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Abstract

Kidney exchange, where candidates with inoperable organ
failure trade incompatible but willing donors, is a life-saving
alternative to the deceased donor waitlist, which has in-
adequate supply to meet demand. Computer scientists and
economists study this problem because it represents an op-
portunity to field a real barter exchange that improves sus-
tainability of life and creates significant societal value. In this
paper, we first consider extending large-scale organ exchange
to liver lobes. Liver exchange has its own interesting aspects
that differ from kidney exchange. We describe and imple-
ment a general, and to our knowledge the most realistic, or-
gan exchange compatibility graph generator and show that it
addresses important weaknesses in the most commonly used
kidney exchange generator. We show liver exchange clearing
results on this demographically accurate data, and optimally
clear liver exchanges at the estimated nationwide size using
an enhancement to the fielded kidney exchange clearing al-
gorithm. We then explore cross-organ donation where a can-
didate needing a kidney and a candidate needing a liver can
swap donors, and show that this increases the total number of
lives saved. We conclude with thoughts regarding the fielding
of a nationwide liver or joint liver-kidney exchange from a
legal and computational point of view.

Introduction
The transplantation of organs from a deceased donor to a
needy living candidate first occurred nearly sixty years ago,
but only became popular in the 1970s due to the introduc-
tion of immunosuppressants that help prevent the rejection
of foreign organs in a patient’s body. Since then, the major-
ity of transplantation has occurred through a deceased donor
waiting list consisting of needy patients who wait for any
willing donors to die, resulting in the harvesting and subse-
quent transfer of a compatible organ from the donor’s ca-
daver to the living patient. There is a great supply shortage
of cadaveric organs in most societies (including the US), and
the imbalance between supply and demand keeps growing.
As of October 2012, there were 93,860 patients waiting for
a kidney, 16,075 waiting for a liver, and 5,902 for another
organ (e.g., pancreas, heart, lung, intestine) in the US alone.

In recent years, live donation of organs has significantly
increased the total number of organ transplants. In live do-
nation, a donor gives one of his two kidneys, one of his two
liver lobes, or a part of an intestine, etc., to the patient so

both the donor and patient can live. The effect of live dona-
tion has been most prominent in kidney donation, where a
recent advance—kidney exchange (Roth et al. 2004)—has
provided renewed hope to even “hard to match” patients.
In kidney exchange, patients bring willing but incompati-
ble donors to a large waiting pool. Patients can then swap
incompatible donors with other patients. Matching a candi-
date to a donor is difficult for a variety of reasons, including
blood (ABO) type, tissue (HLA) type, age, and—due to the
limitations of current medical knowledge—unknown exoge-
nous factors. Nevertheless, kidney exchanges on the regional
and national scale have seen marked success over the last
few years.

In this paper, we explore the creation of a living donor
liver exchange. This is similar to kidney exchange in many
ways, but remains unexplored1 and different in three criti-
cal ways. While a donor and candidate must be blood type
(ABO) compatible, (a) they need not be HLA-compatible
(explained later), (b) the age of the donor and candidate
makes a significant difference in transplant success (Egawa
et al. 2004), and (c) the donor must be heavier than the can-
didate (or else the donor’s liver, which must be cut in two
before transplantation, will not be large enough to support
the donor and candidate). This provides an interesting twist
to both the current computational methods used for solving
real nationwide kidney exchange (based on integer program-
ming techniques proposed by Abraham, Blum, and Sand-
holm (2007)), as well as the theoretical matching and mech-
anism design results in the area. This paper provides, to our
knowledge, the first foray into the computational methods
and implementation necessary to set the groundwork for a
fielded nationwide liver exchange. It is clear that a liver ex-
change would be highly beneficial for sustaining life and
creating value into society. We then propose multi-organ
exchange—where candidates in need of both kidneys and
livers can swap donors in the same pool—and show that it
saves significantly more lives in aggregate than running sep-
arate kidney and liver exchanges.

1A notable exception is that in Korea, 16 swaps of willing
donors 0 in a single hospital over the course of six years. All swaps
were arranged by hand. This shows the feasibility of the idea at a
small scale (Hwang et al. 2010).



Preliminaries
In order to develop a nationwide liver or multi-organ ex-
change, we must first accurately model the realities of such
an exchange and design optimal, scalable clearing algo-
rithms for it. In this section, we describe the creation of a
compatibility graph representing the space of possible swaps
among n candidate-donor pairs, based on traits of the can-
didates and donors. We then describe the clearing problem,
a formalization of the process used to determine an optimal
set of swaps.

