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Automated market makers are algorithmic agents that enable participation and information elicitation in
electronic markets. They have been widely and successfully applied in artificial-money settings, like some
Internet prediction markets. Automated market makers from the literature suffer from two problems that
contribute to their impracticality and impair their use beyond artificial-money settings: first, they are unable
to adapt to liquidity, so that trades cause prices to move the same amount in both heavily and lightly traded
markets, and second, in typical circumstances, they run at a deficit. In this article, we construct a market
maker that is both sensitive to liquidity and can run at a profit. Our market maker has bounded loss for any
initial level of liquidity and, as the initial level of liquidity approaches zero, worst-case loss approaches zero.
For any level of initial liquidity we can establish a boundary in market state space such that, if the market
terminates within that boundary, the market maker books a profit regardless of the realized outcome.
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1. INTRODUCTION

Active markets like the New York Stock Exchange provide two benefits: (1) price takers
can buy or sell at any time, and (2) observers can continually monitor precise values
of every asset. A prediction market, or any market explicitly designed to uncover the
value of an asset, relies heavily on (2) holding true. If an asset has poor price support
(i.e., no open interest, or large bid-ask spread), then observers learn little or nothing
about its value, disabling the very purpose of the market. For example, some popular
contracts on intrade.com, one of the largest prediction markets, attract millions of
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14:2 A. Othman et al.

dollars in trades. But thousands of other Intrade contracts suffer from low liquidity
and thus reveal little in the way of predictive information.

Prediction markets can therefore benefit from an automated market maker: an al-
gorithmic trader that always stands ready to interact with traders, providing liquidity
that may be hard to support organically. For more complex environments, automated
market making becomes a necessity—combinatorial prediction markets with vast
numbers of outcomes to predict (e.g., a 64-team tournament with 263 or 9.2 quintillion
outcomes) are essentially unusable without some form of automated pricing.

Internet prediction markets are just one application of automated market making.
The market makers we describe here are appropriate for use with any assets that
trade off a binary payoff structure, in which the future can be partitioned into a fi-
nite number of states exactly one of which will be realized. For instance, companies
like WeatherBill (weather insurance) and Bet365 (sports betting) are beginning to use
proprietary automated market makers to offer instantaneous price quotes across thou-
sands or millions of highly customizable assets. These kinds of binary payout struc-
tures are also becoming more prominent within traditional finance. For instance, the
Chicago Board Options Exchange (CBOE) now offers binary options on the S&P and
Volatility indices. While currently lightly traded relative to standard options, their
integration into the largest options exchange in the U.S. augurs well for their fu-
ture. Credit default swaps (CDS), which resemble insurance on bonds, have this kind
of binary payout structure as well, in which the underlying bond either experiences
a default event or does not. The total size of the CDS market was recently esti-
mated at about 28 trillion dollars, making it one of the largest markets in the world
[Williams 2009].

The most popular automated market maker used in Internet prediction markets is
Hanson’s logarithmic market scoring rule (LMSR), an automated market maker with
particularly desirable properties [Hanson 2003, 2007]. The LMSR is used by a num-
ber of companies including Inkling Markets, Consensus Point, Yahoo!, Microsoft, and
the large-scale non-commercial Gates Hillman Prediction Market at Carnegie Mellon
[Othman and Sandholm 2010a]. (Other companies like HSX.com and Crowdcast em-
ploy their own automated market makers.) The LMSR is also the focus of academic
studies about market microstructure [Ostrovsky 2009; Othman and Sandholm 2010b]
and laboratory studies of market maker performance [Das 2008].

The amount of liquidity in the LMSR is a parameter set a priori before the mar-
ket maker knows what bets traders will place. Setting the liquidity is more art than
science—a constant dilemma for almost everyone who has implemented the LMSR.
For instance, in the Gates Hillman Prediction Market [Othman and Sandholm 2010a],
the amount of liquidity was set too low, which caused problems for traders in practice
in the later stages of the market. Too little liquidity makes prices fluctuate wildly after
every trade; too much makes prices barely budge even following large bets. Exacerbat-
ing the problem, the amount prices move for a fixed bet in the LMSR is a constant.
The billionth-and-first dollar moves prices as much as the first. This is not the way
real money markets behave; heavily traded assets like popular equities have vanish-
ing bid/ask spreads and the ability to enter or exit large positions without significantly
impacting prevailing prices, while lightly traded assets like boutique bond issues have
enormous trading costs associated with them.

