent set in this case, the outcome will be a team with at least a pair of friends. This
outcome actually has a social welfare of 2, as opposed to the social welfare of 1 that would have been obtained
if the job manager had managed to construct an independent set. Hence the social welfare is strictly greater
than in the case where the job manager has unlimited computational power; and hence it is also a greater than
it would have been with an optimal truthful mechanism.

3.2 Valuation complexity in truthful vs. insincere mechanisms

In this subsection, we question the focus on truthful mechanisms when determining valuations is hard. We
focus on the following abstract model of this. Suppose that there is a commonly accessible oracle which, when
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supplied with an agent, that agent’s type, and an outcome, returns a utility value for that agent. This oracle
is the only available means for determining agents’ utilities for outcomes. Depending on the supplied type, the
query may be costless, or carry a constant (computational) cost.11

We first provide two settings where this model is realistic.
Example 1. Suppose we are trying to allocate delivery tasks to various shipping companies. In this case, a

shipping company’s type (private information) consists of the resources available to this company. An outcome
consists of an allocation of the delivery tasks to the companies. Even when we know both the company’s type
and the outcome selected by the center, in order to compute the company’s cost for this allocation, we need
to compute the optimal delivery schedule for the company given its type. This may or may not be difficult
depending on the resources available to the company. For instance, if the company only has ground-based
vehicles available, this may require solving a computationally hard routing problem, which is to be solved by
some software package (an “oracle”). Running this software package may be expensive. On the other hand, the
company may have a helicopter available to it whose flight time between any two locations is negligible, and
the only cost it incurs is a constant cost per takeoff. In this case, the cost to the company of an allocation of
tasks to it is simply proportional to the number of tasks in the allocation, which is trivial to compute. Hence
there is no cost to this computation.

Example 2. Suppose we are trying to sell a piece of art. In this case, a bidder’s private information may
include whether she is an art trader, or an art collector. In the former case, to determine her valuation for an
outcome (which indicates whether she won the piece of art or not), she needs to query an (expensive) expert
about the authenticity of the painting. In the latter case, she simply has an intrinsic valuation for the piece of
art, so that there is no cost to her in evaluating how much the piece of art would be worth to her.

We now show that there are settings where by abandoning truthful mechanisms, one can transfer the burden
of having to make an exponential number of costly oracle queries from the center to the agent. Additionally,
whereas not being able to cope with having to make exponentially many costly queries would have hurt the
center in achieving his objective, if the agent is unable to cope with it, this helps the designer in achieving his
objective.

Theorem 3. Suppose that the center is trying to maximize social welfare, and neither payments nor random-
ization is allowed. Then, even with only two agents (one of whom does not even report a type, so dominant
strategy implementation and Bayes-Nash implementation coincide), there exists a family of preference aggrega-
tion settings such that:

• the execution of any optimal truthful mechanism requires the center to make (on average) exponentially
many costly queries to the oracle for some type reports, and

• there exists an insincere mechanism 1) which does not require the center to make any costly queries,
and 2) where the agent needs to make (on average) exponentially many costly queries to the oracle to
find a beneficial insincere revelation. Additionally, if the type-reporting agent manages to find a beneficial
insincere revelation, or no beneficial insincere revelation exists, the social welfare of the outcome is identical
to the social welfare that would be produced by any optimal truthful mechanism. Finally, if the type-
reporting agent does not manage to find a beneficial insincere revelation where one exists, the social
welfare of the outcome is strictly greater than the social welfare that would be produced by any optimal
truthful mechanism.

Proof. Let the outcome space be X ∪ {d}, where |X| = 22n. (Here n is the length of a natural representation
for the problem.)12 The type-reporting agent (agent 1) has the following type set Θ. For each x ∈ X, there is a
type θx which occurs with probability 1

|X|+1 . Any query to the oracle involving a type θx is costless. The utility
function, to be obtained with these queries, is as follows: u1(θx, x) = 4; u1(θx, y) = 0 for all y 6= x. Additionally,
for each subset Y ⊆ X, there is a type θY which occurs with probability 1

|X|+1 ( 1
2n )|Y |( 2n−1

2n )|X|−|Y |. (That is,
with probability 1

|X|+1 one of these types θY occurs, and given this, any given x is in Y with probability 1
2n ,

independently.) Any query to the oracle involving a type θY has a nonzero query cost associated with it.13 The
11Mechanism design with a cost of information acquisition (or equivalently, computation) to determine one’s valuation has been

studied before [13, 14, 12, 3, 6, 19, 24, 21, 23, 22, 39]. However, we do not assume that there is a method for equating the cost of
a query with a cost in utility units; rather, we merely assume that an exponential query (computational) cost is unmanageable, as
is typical in the computer science literature.