Compatibility Graph
We begin by encoding an n-patient organ exchange as a di-
rected graph. Construct one vertex for each incompatible
candidate-donor pair. Add an edge e from one candidate-
donor vertex vi to another vj , if the candidate at vj can
take a liver lobe or kidney from the donor at vi. This pro-
cess creates a compatibility graph for the general concept
of barter exchange, where participants can swap items with
each other. Within the compatibility graph, a cycle c repre-
sents a possible swap, with each vertex in the cycle obtain-
ing the item of the next vertex. A matching is a collection of
disjoint cycles; no vertex can give out more than one item
(e.g., more than one kidney or liver lobe). Cycles ensure that
donors give items if and only if their patients receive organs.

The Clearing Problem
The clearing problem is that of finding a maximum-
cardinality matching consisting of disjoint cycles of length
at most some small constant L. The cycle-length constraint
is crucial since all operations in a cycle have to be performed
simultaneously. Were this not the case, a donor might back
out after his incompatible partner has received a liver. This
backing out is legal because, in nearly all countries including
the US, it is illegal to form a binding contract over the ex-
change of organs. The availability of operating rooms, doc-
tors, and staff causes long cycles to be unexecutable. As is
the practice in the US-wide kidney exchange and most other
real kidney exchanges, we let L = 3.

Denote the set of all cycles of length no greater than L
by C(L). Then, given binary indicator variables ∀c ∈ C(L),
we must solve the following integer linear program:

max
∑

c∈C(L)

c s.t .
∑

c:vi∈c

c ≤ 1 ∀vi ∈ V

The clearing problem with any fixed L > 2 is NP-
complete (Abraham et al. 2007). (The cases L = 2 and
L = ∞ can be solved in polynomial time.) Significantly
better (i.e., higher cardinality) results are found with L = 3
over L = 2, so solving the NP-complete version of the prob-
lem is necessary in practice (Roth et al. 2007). The prob-
lem, at least with respect to kidneys, can be solved optimally
in practice at the steady-state nationwide scale using a spe-
cialized tree search algorithm based on the branch-and-price
framework for integer programming (Abraham et al. 2007).
We will later discuss this algorithm in more detail as well as
enhancements to it for liver exchange and multi-organ ex-
change.

A Parameterized, Realistic Compatibility
Graph Generator

In order to create an at-scale nationwide liver or multi-organ
exchange, we first have to develop a compatibility graph
generator with which we can run simulations. First, we draw
data from reliable sources (here, specific to the US). Second,
this data is fed into a graph creation algorithm that proba-
bilistically determines the existence of compatible and in-
compatible candidate-donor pairs, as well as compatibility
constraints between different candidate-donor pairs. In the
large, with high probability, graphs generated by this algo-
rithm will mimic the demographics that would prevail in a
large-scale fielded exchange in the US. (Plugging different
raw data (e.g., age, weight, blood type distributions) into
the generator algorithm would provide realistic generation
of non-US compatibility graphs.) We then conclude the sec-
tion with a comparison of liver exchange graphs generated
by our algorithm to kidney exchange graphs generated by
the standard generator of Saidman et al. (2006). Our gen-
erator is a generalization of (i.e., more powerful than) that
current standard.

Sampling from Real-World Data
Current medical knowledge is incapable of exactly pre-
dicting the compatibility of a particular donor and candi-
date. However, many attributes are known that can guide
doctors—and algorithms—toward a realistic quantification
of the chance of organ rejection. In this section, we describe
these factors and the open source data sets that our algorithm
uses to realistically sample the US population. In the discus-
sions ahead, we use “OPTN” to refer to the data available
from the Organ Procurement and Transplantation Network.2
All OPTN data is current as of November 11, 2011.

Gender While a donor of one gender can donate an or-
gan to a candidate of another gender, we must take gen-
der into account during graph generation. This is because
other traits that affect the probability of a transplant’s suc-
cess (e.g., weight or age) depend on a person’s gender. We
draw candidate genders from the OPTN data set, and donor
genders from the greater US population through the 2010
US Census report.3 Figure 1 shows the distributions of liver-
needing candidates and the natural US population as donors.
Men are very over-represented in the candidate pool. (Note
that similar distributions can be obtained for kidney-needing
candidates, and used in a multi-organ generator.)

