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Abstract

Auctions are useful mechanism for allocating items
(goods, tasks, resources, etc.) in multiagent sys-
tems. The bulk of auction theory assumes that the
bidders’ valuations for items are givena priori. In
many applications, however, the bidders need to
expend significant effort to determine their valua-
tions. In this paper we analyze computational bid-
der agents that can refine their valuations (own and
others’) using computation. We introduce a way of
measuring the negative impact of agents choosing
computing strategies selfishly. Ourmiscomputing
ratio isolates the effect of selfish computing from
that of selfish bidding. We show that under both
limited computing and costly computing, the out-
come can be arbitrarily far worse than in the case
where computations are coordinated. However, un-
der reasonable assumptions on how limited com-
puting changes valuations, bounds can be obtained.
Finally, we show that by carefully designing com-
puting cost functions, it is possible to provide ap-
propriate incentives for bidders to choose comput-
ing policies that result in the optimal social welfare.

Introduction
Auctions are useful mechanisms for allocating
items (goods, tasks, resources, etc.) in multiagent
systems. The bulk of auction theory assumes that
the bidders’ valuations for items are givena pri-
ori. In many applications, however, the bidders
need to expend significant effort to determine their
valuations. This is the case, for example, when the
bidders can gather information (Perisco 2000) or
when the bidders have the pertinent information in
hand, but evaluating it is complex. There are a host
of applications of the latter that are closely related
to computer science and AI questions. For exam-
ple, when a carrier company bids for a transporta-
tion task, evaluating the task requires solving the
carrier’s intractable vehicle routing problem (Sand-
holm 1993). As another example, when a subcon-
tractor bids for a manufacturing job, evaluating it

Copyright c© 2002, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

requires computing the subcontractor’s manufac-
turing plan.

A normative deliberation control model of how
additional work (e.g., computing) refines valua-
tions was recently introduced (Larson & Sandholm
2001c; 2001b). The authors analyzed auctions
strategically, where each agent’s strategy included
both computing and bidding. They found that for
certain auctions, properties such as incentive com-
patibility cease to hold if agents explicitly deliber-
ate to determine valuations. Instead agents strate-
gize and counterspeculate, sometimes using com-
puting to (partially) determine opponents’ valua-
tions. It was conjectured that such strategic com-
puting may lead to inefficient outcomes.

In this paper we introduce a way of measur-
ing the negative impact of agents choosing com-
puting strategies selfishly. Ourmiscomputing ra-
tio isolates the effect of selfish computing from
that of selfish bidding. We show that under both
limited computing and costly computing, the out-
come can be arbitrarily far worse than in the case
where computations are coordinated. However, un-
der reasonable assumptions on how limited com-
puting changes valuations, bounds can be obtained.
Finally, we show that by carefully designing com-
puting cost functions, it is possible to provide ap-
propriate incentives for bidders to choose comput-
ing policies that result in the optimal social welfare.

The paper is organized as follows. The next sec-
tion describes the auction model and deliberation
model. The following section discusses why Pareto
efficiency is not necessarily a good way of measur-
ing the impact of restricted computing on the out-
come of the auction. This is followed by the intro-
duction of our miscomputing ratio, and the results
we derive for it. We conclude with related work
and a summary of the paper.

The Model
In this section we specify our model. We first re-
view game-theoretic solution concepts, then auc-
tions, and finally present the model of deliberation
control.



Concepts from Game Theory
A game has a set of agents and a set of outcomes
O. Each agent has a set of strategies from which
it chooses a strategy to use. A strategy is a contin-
gency plan that determines what action the agent
will take at any given point in the game. Astrat-
egy profile, s = (s1, . . . , sn), is a vector speci-
fying one strategy for each playeri in the game.
We use the notations = (si, s−i) to denote a
strategy profile where agenti’s strategy issi and
s−i = (s1, . . . , si−1, si+1, . . . , sn). The strategies
in the profile determine how the game is played out,
and thus determine the outcomeo(s) ∈ O. Each
agenti tries to choose its strategy,si, to as to max-
imize its utility, which is given by a utility function
ui : O 7→ R.