12For instance, a combinatorial auction with n items and 4 bidders has 4n = 22n possible outcomes.
13We note that there is no comparison between this query cost and the utilities given by the utility functions; we are not assuming

that agents have any way of trading query cost and utility off against each other.
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utility function, to be obtained with these queries, is as follows: u1(θY , x) = 1 for all x ∈ Y ; u1(θY , x) = −1
for all x /∈ Y,∈ X; u1(θY , d) = 0. It is crucial to not be misled by the notation into thinking that the
set Y is immediately obvious when observing that somebody’s type is θY . Rather, the set Y can only be
determined by asking a costly query to the oracle with the type θY for each x ∈ X. For instance, as in the
shipping company’s example, the type can be thought of as a set of resources, which implies which outcomes
are favorable and which are not—but only through costly (oracle) computation. However, we do allow for
immediate distinguishing between types of the form θx and those of the form θY —this would require only a
single query anyway.

Agent 2, who does not report a type, has the following utility function: u2(x) = 0 for all x ∈ X; u2(d) = 2.
Now consider creating a mechanism for such a setting that uses neither payments nor randomization.

First, we claim that all optimal truthful mechanisms are of the following form.

• If agent 1 reports a type θx, then choose outcome x.

• If agent 1 reports a type θY , then choose some outcome x ∈ Y (unless Y is the empty set, in which case,
choose d.)

It is straightforward to verify that mechanisms of this form act in agent 1’s best interest, i.e., they always
choose one of the outcomes that are optimal for agent 1 given his type. Hence, agent 1 never has any incentive
to misreport his type, so these mechanisms are truthful. All that remains to show is that all other truthful
mechanisms have strictly less expected social welfare than these. We first observe that the only case in which
we get less than the optimal social welfare with the mechanisms of the given form is when agent 1 has a type
θY (with Y 6= {}). In this case, the mechanisms of the given form choose some x ∈ Y , leading to a social
welfare of 1; whereas a social welfare of 2 could have been obtained by choosing d instead. Because such types
occur with probability less than 1

|X|+1 , it follows that the expected social welfare that we get from one of the
mechanisms in the given form is at most 1

|X|+1 below the maximal expected social welfare that we could have
obtained if the agents did not play strategically. Now consider an alternative truthful mechanism that for some
type θx does not choose outcome x. In this case, this mechanism can obtain a social welfare of at most 2,
whereas the optimal social welfare in this case is 4. Because this type occurs with probability 1

|X|+1 , it follows
that the expected social welfare we get from the alternative mechanism is at least 2

|X|+1 below the maximal
expected social welfare that we could have obtained if the agents did not play strategically. Hence, all optimal
truthful mechanisms always choose outcome x when the reported type is some θx. But then, if agent 1 reports
a type θY (with Y 6= {}), an optimal truthful mechanism must choose some x ∈ Y ; because if it does not,
agent 1 is better off reporting θx for some x ∈ Y instead of truthfully reporting θY —and the mechanism would
no longer be truthful. Finally, any optimal truthful mechanism must choose d for the type θ{}, because this
gives maximal social welfare in this case, and has no negative strategic effects. Thus, we have established that
all optimal truthful mechanisms are of the given form. We observe that for the θY types, executing such a
mechanism requires on average an exponential number of (costly) queries: the only way to find some x ∈ Y is
by asking queries to the oracle. Because, given that the type is some θY , each x is in the set Y with probability
1

2n (independently), the expected number of queries necessary to find an x ∈ Y is exponential.
Now consider the following mechanism:

• If agent 1 reports a type θx, then choose outcome x.

• If agent 1 reports a type θY , then choose outcome d.

We observe that executing this mechanism does not require any costly queries at all, because queries with
a type θx are costless, and we do not need to distinguish between the different θY at all. The mechanism
is not truthful, because if agent 1’s type is some θY (with Y 6= {}), then it is better off reporting some θx
with x ∈ Y , to effect this outcome x. However, there are no other beneficial insincere revelations. Thus, it is
straightforward to verify that if agent 1 always reports the type that is strategically optimal for it, the outcome
of this mechanism is always identical to that of one of the optimal truthful mechanisms. Of course, in order
for agent 1 to always report the type that is strategically optimal for it, in the cases where it has a type θY ,
it needs to ask (on average) an exponential number of queries to find some x ∈ Y , so that it can report the
corresponding θx. (Additionally, it may not be trivial to actually construct the type θx from x. If this is so, it
only strengthens this argument. However, it is possible to argue that is should be cheap to find this θx because
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queries involving a θx are costless.) It is reaonable to suspect that agent 1 will not always be able or willing
to ask this many queries. If agent 1 indeed does not manage to find some x ∈ Y , the best it can do is report
θY , leading to outcome d. This outcome actually has a social welfare of 2, as opposed to the social welfare of 1
that would have been obtained if agent 1 had managed to find some x ∈ Y . Hence the social welfare is strictly
greater than in the case where agent 1 manages to play strategically optimallly; and hence it is also a greater
than it would have been with an optimal truthful mechanism.

4 Conclusions and future research

The revelation principle is a cornerstone tool in mechanism design. It states that one can restrict attention,
without loss in the designer’s objective, to mechanisms in which A) the agents report their types completely
in a single step up front, and B) the agents are motivated to be truthful. In settings where computation and
communication are free and unlimited, the argument for the revelation principle is valid.

However, in this paper we showed that reasonable constraints on computation and communication can
invalidate the revelation principle. We cleanly separated the two prescriptions (A and B) of the revelation
principle, and showed how each of them can fail.