Liquidity is good for traders but comes at the cost of increasing the market maker’s
worst-case loss. In general, an LMSR operator can expect to lose money in proportion
to the liquidity it provides [Hanson 2007; Pennock and Sami 2007]. The cost is ratio-
nalized as payment for traders’ information. But in the real world, the vast majority
of market makers run at a profit. It is no coincidence that most examples of LMSR in
practice are games based on virtual currency rather than real money.
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�

�

�

�

�

�

�

�

A Practical Liquidity-Sensitive Automated Market Maker 14:3

In this article, we present a variant of the LMSR that is better suited for practical
use in two ways. First, our market maker automatically adjusts how easily prices
change according to how much activity it sees: prices become less elastic as more
dollars flow in. The market operator need not somehow try to anticipate traders’
level of interest to set liquidity manually. Second, our market maker can ensure an
arbitrarily small loss in the worst case and a positive profit over a wide range of
final states. In the LMSR, prices of disjoint assets always sum to exactly $1. In our
market maker, prices can sum to greater than $1. However, we prove that dropping
the sums-to-unity property is a theoretical requirement for any liquidity-sensitive and
path-independent market maker. Moreover, relaxing this property is precisely what
allows our market maker to expect a profit, more closely resembling the market mak-
ers we see used in practice. Furthermore, we are able to obtain these properties while
retaining an explicit, easy-to-calculate functional form for our market maker—one of
the characteristics that makes the LMSR so popular.

Increasing market depth with increased trade may not be appropriate in every set-
ting. Consider a market with capital-constrained traders where the true state of the
world fluctuates frequently. In this setting, a constant shallow amount of market depth
will allow traders to quickly reach the true state of the world. In contrast, increasing
market depth with transaction volume in these settings will result in “sticky” prices
that are unable to reach their correct values. However, a fluctuating true state of the
world does not necessarily pose a problem for our new market maker; if the trading
population is not capital constrained, prices could still be changed to reflect their puta-
tively proper values. So, for settings in which new information does not emerge, where
information is revealed gently, or where there is substantial capital “on the sidelines”
waiting for trading opportunities to arise, our new market maker can obviate the need
to correctly select the liquidity parameter in the LMSR.

In Section 2, we motivate the properties of automated market makers from first
principles using vector calculus. We show that no market maker can satisfy three de-
sirable properties: path independence, translation invariance, and liquidity sensitivity.
With this motivation, in Section 3, we introduce our market maker, which weakens the
property of translation invariance. We illustrate the features of our market maker in
detail in Section 4, including obtaining tight bounds on the sum of prices.

2. PRICING RULES

A pricing rule calculates the prices that an automated market maker offers to traders.
In this section, we derive from first principles the properties of pricing rules from vec-
tor calculus. This study will allow us to explore the central tension behind automated
market making: that no market maker can be liquidity sensitive, path independent,
and translation invariant. This axiomatic characterization is distinct from the work
of Chen and Pennock [2007], who explore utility-based market makers; Agrawal et al.
[2009], who use convex optimization to synthesize different strands of automated mar-
ket making; Chen and Vaughan [2010], who explore the relation between no-regret
learning and automated market makers; and Abernethy et al. [2011] who develop an
axiomatic approach to market making focusing on combinatorial markets.

2.1. Vector Calculus for Pricing Rules

We begin by partitioning the event space into n distinct exhaustive events, exactly one
of which will occur. The state of the market is kept by the quantity vector q, whose
ith element determines the payout owed to traders if the ith event occurs. The market
maker fields bets from traders, observes the event that happens, and then settles those
bets with the traders.

ACM Transactions on Economics and Computation, Vol. 1, No. 3, Article 14, Publication date: September 2013.
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14:4 A. Othman et al.

For instance, imagine that a market maker is taking bets on whether the Yankees or
Red Sox will win in their next baseball match. A market maker with q = (1, 2) will pay
out one dollar to traders if the Yankees win, and two dollars to traders if the Red Sox
win. In automated market makers, the marginal prices of each event are a function
of the obligations the market maker owes. For instance, in our example the marginal
price of the Yankees winning (the first event) might be 0.4, and the marginal price of
the Red Sox winning (the second event) might be 0.6. These marginal prices are the
instantaneous cost of accumulating a payout on each event. As traders place bets with
the market maker, the market maker’s q will change, which could change the marginal
prices offered by the market maker. A pricing rule translates between quantity vectors
and marginal prices.