Noncooperative game theory is interested in
finding stable points in the space of strategy pro-
files. These stable points are theequilibria of the
game. There are many types of equilibria but in
this paper we focus on the two most common ones:
dominant strategy equilibriaandNash equilibria.

A strategy is said to bedominantif it is a player’s
strictly best strategy against any strategies that the
other agents might play.

Definition 1 Agent i’s strategys∗i is a dominant
strategy if

∀s−i ∀s′i 6= s∗i ui(o(s
∗
i , s−i)) > ui(o(s′i, s−i)).

The strategy is weakly dominant if the inequality is
not strict.

If each agent’s strategy in a strategy profile is the
agent’s dominant strategy, then the strategy profile
is adominant strategy equilibrium.

Agents may not always have dominant strategies
and so dominant strategy equilibria do not always
exist. Instead a different notion of equilibrium is
often used, that of the Nash equilibrium.

Definition 2 A strategy profiles∗ is a Nash equi-
librium if no agent has incentive to deviate from his
strategy given that the other players do not deviate.
Formally,

∀i ∀s′i ui(o(s∗i , s∗−i)) ≥ ui(o(s′i, s∗−i)).

The Nash equilibrium isstrict if the inequality is
strict for each agent.

In this paper, whenever we measure outcomes,
we measure them from the perspective of the bid-
ders in the auction, not caring about the auction-
eer (who is not a strategic agent in our model).
One common measure for comparing outcomes is
Pareto efficiency. It is a desirable measure in the
sense that it does not require cardinal utility com-
parisons across agents.

Definition 3 An outcomeo is Pareto efficientif
there exists no other outcomeo′ such that some

agent has higher utility ino′ than ino, and no agent
has lower utility. Formally, 6∃o′ s.t. [∀i, ui(o′) ≥
ui(o) and∃i ui(o′) > ui(o)].

Another measure that is commonly used isso-
cial welfare. It often allows prioritizing one Pareto
efficient outcome over another, but it does require
cardinal utility comparison across agents.

Definition 4 Thesocial welfareof outcomeo ∈ O
is SW (o) =

∑
i ui(o).

Equilibrium play does not always optimize so-
cial welfare. A classic example of this is the Pris-
oner’s Dilemma game.

The definitions given above were for general
utility functions. However, in this paper, as is stan-
dard when discussing auctions, we assume that the
agents’ utility functions arequasi-linear. That is,
the utility of agenti, ui, is of the formui = vi− pi
wherevi is the amount that the agent values the
item up for auction andpi is the amount that it pays
for the item. If agenti does not win the auction,
thenui = 0.

Auctions

In this paper we consider auctions where one good
is being sold. There are numerous auction mech-
anisms, but in this paper we focus on the Vickrey
auction. In a Vickrey auction (aka. second-price
sealed-bid auction), one good is being sold, each
bidder can submit one sealed bid, the highest bid-
der wins, but only pays the price of the second-
highest bid. The desirable feature of this mecha-
nism is that if a bidder knows its private valuation
for the good, the bidder’s (weakly) dominant strat-
egy is to bid that valuation (rather than strategically
under- or over-bidding). We chose to study the
Vickrey auction because it has this desirable prop-
erty in the classic literature, but ceases to have this
property when the bidder agents do not know their
own valuations, but rather have the option of invest-
ing computation to determine them. In our model,
the agent’s valuations are independent of each other
as in most of the literature, but we deviate in that
our agents do not know their own valuationa pri-
ori.

Normative Model of Deliberation

In order to participate in an auction, agents need
to be able to have a valuation for the items be-
ing sold. The question is: How are these valua-
tions obtained? In this paper we focus on settings
where agents do not simply know their own valu-
ations. Rather they have to allocate computational
resources to compute the valuations.

If agents know their own valuations (or are able
to determine them with ease) they can execute the
equilibrium bidding strategies for rational agents.