Male Female
Candidate 61.71 38.29

Donor 48.53 51.47

Figure 1: Distribution of (liver) candidate and donor gen-
ders, drawn from OPTN and 2010 US Census data, respec-
tively.

2
http://optn.transplant.hrsa.gov/data/

3
http://www.census.gov/compendia/statab/cats/population.html



Blood Type A candidate and donor must be ABO blood
type compatible (e.g., an A-type donor is compatible with
A- and AB-type candidates), although blood type suppres-
sion through drugs is a recent advance that has the poten-
tial to remove this constraint (Takahashi 2007). We draw
candidate blood types from the OPTN distribution (depen-
dent on gender), and donor blood types from the overall
US.4 The OPTN distribution is roughly equal across gen-
ders, and both distributions are roughly equal to each other.
Nevertheless, it is important to have this parameterized ca-
pability in the generator in the event that, for instance, some
“harder” blood type (e.g., AB) gets over-represented in the
candidate pool. Figure 2 shows the exact distribution and
the ABO-compatibility matrix, with percentages shown for
liver-needing candidates.

Donor Candidate
ABO O A B AB

O x x x x
A x x
B x x

AB x
Male Female

ABO Cand. Donor Cand. Donor
O 47.83 44 48.91 44
A 38.39 42 37.08 42
B 11.37 10 11.41 10

AB 2.40 4 2.58 4

Figure 2: Top: ABO blood type compatibility matrix. Marks
indicate a donor (row) as ABO-compatible with a candi-
date (column). Bottom: ABO percentages for candidates and
donors.

Age Age plays a role in transplantation, but we were un-
able to find any specific quantification of the amount by
which increased donor or candidate age (or, in the case of
children, decreased candidate age) affects this success rate.
Even without this information, age is important to model
because it will allow us to generate a realistic distribution
of candidate and donor weights, a trait whose effect is easily
quantified. We sample ages (dependent on gender) for candi-
dates from the OPTN pool and for the donors from the 2010
US Census at a granularity level of one year. To save space,
Figure 3 does not separate the population into one-year seg-
ments as rows, while our generator does. In our generator we
also take into account the constraint that organ donors must
be 18 years old, and we normalize the distributions accord-
ingly.

Weight Unlike in kidney exchange, the physical weight of
both the candidate and donor play an enormous role in the
feasibility of liver transplantation.5 Intuitively, the size of a
liver is generally proportional to the size of the person who
grew it. In live liver donation, the donor’s liver is cut in two

4
http://bloodcenter.stanford.edu/about_blood/blood_types.html

5Large weight differences between donor and candidate can
factor into kidney exchange as well, but this has not been taken into
account in either the current state of the art generator or the weight-
ing algorithms used in the fielded US-wide kidney exchange.

Male Female
Age Candidate Donor Candidate Donor
<1 0.259 – 0.465 –
1–5 0.837 – 1.220 –

5–10 0.568 – 1.075 –
11–17 0.717 – 1.444 –
18–34 4.193 31.883 5.554 29.357
35–49 14.851 27.798 14.976 26.617
50–64 64.851 25.066 57.079 25.053
≥65 13.725 15.252 18.186 18.972

Figure 3: Probability distribution of ages, respective of can-
didate and donor gender.

(one lobe is removed). For both donor and candidate to re-
main healthy, the slice of liver left in the donor must be large
enough to maintain her life, and the slice of liver given to the
candidate must be large enough to maintain his. Thus, a gen-
eral rule of thumb that the donor must weigh as much as (or
more than) the candidate is in place in live liver donation.
We adopt that convention for liver exchange.

Given the age and gender (generated separately from
OPTN data for candidate and US Census data for donors,
as described earlier), we sample from a fine-grained table
of weights recently released by the Center for Disease Con-
trol (McDowell et al. 2008). This data, given on a by-year
basis until age 20 and in increments of 5 years thereafter, in-
cludes mean weights, sample errors, and sample sizes. From
this, we calculate a standard deviation and sample from a
normal distribution with this mean and standard deviation.
While there are issues with this method—most notably that
the candidate weights may be drawn from a different distri-
bution than the general US public, and that human weights
are not distributed normally but are skewed toward weighing
more—we feel that this sampling approach provides a rea-
sonable starting point for future generation techniques. The
full table of weights is omitted due to space.