Definition 2.1. A pricing rule is a differentiable function p : Rn �→ [0, 1]n that maps
a vector of quantities to a vector of prices.

Pricing rules should satisfy a further property: that they have a convex pre-image.
(However, we do not require that the pre-image of the pricing rule encompasses the
entire domain R

n.) Convexity is a natural property. Imagine a trader holding a portfolio
q. Convexity ensures that the trader can sell any fraction of that portfolio back to the
market maker and still have defined prices. We now define this notion formally.

Definition 2.2. A point in R
n is valid if it is in the pre-image of the pricing rule p.

Definition 2.3. Pricing rule p has a convex pre-image if all convex combinations of
valid vectors are also valid.

Throughout the rest of the article, we will assume all pricing rules have a convex
pre-image.

2.1.1. Three Desirable Properties. We can identify three desirable properties one would
like a pricing rule to have: that it be path independent, that it be translation invariant,
and that it be liquidity sensitive.

Path independence means that any way the market moves from one state to another
state yields the same payment or cost to the traders in aggregate [Hanson 2003].

Definition 2.4 (Path Independence). Pricing rule p is path independent if the value
of line integral (cost) between any two quantity vectors depends only on those quantity
vectors, and not on the path between them.

Path independence offers three important benefits. First, it is a sufficient condition
for ensuring that there does not exist a money pump in the market: a trader cannot
place a series of trades and profit without assuming some risk. Second, it provides a
minimum representation of state: we only need to know the quantity vector. Finally,
because a trader gets the same odds from participating all at once as in a set of small
trades, traders do not need to strategize how they make trades (e.g., making a series
of small purchases instead of a single large trade).

Path independence also follows from interpreting market makers as ways of assess-
ing the riskiness of a distribution of holdings. A recent stream of research [Agrawal
et al. 2009; Ben-Tal and Teboulle 2007; Othman and Sandholm 2011] has fleshed out
the correspondence between cost-function automated market makers and risk mea-
sures from the finance literature [Artzner et al. 1999; Carmona 2009; Carr et al. 2001;
Föllmer and Schied 2002]. Risk measures are frequently used as internal tools within
financial institutions to determine the exposure and quality of positions. In short, risk
measures take as input a vector of holdings and produce a judgment as to whether that
vector is acceptable or not. Risk measures are naturally path independent, because for
internal risk measurement purposes it does not matter how a portfolio was obtained—
what matters is what the portfolio consists of. Put another way, it does not matter if a
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A Practical Liquidity-Sensitive Automated Market Maker 14:5

contract was inherited from a legacy company, purchased at discounted price, or is in
the middle of an orderly wind-down; the company holding that contract is still exposed
to it identically. Because risk measures assess the quality of a vector of payouts
without regard to the path taken to produce that vector, they are path independent.

Now, an important connection follows immediately from vector calculus:

LEMMA 2.5. If a pricing rule p is path independent and has a convex pre-image,
then p is the gradient of a scalar potential field.

Tying this to convention in the prediction market literature, we call this scalar field
a cost function and denote it by C(·). The cost function maps vectors of quantities to a
single scalar value, and prices are determined by the partial derivatives with respect
to each coordinate of the vector. To move from obligation vector x to obligation vec-
tor y, the trader pays the market maker C(y) − C(x), where negative values indicate
the market maker paying the trader. Recalling our example of the Yankees-Red Sox
baseball game, a trader that wishes to move the market maker’s quantity vector from
(1, 2) to (2, 2) (i.e., placing a bet that pays out one dollar if the Yankees win) would pay
C((2, 2)) − C((1, 2)) to the market maker.

The cost function represents the (path independent) integral over instantaneous
prices, so it is a measure of how much money has been paid into the system. To view
this another way, imagine that a set of traders, collectively, has d dollars and the mar-
ket is initially at state C(q0). After all the traders invest all their money, the combined
holdings of the traders can be those vectors q such that

C(q0 + q) = C(q0) + d

The second desired property is translation invariance [Agrawal et al. 2009]: that the
cost of buying a guaranteed payout of x always costs x. Translation invariance has
been a standard feature of market makers in the academic literature [Agrawal et al.
2009; Chen and Vaughan 2010; Hanson 2003, 2007; Pennock and Sami 2007].