However, agents often have restrictions on their ca-
pabilities for determining the valuations. In this pa-
per we are interested in settings where agents have
to computeto determine valuations. Settings where
the value of an item depends on how it is used of-
ten has this property. For example, valuation deter-
mination may involve solving optimization prob-
lems that provide a solution as to how the items in
the auction can be used once obtained. However,
many optimization problems, such as scheduling,
areNP -complete. It may not be feasible to opti-
mally solve the valuation problems. Instead, some
form of approximation must be used. In this pa-
per we assume that agents haveanytime algorithms
(Boddy & Dean 1994). The defining property of an
anytime algorithm is that it can be stopped at any
point in time to provide a solution to the problem,
and the quality of the solution improves as more
time is allocated to the problem. This allows a
tradeoff to be made between solution quality and
time spent on computing. Since the amount of time
an agent can use to compute valuations is limited
by deadlines or cost, the agents must make trade-
offs in how to determine their valuations. Alone,
anytime algorithms do not provide a complete solu-
tion. Instead, they are paired with a meta-level con-
trol procedure that determines how long to run an
anytime algorithm, and when to stop and act with
the solution obtained. In this paper we assume that
agents have a meta-level control procedure in the
form of performance profile trees, based on work
in (Larson & Sandholm 2001a).

There is a performance profile tree for each val-
uation problem (one valuation problem per agent).
Figure 1 presents one such tree. The trees are ob-
tained from statistics collected from previous runs
of an algorithm on the valuation problem. The tree
describes how deliberation (computation) changes
the solution to the valuation problem. Each agent
uses this information to decide how to allocate its
computing resources at each step in the process,
based on results of its computing so far.

The trees capture uncertainty that stems from
both randomized algorithms and variation of per-
formance on different problem instances. There
are two different types of nodes in the performance
profile tree, solution nodes and random nodes.
Each solution node stores the solution that the al-
gorithm has computed given a certain amount of
computation so far. Random nodes occur whenever
a random number is used to chart the path of the al-
gorithm run. The edges in the tree are labeled with
the probability that after one more step of compu-
tation, the solution returned will be the node found
by following the edge.

Agents use the performance profile trees to help
in making decisions about how to use their com-
putational resources. As agents allocate computa-
tional time to an algorithm, the solutions returned

move the agent from parent to child in the tree.
The performance profile trees provide information
about how the solution is likely to improve with
future computation. In particular, if an agent has
reached a solution corresponding to a node in the
tree, then the agent need only consider solutions
in the subtree rooted at the node. The probabil-
ity of obtaining a solutionv′, given that the agent
has reached a node with solutionv, is equal to the
product of the probabilities of the edges connecting
node with solutionv to v′.

There are two different types of performance
profiles:stochasticanddeterministic. A stochastic
performance profilemodels uncertainty as to what
results future computing will bring. At least one
node in the tree has multiple children. The uncer-
tainty can come from variation in performance on
different problem instances or from the use of ran-
domized algorithms. Adeterministic performance
profile is the special case where the algorithm’s per-
formance can be projected with certainty (i.e., the
tree is a branch). With a deterministic performance
profile, an agent can determine what the solution
will be after any number of computing steps de-
voted to the problem—before the agent conducts
any computation. Even though the agent knows
what solution it can obtain, it must still compute
in order to obtain it. Figure 1 is an example of a
stochastic performance profile tree.
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Figure 1:An agent’s stochastic performance profile
tree for a valuation problem. The diamond shaped
nodes are random nodes and the round nodes are
solution nodes. At random nodeA, the probabil-
ity that the random number will be 0 isP (0), and
the probability that the random number will be 1 is
P (1). AT solution nodeE, the edges are labeled
with the probability of reaching each child, given
that nodeE was reached.

The performance profile tree is a fully normative
model for deliberation control which is required for
game theoretic analysis. It also allows optimal con-
ditioning on many parameters, including results of
execution so far and on the actual problem instance.