HLA Antibodies and Antigens In kidney exchange, tis-
sue type (HLA antibodies and antigens) are another very im-
portant determinant of compatibility. A candidate and donor
sharing antigen encoding on the same locus possibly results
in a positive virtual crossmatch across antigens. A positive
virtual crossmatch means that the system can detect incom-
patibility. In kidney exchange graph generation, this is quan-
tified by the probability that the candidate is not tissue-type
compatible with a randomly drawn donor. This probability
is called %PRA for panel reactivity antibody (Saidman et
al. 2006). Furthermore, tissue type can change over time,
resulting in the need for contingency plans after the time of
algorithmic matching but before the surgery. For example,
if the candidate comes down with a cold or flu days before
surgery, the surgery may need to be rescheduled or perma-
nently canceled.

In liver exchange, %PRA plays less of a role due to the
use of suppressant drugs. As such, while the generator sup-
ports %PRA (and can use sampled data from the OPTN
databases6), we exclude %PRA in our liver experiments.

6The relationship (e.g., spousal, parent-child) between candi-



However, %PRA is included in our multi-organ experiments
for kidney candidates.

Generator Algorithm
We now give the method for generating the compatibility
graph from data sampled from the sources given in the pre-
vious section. Note that the probability distributions from
the previous section (and the organs to which they pertain)
can be swapped without affecting the correctness of the al-
gorithm beyond the “is compatible” checks described below.

Algorithm 1: Compatibility graph generator
Input: Integer n, real number f , real-world data
Output: Compatibility graph G = (V,E) s.t. |V | = n
begin

G := (V = ∅, E = ∅)
while |V | < n do

c = candidate, d = donor
c.drawOrganType()
{c, d}.drawGender()
{c, d}.drawBlood(gender)
{c, d}.drawAge(gender)
{c, d}.drawTissueType(gender)
{c, d}.drawWeight(gender , age)
if ¬isCompatible(c, d) then

V = V ∪ {vc,d}

for vi, vj ∈ V s.t. Vi 6= Vj do
if isCompatible(vcj , v

d
i ) and x ∈ U [0, 1] > f then

E = E ∪ {(vi, vj)}

return directed compatibility graph G

Algorithm 1 gives a two-step process for generating a
compatibility graph G = (V,E), given a number n, such
that |V | = n. First, sample from real-world data until n in-
compatible candidate-donor pairs are generated. When gen-
erating a liver exchange, one would set the algorithm to sam-
ple from the liver data given above; however, when generat-
ing a multi-organ exchange consisting of livers and kidneys,
one would include the proper proportions of kidney and liver
candidates and sample from the appropriate real-world data
per organ. As of the writing of this paper, the kidney waitlist
is 5.84 times longer than the liver waitlist, which would be
reflected in this algorithm.

If needed, the algorithm can easily be augmented to keep
track of any compatible candidate-donor pairs generated. As
is common practice in kidney exchange, these pairs are as-
sumed to match on their own, and do not enter the pool.7
Other additions could be made to the algorithm as data be-
comes available (e.g., correlating donor and candidate char-
acteristics under the assumption that a donor may likely
come from the candidate’s family).

date and donor can yield information on HLA compatibility, and is
supported by the generator of Saidman et al. and our generator.

7Recent kidney exchange research suggests that incentivizing
even compatible pairs to join a nationwide exchange could result
in better matchings (Rees et al. 2009; Ashlagi and Roth 2011).

After n incompatible candidate-donor pairs are generated,
the algorithm steps through each pair vi, vj of candidate-
donor pairs and, if the latter’s candidate vcj is compatible
with the former’s donor vdi , then a directed edge is added
from vi to vj . Note the inclusion of an exogenous “failure
factor” f ∈ [0, 1] that, if prescribed, randomly determines
an edge failure even in the case of a compatibility success.
This factor is common in the kidney literature (Ashlagi et al.
2011), and is used to account for incompleteness of medical
knowledge and, during simulation, temporal fluctuations in
candidate-donor compatibility.

Algorithm 1 calls a function isCompatible(c,d). In the
liver case, this checks whether two patients are ABO-
compatible and whether the donor’s weight is greater than
or equal to the candidate’s weight. In the kidney case,
this checks whether two patients are ABO-compatible and
whether a virtual crossmatch based on tissue type returns
negative. As better medical knowledge and data become
available, this function can be generalized to take new com-
patibility aspects into account.