Regarding A, we layed out the arguments that have been made in favor of moving to multi-step mechanisms,
and presented different important families of multi-step mechanisms in a unified context. We then formally
showed that by moving to multi-step mechanisms, one can reduce exponential communication and computation
to linear—thereby answering a recognized important open question in mechanism design.

Regarding B, we criticized the focus on truthful mechanisms—a dogma that has, to our knowledge, never been
criticized before. (Besides on the basis of privacy reasons First, we studied settings where the optimal truthful
mechanism is NP -complete to execute for the center. We showed that by moving to insincere mechanisms,
one can shift the burden of having to solve the NP -complete problem from the center to one of the agents.
Second, we studied a new oracle model that captures the setting where utility values can be hard to compute
even when all the pertinent information is available—a situation that occurs in many practical applications. In
this model we showed that by moving to insincere mechanisms, one can shift the burden of having to ask the
oracle an exponential number of costly queries from the center to one of the agents. In both cases the insincere
mechanism is equally good as the optimal truthful mechanism in the presence of unlimited computation. More
interestingly, whereas being unable to carry out either difficult task would have hurt the center in achieving his
objective in the truthful setting (because the center would have had to opt for a suboptimal mechanism instead),
if the agent is unable to carry out either difficult task, the value of the center’s objective strictly improves.

In summary, our results suggest that there is a potentially fruitful new avenue of research on the boundary
of mechanism design and computer science, where one removes the restriction to single-step mechanisms or
to truthful mechanisms, or both. We have shown that in some settings, this approach can not only reduce
computation and communication, but can also use such complexities to the mechanism designer’s advantage.
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5 Appendix: Proofs of the revelation principle

Revelation Principle, version 1 (Known). Suppose there is a strategic game form that implements a social
choice rule c : Θ1 ×Θ2 × . . .×ΘN → O in dominant strategies. Then there exists a direct-revelation game with
outcome function o that implements c in dominant strategies, where the dominant strategies equilibrium through
which it is implemented is truthful. That is, for any i and θi ∈ Θi, si(θi) = θi, which is a dominant strategy,
and o(θ1, . . . , θN ) = c(θ1, . . . , θN ).

Proof. We show how to transform the given game form that implements c into a truthful direct-revelation
game that implements c. For each i, let soldi : Θi → Aoldi be the strategy played by agent i in the equi-
librium that implements c in the given game, and let oold be the given game’s outcome function, so that
oold(sold1 (θ1), . . . , soldN (θN )) = c(θ1, . . . , θN ), and the soldi constitute a dominant strategies equilibrium. Then
let our new mechanism have the outcome function o given by o(θ1, . . . , θN ) = oold(sold1 (θ1), . . . , soldN (θN )) =
c(θ1, . . . , θN ). All we need to show is that truthtelling is a dominant strategies equilibrium. To show this, we
observe that for any i and θi ∈ Θi, for any alternative type θ̂i ∈ Θi, and for any θ−i ∈ Θ−i, ui(θi, o(θi, θ−i)) =
ui(θi, oold(soldi (θi), sold−i (θ−i))) ≥ ui(θi, oold(soldi (θ̂i), sold−i (θ−i)))= ui(θi, o(θ̂i, θ−i)), where the inequality derives
from the fact that the soldi constitute a dominant strategies equilibrium in the original game.

Revelation Principle, version 2 (Known). Suppose there is a strategic game form that implements a social
choice rule c : Θ1 ×Θ2 × . . .×ΘN → O in Bayes-Nash equilibrium. Then there exists a direct-revelation game
with outcome function o that implements c in Bayes-Nash equilibrium, where the Bayes-Nash equilibrium through
which it is implemented is truthful. That is, for any i and θi ∈ Θi, si(θi) = θi, where these strategies constitute
a Bayes-Nash equilibrium, and o(θ1, . . . , θN ) = c(θ1, . . . , θN ).

Proof. We show how to transform the given game form that implements c into a truthful direct-revelation
game that implements c. For each i, let soldi : Θi → Aoldi be the strategy played by agent i in the equi-
librium that implements c in the given game, and let oold be the given game’s outcome function, so that
oold(sold1 (θ1), . . . , soldN (θN )) = c(θ1, . . . , θN ), and the soldi constitute a Bayes-Nash equilibrium. Then let our new
mechanism have the outcome function o given by o(θ1, . . . , θN ) =oold(sold1 (θ1), . . . , soldN (θN )) = c(θ1, . . . , θN ).
All we need to show is that truthtelling is a Bayes-Nash equilibrium. To show this, we observe that for any i and
θi ∈ Θi, for any alternative type θ̂i ∈ Θi, Eθ−i←p−i [ui(θi, o(θi, θ−i))] =Eθ−i←p−i [ui(θi, o

old(soldi (θi), sold−i (θ−i)))] ≥
Eθ−i←p−i [ui(θi, o

old(soldi (θ̂i), sold−i (θ−i)))] =Eθ−i←p−i [ui(θi, o(θ̂i, θ−i))], where the inequality derives from the fact
that the soldi constitute a Bayes-Nash equilibrium in the original game.
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