In the rest of the paper we make the assumption
that all performance profiles are common knowl-
edge. This means, that all agents know what all
performance profiles look like, and they know that
all the agents know. Agents are allowed to compute
on each others’ problems. We do not assume that
agents know how their opponents are computing.



Strategic Computing and Bidding
We consider two models of computing. In one of
them, computing is free, but there is a deadline for
each agent when that agent has to stop computing.
In the other model, the computations do not have
deadlines, but each agent has to pay for the cycles
it consumes. LetT be the time when the auction
closes. After that the agent cannot bid or com-
pute valuations. In the model of limited computing,
each agent hasT free computing cycles to use. In
the model of costly computing, each agent can con-
sume as many cycles per real-time unit as it wants,
but has to pay a computing costci(·).

At every step of the game, each agent can take
a computing action (the agent can also skip tak-
ing a computing action). Taking a computing ac-
tion means allocating one step of computing on
one’s own valuation problem or on one of the other
agents’ valuations problems (so as to obtain infor-
mation about their valuations, which the agent can
use to bid more strategically to benefit itself). We
say that an agent usesstrong strategic computingif
it allocates some of its computing cycles on others’
valuation problems.

At the deadlineT , each agent submits one sealed
bid to the Vickrey auction. This bid is the agent’s
bidding strategy. The amount an agent bids de-
pends on the solutions it has obtained for its (and
others’) valuation problems through computing.

It has been shown in earlier work that the model
of computing (costly or limited) has a significant
impact on what strategies agents may use:

Theorem 1 Assume that agents have free but lim-
ited computing. Then, in a Vickrey auction, the
bidders have (weakly) dominant strategies where
they only compute on their own valuation problems
(Larson & Sandholm 2001b).

Theorem 2 Assume that agents have unlimited but
costly computing. Then, in a Vickrey auction,
strong strategic computation can occur in strict
Nash equilibrium (Larson & Sandholm 2001c).

The Social Cost of Selfish Computing
Now, a natural question to ask is whether the cost
or limit on computing resources results in a loss
of efficiency. However, efficiency is hard to com-
pare in such settings. The Vickrey auction is effi-
cient in the sense that it always allocates the item to
the bidder with the highest valuation. However, an
agent whomighthave been able to obtain the high-
est valuation via computing, may have used its lim-
ited computing on a different problem, thus causing
a different agent to have the highest valuation and
win the auction. This come is still efficientgiven
how agents computed, but it overlooks the compu-
tational issues in an unsatisfying way. This sug-
gests that Pareto efficiency may not always be the

right measure to use in the context of computation-
ally bounded agents. Is there an alternative mea-
sure?

Instead of looking at efficiency, we propose to
use social welfare as the measure. We want to know
how letting agents freely choose their own comput-
ing strategies impacts the social welfare of the set
of all bidders. In particular, we compare the high-
est achievable social welfare to the lowest social
welfare achievable in any Nash equilibrium.

When we determine the highest achievable so-
cial welfare we optimistically assume that there is
a global controller who imposes each agent’s com-
puting strategy (so as to maximize social welfare).
The controller has full information about all perfor-
mance profiles, deadlines, cost functions, and inter-
mediate results of computing, and given this infor-
mation, specifies exactly how each agent must use
its computational resources. In the bidding stage
agents are free to bid as they wish, but their goal is
still to maximize their own utility, and so they bid
truthfully in the Vickrey auction, given the valua-
tions they have obtained under the enforced com-
puting policy.

Definition 5 Leto∗ be the outcome that is reached
if the global controller dictates computing policies
to all agents, and agents are free to bid in the Vick-
rey auction.

On the other extreme, we are interested in what
happens when agents are free to choose to follow
any computing and bidding strategy. Let NashEq
be the set of Nash equilibria in that game. We now
define what is meant by the worst-case Nash equi-
librium.

Definition 6 The worst case Nash equilibrium is

NE = argmin
s∈NashEq

SW (o(s)).