Comparison to Kidney Exchange
We now compare our generator to the current state of the art
(kidney) exchange generator (Saidman et al. 2006). While
the generators and data are similar in spirit, the medical dif-
ferences between kidney and liver compatibility create dis-
tinctly different compatibility graphs both at the small and
large scale. We will discuss those differences below.
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Figure 4: #Edges (in thousands) in generated liver and kid-
ney compatibility graphs (100 graphs per |V |). The kidney
graphs are denser than the liver graphs.

Figure 4 plots the average number of edges in the liver-
only compatibility graphs, using the generator in this paper,
against the average number of edges in the kidney compati-
bility graphs generated by the state of the art, as the num-
ber of candidate-donor pairs increases. The kidney com-
patibility graphs are, for graph sizes above 64, denser than
comparably-sized liver compatibility graphs. This is inter-
esting because it shows that, even though the liver exchange
graphs do not need to take %PRA (i.e., HLA incompatibil-
ity) into account, their sensitivity to age and weight distri-



butions proves to be more constricting than HLA sensitiv-
ity! Regardless, neither the liver nor the kidney graphs are
sparse in the classical sense of the word: at |V | = 1024, the
number of edges in the liver graph is 26% of the total pos-
sible edges in a 1024-clique. This lack of sparsity drives the
experimental computational complexity of solving the real-
world clearing problem.
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Figure 5: Cumulative distribution functions of the out-
degree of vertices as we increase |V | (varies per row) and
exogenous failure rate f (varies by column), shown for the
liver graphs (in white) and kidney graphs (in gray). Note the
divergence between kidney and liver graph as the exogenous
failure rate increases, as well as the three qualitative sections
in the kidney graphs due to the three different %PRA classes.

Figure 5 enumerates the differences in the out-degree of
the vertices in compatibility graphs for liver-only exchange
generated using our algorithm (shown in white) and com-
patibility graphs for kidney exchange from the Saidman et
al. generator (shown in gray). The size of the graph, |V |,
is held constant along the rows, while the exogenous fail-
ure rate (f ) between two otherwise compatible candidates
and donors is held constant in each column. We vary |V |
and f ∈ {0.0, 0.2, . . . , 0.9}. Note that there is no notion of
an exogenous failure rate in the kidney graphs (although the
%PRA virtual crossmatch simulation is similar to an exoge-
nous failure rate, but not parameterized); as such, the kidney
exchange graphs vary only in terms of cardinality.

The cumulative distribution functions over the out-
degrees of vertices, shown in Figure 5, exhibit interesting
behavior. For example, there are more vertices with low de-
gree in the liver exchange graphs than in the kidney ex-
change graphs. More interesting is the behavior exhibited by
the kidney exchange graphs as |V | increases. For instance,
when |V | = 1024, we see three distinct out-degree sec-
tions in the kidney exchange graphs. These are an artifact of
the somewhat ad-hoc method of doing %PRA virtual cross-
match tests in the Saidman et al. generator. The generator
groups pairs into three sensitivity levels (“high”, “medium”,
and “low”). As |V | increases, those patients who are highly
sensitized tend toward very few edges, while those at the
medium and low sensitivity levels tend toward a medium and
high number of edges, respectively. We believe that this is an

artifact of the generator by (Saidman et al. 2006) and is not
representative of the real kidney exchange data. Our gener-
ator (even if used for kidneys) does not have such coarse ar-
tifacting because it can bucket sensitivity into finer-grained
classes.

The Clearing Algorithm
Now that we have an instance generator to enable testing, we
will experiment on clearing liver and multi-organ exchanges
to determine whether this is viable at the nationwide scale.

We first briefly discuss the most scalable optimal kidney
exchange clearing algorithm (Abraham et al. 2007), which
is also used in the US-wide kidney exchange; we adapt that
algorithm for our liver exchange experiments. At a high
level, given a compatibility graph G = (V,E), the algo-
rithm (intelligently) enumerates cycles of length at most L
and chooses the optimal disjoint set of these cycles accord-
ing to the objective function of maximizing cardinality of
the matching.