We use the following ratio to see how much let-
ting agents choose their own computing strategies
reduces the social welfare.

Definition 7 The miscomputing ratiois

R =
SW (o∗)

SW (o(NE))
.

This ratio isolates the impact of selfish comput-
ing from the traditional strategic bidding behavior
in auctions. This is because in both the coordinated
and uncoordinated scenario, the agents bid based
on self-interest.

Results
In this next section we present our results in terms
of the miscomputing ratio. The first subsection
discusses the general case with limited computing.
The next subsection studies how the ratio can be
improved when the analyzer has more knowledge.



The following subsection studies the general case
with costly computing. The final subsection shows
how the costs can be adjusted to increase social
welfare.

General Case with Limited Computing
It turns out that with limited computing, the mis-
computing ratio can be arbitrarily bad.

Proposition 1 Assume there aren bidders in a
Vickrey auction, each bidder has free but limited
computing, and the auction closes at timeT . Then,
the miscomputing ratioR can be infinity.

Proof: Assume that all agents have deterministic
performance profiles. Each agent has a dominant
strategy which is to deliberate only on its own val-
uation problem until the deadline and to submit a
bid equal to the valuation that it has obtained. That
is, agenti submits a bid ofvi(T ). Without loss of
generality, assume thatv1(T ) ≥ v2(T ) ≥ vj(T )
for all j 6= 1, 2. In equilibrium, agent 1 will win
the auction and pay an amount ofv2(T ). There-
fore, agent 1’s utility isu1 = v1(T ) − v2(T ). Set
u1 = ε. The utility for all other agents isui = 0
for i 6= 1. Therefore,

SW (o(NE)) =
n∑
j=1

uj = ε.

In order to maximize social welfare, the global
controller would prohibit all agents expect for
agent 1 to deliberate. Agent 1 would compute
on its valuation problem until timeT and submit
a bid of v1(T ) while all other agents would sub-
mit a bid of 0. Agent 1 would win the item and
pay an amount of 0. The utility for agent 1 is
u1 = v1(T ) − 0 = v1(T ), while ui = 0 for all
i 6= 1. Therefore

SW (o∗) =
n∑
j=1

uj = v1.

The ratio,R, is

R =
SW (o∗)

SW (o(NE))
=
v1(T )
ε

.

As ε → 0 (that is, as the difference between the
highest and second highest valuations decreases),
R→∞. �

This is a negative result. Allowing agents to
choose their computing strategies leads to an out-
come that can be arbitrarily far from optimal.

Bounding the Miscomputing Ratio Under
Limited Computing
However, in many situations the miscomputing ra-
tio will not be unbounded. Even if the performance
profiles are stochastic, as long as the difference be-
tween the highest computed valuation and the sec-
ond highest computed valuation is “large enough”,

then the ratio will not be unbounded. Letk be
the difference between the highest possible com-
puted valuation and the second highest possible
computed valuation. That is

k = min[max
i

max
vi(T )

vi(T )−max
j 6=i

max
vj(T )

vj(T )]1

under the constraint thatvi(T ) > vj(T ). The
amountk is equal to the lowest possible social wel-
fare obtainable if agents compute in a selfish man-
ner. If guarantees on the size ofk can be made by
the restriction of performance profile trees then the
miscomputing ratio can be made finite.

Proposition 2 Let

k = min[max
i

max
vi(T )

vi(T )−max
j 6=i

max
vJ (T )

vj(T )]

for all i, j and all possible values ofvi(T ) and
vj(T ) under the constraint thatvi(T ) > vj(T ).
Then the miscomputing ratio is

R ≤ maxi max vi(T )
k

.

General Case with Costly Computing
If agents have costly unlimited computing, then
they no longer necessarily have dominant strate-
gies in the Vickrey auction (see Theorem 2). In-
stead, what they do depends on what strategies the
other agents choose. When placing bids, agents
no longer directly bid the valuation that they have
computed. Instead, they shave the bids downwards.

By constructing appropriate cost functions, it
turns out to be possible to emulate the situation
where agents have free computing but are limited
by deadlines. Therefore it is not surprising that un-
der certain circumstances the ratio of the maximum
social welfare to the social welfare obtained from
the worst Nash equilibrium can be unbounded.

Proposition 3 Consider a Vickrey auction withn
bidders. Assume that each bidderi has costly, un-
limited computing. Then, the miscomputing ratio
R can be infinity.

Proof: Assume that each agenti has the following
cost function,ci(t);

ci(t) =
{

0 if t ≤ T ;
∞ if t > T .

Each agent has a dominant strategy which is to de-
liberate only on is own valuation problem until time
T and then submit a bid ofvi(T ). That is, each
agent behaves as though they have free but lim-
ited computing resources with a deadline at time
T . Like in the proof for the free but limited agents,

1If the performance profiles are stochastic there may
be multiple valuations that could be computed for each
agent.



assume that the difference between the highest and
second highest bids isε and, without loss of gen-
erality, assume that the highest valuation isv1(T ).
Then

R =
v1(T )
ε

and asε→ 0,R→∞. �

Adjusting the Computing Cost to Increase
Social Welfare
Prior literature has shown that in Vickrey auctions,
computationally limited agents have no incentive
to use strong strategic computing (i.e., they do
not counterspeculate each other) while agents with
costly computing do (Larson & Sandholm 2001c).
This suggests that if there is a system designer who
can control how the agents’ computational capabil-
ities are restricted, the designer should rather im-
pose limits than costs.

However, it turns out that computing costs can
be adjusted so that the optimal miscomputing ratio
(R = 1) is reached. This would mean that charging
for computing is at least as desirable as imposing
limits.

Proposition 4 Computing cost functions can be
used to motivate bidders to choose strategies that
maximize social welfare.

Proof: Consider the following example. Let there
be 2 agents, agent 1 and agent 2, each with ade-
terministic performance profile. Assume that both
agents have free but limited computing resources.
Each agent has a dominant strategy, which is to de-
liberate on their own problem and submit a bid of
vi(T ). Assume thatv1(T ) > v2(T ). The equilib-
rium outcome is to award the item to agent 1 and
have agent 1 pay an amountv2(T ). Agent 1’s util-
ity is thenu1 = v1(T ) − v2(T ) while agent 2’s
utility is u2 = 0. To maximize social welfare the
global controller would forbid agent 2 to deliberate,
and thus agent 1 could get the item and need not
pay anything. The maximum social welfare would
beu1 = v1(T ). Therefore

R =
v1(T )

v1(T )− v2(T )

Next, consider the case where a simple cost func-
tion is introduced. Define

ci(t) =
{
c if t ≤ T ;
∞ if t > T ;

for some constantc, 0 < c ≤ v2(T ) ≤ v1(T ).
Any strategy that involves deliberating on the other
agent’s valuation problem is dominated as the com-
puting action incur a cost without improving the
agent’s overall utility. Thus, the remaining strate-
gies are for the agents to compute only on their own
valuation problem until the cost becomes too high,

compute no
compute v1(T )− v2(T ),−c v1(T )− c, 0

no 0, v2(T )− c 0,0

Table 1: Normal form game. Agent 1 is the row
player and agent 2 is the column player. Each
agent would submit a bid that is equal to its com-
puted valuation minus the cost spent to obtain the
valuation.
or not to compute at all. The game can be repre-
sented in normal form in Table 1.

The sole Nash equilibrium is for agent 1 to com-
pute and submit a bid ofv1(T )−c and for agent 2 to
not compute. The global controller trying to max-
imize the social welfare would force each agent to
also follow those strategies. Therefore

R =
v1(T )− c
v1(T )− c = 1.