In reality the number of cycles is prohibitively large (cu-
bic in |E| for L = 3) to write down in memory. Therefore,
solving this problem hinges on a technique called branch-
and-price (Barnhart et al. 1998), a method for incrementally
generating only a small part of the model during tree search,
yet guaranteeing optimality by proving that all the promis-
ing variables have been incorporated into the model. The ac-
tual solver uses several additional techniques to make kidney
exchange clearing scalable for memory and time (Abraham
et al. 2007). It uses empirically and theoretically motivated
heuristics to seed the initial cycle (i.e., variable) set used
on the model, and then incrementally brings cycles into the
model depending on their shadow price, a quantitative esti-
mate of a cycle’s utility given the current model. Optimality
is proven when no cycles can possibly increase the objec-
tive. The algorithm also uses specific branching heuristics
and primal heuristics to construct feasible initial integral so-
lutions at each branch. If these integral solutions match the
(restricted, possibly fractional) LP solution, then the subtree
can be pruned and optimality potentially proven.

A Liver-Specific Cycle Seeding Heuristic
The selection of the initial seed columns—representing in-
dividual cycles—is a heuristic process. The prior algorithm
uses the cycles from two heuristically-generated feasible so-
lutions (very few such cycles) and hundreds of thousands
of randomly selected cycles from C(L). Since enumerating
C(L) in its entirety is a costly ordeal, their sampling relies
on a series of random walks. Starting at a randomly chosen
vertex, a random walk takes steps to new vertices. At each
step, if an edge exists leading back to the initial vertex, the
corresponding cycle is added to the set of seed cycles and a
new start vertex is chosen. This results in a randomized, but
not uniformly random, sampling of all cycles.

We define a different sampling method for the cycle seed-
ing problem. Liver compatibility graphs tend to have a large
number of vertices with low out-degree (Figure 5). These
candidates are difficult to match. With this in mind, we con-
duct a biased random walk sampling in the same spirit as



the prior algorithm, except weighting the selection of the
randomized start vertex inversely proportional to its out-
degree. This can be done efficiently through an initial sort-
ing of the vertices by out-degree, a process whose one-
time O(|V | log |V |) runtime is overshadowed by the NP-
hard clearing problem.

Experimental Results
We now provide some preliminary computational results for
a hypothetical nationwide liver or multi-organ exchange,
using the realistic data generated by Algorithm 1. First,
we describe timing and matching results in the static case,
where the algorithm sees the problem in its entirety up front.
Second, we describe results for the dynamic case, where
candidate-donor pairs arrive in the pool over time and are
either matched or die waiting. We show results at sizes mir-
roring an estimated steady-state size of a US-wide liver ex-
change. Finally, we explore the possibility of a multi-organ
exchange, where both liver- and kidney-needing candidates
can swap donors in the same pool. This results in more lives
being saved than were the nation to run separate liver and
kidney exchanges.

Static Liver Exchange Experiments
In the static case, the generator outputs a single graph and
the optimization engine solves the clearing problem on this
graph exactly once. Figure 6 shows timing results on liver
exchange graphs of various sizes |V | and exogenous failure
rates f . Intuitively, when f is low (or zero), the optimizer
must consider many more edges than when f is high, result-
ing in longer runtimes for denser graphs. As expected, the
computation time increases drastically with the size of the
graph.
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Figure 6: Match runtime (left) and percentage of candidates
matched (right), varying failure rate f and graph size |V |.
Lower failure rates result in denser graphs and longer run-
times (as well as higher variance).

Figure 6 also shows the percentage of candidates matched
(the number of candidates matched by the algorithm divided
by the total number of candidates in the pool) as a function
of compatibility graph size |V | and exogenous failure rate f .
Intuitively, when f is held low, the percentage of candidates
matched is higher than when the failure rate is high. Of in-
terest is the match behavior as |V | increases. Regardless of
f , the percentage of candidates matched increases with the
size of the underlying compatibility graph. This behavior is
similar to that seen in kidney exchange and motivates the
need for a large (i.e., nationwide) liver exchange.

Addressing the needs of society. The estimated steady-state
monthly size of the nationwide kidney exchange is 10,000
candidate-donor pairs. Given the current waitlist sizes for
kidneys and livers in the US, we provide a rough estimate
of the steady-state size of a nationwide liver exchange. With
93,860 candidates waiting for a kidney and 16,075 candi-
dates waiting for a liver, the steady-state for the liver ex-
change can be estimated at approximately 16,075 / 93,860
≈ 17% of 10,000, or roughly 1,700 candidates. So, our
clearing algorithm should be able to handle monthly batch
runs of a nationwide liver exchange.

Dynamic Liver Exchange Experiments
In the dynamic case, a variable number of candidates enter
and leave the pool over a period of multiple time units. While
the fielded nationwide kidney exchange currently operates
under the static paradigm described earlier, recent work in
the kidney exchange community has shown that optimiz-
ing in the dynamic setting leads to both more realistic and
higher cardinality matchings over time (Awasthi and Sand-
holm 2009; Ünver 2010; Dickerson et al. 2012a). Because of
this, the dynamic setting in general organ exchange cannot
be ignored.

We start with a pool of |V | = 1024 candidates assumed
to be highly sensitized patients who built up in the system
over time. These are matched myopically. Given a matched
cycle by the algorithm, we then simulate that transplant actu-
ally succeeding in real life via an exogenous parameter set to
f = 0.5. If any edge in a cycle fails, that entire cycle fails,
and all candidates are returned to the pool (with the failed
edge removed). We simulate candidates leaving the pool (ei-
ther through finding a transplant or dying). On expectation
|Vnew | = 213 new candidates arrive in the pool per month,
and the algorithm continues. We test over 24 months.

Figure 7 shows the number of candidates matched at each
time period. This is the number of candidates matched by
the algorithm, but before the virtual failures are taken into
account. On the left, 12% of candidates will be alive after
10 years, corresponding to the expected lifetime of a kidney
patient on dialysis waiting for a kidney (USRDS 2007). On
the right, the probability of a candidate dying is set to an ex-
pected life of 1–2 years. This mimics the urgency of needing
a liver transplant. While dialysis can be used to keep a pa-
tient with failed kidneys alive, no such treatment exists for
livers. This corresponds to a significant drop in the number
of candidates matched, due to the decreased number of can-
didates in the pool at each time period. (Note that a large
number of candidates are matches per month in the begin-
ning when the exchange goes live because there is a large
pool that has accumulated. Soon thereafter a steady state is
reached.)

Figure 8 shows matching time (as a function of both opti-
mization and graph evolution time, although graph evolution
time is 0) over the 24 time periods. After the initial solution
to the large |V | = 1024 starting compatibility graph, solu-
tion time hits a steady-state on the order of a few minutes.
We see that the 0 graph with candidates’ expected lifetime
set to the short lifetime of a liver patient solves more quickly
than those set to the expected lifetime of a kidney patient on
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Figure 7: Number of candidates matched per time period in
a dynamic setting over T = 24 months, with an expected
lifetime per candidate of 10 years (top) or 1–2 years (bot-
tom).
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Figure 8: Match run (i.e., optimization only) runtime for
a dynamic setting over T = 24 months, for a graph with
|Vs| = 1024 initial candidates in the pool and an expected
number of 213 new candidates entering the pool per time
period, with an expected lifetime per candidate of 10 years
total (left) or 1–2 years (right).

dialysis; this is a function of the smaller matchings shown in
Figure 7, again showing the urgency of liver transplantation.

Dynamic Bi-Organ Exchange Experiments
In this section, we expand beyond simulating a dynamic
liver exchange to the novel concept of multi-organ ex-
change. In the long run, one could imagine exchanges of
multiple different kinds of organs. However, to our knowl-
edge, only kidneys and livers have ever been swapped (and
only separately). In any case, kidneys and livers are by far
the most common organ transplants. Therefore, in this sec-
tion we will focus on kidneys and livers. We show that com-
bining an independent nationwide liver exchange with a na-
tionwide kidney exchange into a joint kidney-liver exchange
results in a statistically significant increase in the number of

organ transplants.

Using our parameterized generator described in Algo-
rithm 1, we simulate a bi-organ exchange featuring candi-
dates in need of either a kidney or a liver who can swap
donors in a combined candidate-donor pool. Approximately
85% of the candidates in the simulated pool need kidneys,
while the other 15% need livers, as determined by the most
recent OPTN waitlist data. We mimic the experiments in the
previous section, with a starting pool size of |V | = 1024
candidates who are highly sensitized and are assumed to
have built up in the pool over time. We use the same exoge-
nous transplant failure parameter (f = 0.5) as in the previ-
ous section, and simulate candidate-donor pairs entering and
exiting the pool in a similar fashion. To generate the candi-
dates, we draw from the two different US distributions based
on whether the candidate needs a kidney or a liver. Naturally,
donors are drawn from the same US distribution in the two
cases. We test over 24 months.
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Figure 9: Number of candidates matched in independent
liver and kidney exchanges and a combined multi-organ ex-
change, per time period, in a dynamic setting over T = 24
months.