In this example the constantc can be made arbi-
trarily close to zero. Therefore, the maximum so-
cial welfare generated by the global controller in
the costly computing setting and be made arbitrar-
ily close to the maximum social welfare obtainable
if computing resources are free. �

Related Research
In auctions, computational limitations have been
discussed both as they pertain to bidding agents
and as they pertain to running the auction (the
mechanism). For bounded–rational bidding agents,
Sandholm noted that under a model of costly com-
puting, the dominant strategy property of Vickrey
auctions fails to hold (Sandholm 2000). Instead,
an agent’s best computing action can depend on
the other agents. In recent work, auction settings
where agents have hard valuation problems have
been studied (Larson & Sandholm 2001c; 2001b;
Parkes 1999). Parkes presented auction design as
a way to simplify the meta–deliberation problems
of the agent, with the goal of providing incen-
tives for the “right” agents to deliberate for the
“right” amount of time (Parkes 1999). Recently
Larson and Sandholm have been working on in-
corporating computing actions into agents’ bidding
strategies using a normative model of deliberation
control and have focused on equilibrium analy-
sis of different auction settings under different de-
liberation limitations (Larson & Sandholm 2001b;
2001c). While we borrow the deliberation model
from Larson and Sandholm, this paper addresses a
different question from previous work. They inves-
tigate the impact of restricted computing capabili-
ties on agents’ strategies, we look, instead, at what
the impact is at a system-wide level, present a mea-
sure for comparing overhead in different settings,
and ask if it is possible to place certain bounds
on the overhead added by having resource-bounded
agents.



There has also been recent work on computation-
ally limited mechanisms. In particular, research has
focused on the generalized Vickrey auction and has
investigated ways of introducing approximate al-
gorithms or using heuristics to compute outcomes
without loosing incentive compatibility (Nisan &
Ronen 2000; Kfir-Dahav, Monderer, & Tennen-
holtz 2000). Our work is different in that it is fo-
cused on settings where the agents are computa-
tionally limited.

Koutsoupias and Papadimitriou (Koutsoupias &
Papadimitriou 1999) first proposed the concept of
worst-case Nash equilibrium. This has been called
the price of anarchy(Papadimitriou 2001). They
focused on a network setting where agents must
decide how much traffic to send along paths in
the network. The agents did not have computa-
tional limitations. Roughgarden and Tardos stud-
ied a different model of network routing using the
same measure as Koutsoupias and Papadimitriou
and obtained tight bounds as to how far from the
optimal outcome the agents would be, if allowed to
send traffic as they wished (Roughgarden & Tardos
2000).

Conclusions
Auctions are useful mechanism for allocating items
(goods, tasks, resources, etc.) in multiagent sys-
tems. The bulk of auction theory assumes that the
bidders’ valuations for items are givena priori. In
many applications, however, the bidders need to
expend significant effort to determine their valua-
tions. In this paper we studied computational bid-
der agents that can refine their valuations (own and
others’) using computation. We borrowed a norma-
tive model of deliberation control for this purpose.

We focused on the Vickrey auction where bid-
ding truthfully is a dominant strategy in the classi-
cal model. It was recently shown that this is not the
case for computationally restricted agents. In this
paper we introduced a way of measuring the neg-
ative impact of agents choosing computing strate-
gies selfishly. Ourmiscomputing ratiocompares
the social welfare obtainable if a global controller
enforces computing policies designed to maximize
social welfare (but does not impose bidding strate-
gies), to the social welfare that is obtained in the
worst Nash equilibrium. This measure isolates the
effect of selfish computing from that of selfish bid-
ding.

We showed that under both limited computing
and costly computing, the outcome can be arbitrar-
ily far worse than in the case where computations
are coordinated. However, under reasonable as-
sumptions on how limited computing changes valu-
ations, bounds can be obtained. Finally, we showed
that by carefully designing computing cost func-
tions, it is possible to provide appropriate incen-
tives for bidders to choose computing policies that

result in the optimal social welfare. This suggests
(unlike earlier results) that, if there is a system de-
signer that can choose how to restrict the agents’
computing, imposing costs instead of limits may
be the right approach.
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