Figure 9 shows the number of candidates matched each
month in the combined bi-organ exchange, as well as the
aggregate number of candidates matched while keeping
both liver- and kidney-needing candidates in separate pools.
Clearly evident is the loss of life resulting from keeping both
the liver and kidney pools independent, with the bi-organ ex-
change matching roughly 20–30 more candidates per month
when compared to the two independent exchanges.

When we compare the total number of matches made over
the entire two-year period simulated above, the difference
in lives saved between two independent pools and the com-
bined bi-organ pool is even more stark. In our experiments,
the combined bi-organ pool produced 10.6% more matches
than the sum of the two independent organ pools. An inde-
pendent samples t-test revealed that the difference between
the aggregate number of lives saved using independent, si-
multaneous liver and kidney exchanges and using a com-
bined multi-organ exchange was significant, t(52) = 19.43,
p� 0.0001.



Conclusions and Future Work
We explored the possibility of extending large-scale organ
exchange to liver lobes. We developed a general, and to our
knowledge the most realistic, organ exchange compatibil-
ity graph generator and showed that it addresses important
weaknesses in the most commonly used kidney exchange
generator. Liver exchange has its own interesting aspects
that differ from kidney exchange. We showed liver exchange
clearing results on demographically accurate data, and opti-
mally cleared liver exchanges at the estimated nationwide
size using an enhancement to the state-of-the-art kidney
clearing algorithm. We explored the prospect of multi-organ
exchange, where candidates needing either a liver or kidney
can swap willing donors in the same pool. We showed that
this combination of donor pools results in significantly more
lives saved.

This paper is intended as a first foray into automated liver
and multi-organ exchange. As such, there is much room for
future research (much of which is applicable to other organ
exchange and even to barter exchanges beyond organs), and
is motivated by experiences fielding the nationwide kidney
exchange. One direction of future work is to take on the
slow and politics-laden task of founding a liver exchange, or
including livers in currently fielded kidney exchanges. An-
other is to develop scalable computational methods for the
dynamic problem. Even for kidneys, the best current tech-
niques are for simplified models (Ünver 2010; Ashlagi et al.
2013) or face computational challenges (Awasthi and Sand-
holm 2009; Dickerson et al. 2012a).

Even for the static problem, scalability problems tend to
get worse with the inclusion of a recent innovation in kid-
ney exchange—donation chains started by altruistic donors.
The cycle length cap L no longer applies to chains since
they do not require simultaneous execution. Recent work
explores this innovation, and hits computational limits ex-
perimentally with long chains (Ashlagi et al. 2012; 2011;
Dickerson et al. 2012a; 2012b; Gentry and Segev 2011;
Gentry et al. 2009). We do not expect altruistic donors
in liver exchange because a liver donation is significantly
riskier for the donor than a kidney donation, complicating
the ethical considerations of even allowing altruistic donors
in the pool (Woodle et al. 2010). However, that remains to
be seen. In any case, one could include chains started by
kidney-donating altruists into a bi-organ exchange—if the
scalability challenges of chains can be adequately addressed.

Finally, this paper (and most papers on kidney exchange)
deals with optimizing algorithmic organ matches; in real-
ity, most algorithmic matches in fielded kidney exchanges
do not result in an actual transplant. We expect this would
be the case in liver and multi-organ exchange as well, al-
though the exact failure rates for liver and multi-organ ex-
changes would be different than the observed failure rates
in currently fielded kidney exchanges due to the medical
and logistical differences in the organs and the transplant
processes. Making organ exchange failure-aware is a criti-
cal step toward improving yield; recent work explores this
notion (Blum et al. 2013; Dickerson et al. 2013) to both the-
oretically and empirically maximize the expected number of
actual transplants stemming from an algorithmic match. Re-

cent work by Glorie (2012) is an initial foray into learning a
better estimate of the probability of a transplant failure be-
tween a patient and a donor, but much is left to be done.

Regardless, the urgent societal need for liver exchange is
there today, and we hope to be able to address it through a
dedicated or combined liver- or multi-organ exchange.
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