Definition 2.6 (Translation Invariance). A pricing rule is translation invariant if
prices always sum to unity. Formally:∑

i

pi(q) = 1

for all valid q.

Most markets in practical use do not preserve translation invariance, and with good
reason: a translation invariant pricing rule ensures that the market maker will take a
loss as long as the final market prices are more accurate than the initial market prices,
a condition that is essentially tautological (if it were false, there would be little reason
to run a market in the first place). The simplest way to see this is to characterize the
way market makers function in standard, familiar markets. A market maker takes
on a risk when setting prices: if the prices are not the actual expected final prices,
the market maker has a negative expectation. Market makers counter this risk by
charging different prices on both market sides (buying and selling) so that buying a
guaranteed payoff of one dollar costs more than a dollar. Then, the market maker
profits from traders purchasing on both sides of the market, leaving a cut (aka the
“spread” or “vig”) for the market maker. A translation invariant rule shrinks the size
of the spread to zero, leaving the market maker exposed to the negative downside risk
of offering prices without any upside.

Conversely, the translation invariance condition guarantees that no trader can ar-
bitrage (exploit without risk) the market maker by taking on a guaranteed payout for
less than the payout.

ACM Transactions on Economics and Computation, Vol. 1, No. 3, Article 14, Publication date: September 2013.
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14:6 A. Othman et al.

The most direct benefit of a translation invariant pricing rule is that it preserves
the equality between the price of an event and the probability of that event occurring.
Both prices and probabilities will be non-negative and (when exhaustively partitioned)
will sum to one.

Translation invariant rules also guarantee the “law of one price”, so that if two bets
offer the same payouts in all states, they will have the same price. Put another way,
recall our Yankee-Red Sox baseball game example. The law of one price asserts that
placing a bet of a certain amount towards the Yankees winning will be priced the same
as placing a bet of the same amount on the Red Sox losing. While logically straight-
forward, this condition does not necessarily hold in practice in traditional continuous
double auctions, as the administrators of the Iowa Electronic Markets have discussed
[Berg et al. 2001; Oliven and Rietz 2004]. This condition can thus also be viewed as
a necessary condition for efficient information aggregation in a market. If the law of
one price is not satisfied, there are opportunities for unsophisticated traders to pay too
much or get paid too little.

As the third desired property, we would like market makers to adjust the elasticity
of their pricing response based on the volume of activity in the market. We call market
makers that are unable to adjust in this way liquidity insensitive.

Definition 2.7 (Liquidity Sensitivity). Define the n-dimensional vector 1 ≡ (1,
1, . . . , 1). A pricing rule is liquidity insensitive if

pi(q + α1) = pi(q)

for all valid q and all α.

Sensitivity to liquidity is desirable because it aligns intuitively with the way one
would want markets to function: a fixed-size investment moves prices less in thick
(liquid) markets than in thin (illiquid) markets.

One can also think about sensitivity from a Bayesian perspective. The 1000th flip of
a coin moves the posterior estimate of that coin’s probability of coming up heads much
less than the first flip. This is because, after 1000 flips, we already have a great deal of
information about the probability of the coin coming up heads. Similarly, if we have a
lot of information about the objective price of a contract (a deep market), small bets in
the market should not impact prices much.

2.1.2. Tension among the Desired Properties. In this section, we show that no market
maker can satisfy all three of the desired properties.

Definition 2.8. Any market maker that satisfies translation invariance and path
independence is a Hanson market maker.

This name is inspired by Robin Hanson, who provided an approach to building such
market makers from strictly proper scoring rules. All of the example market makers
given by Hanson and subsequent authors [Agrawal et al. 2009; Chen and Pennock
2007, 2010; Chen and Vaughan 2010; Pennock and Sami 2007; Peters et al. 2007] are
liquidity insensitive. We now show why: liquidity sensitivity is in fact impossible to
achieve in the Hanson context.

THEOREM 2.9. No pricing rule is translation invariant, path independent, and liq-
uidity sensitive.

PROOF. We show that a Hanson market maker, which is by definition translation
invariant and path independent, has constant prices along 1 and is therefore liquidity
insensitive.

ACM Transactions on Economics and Computation, Vol. 1, No. 3, Article 14, Publication date: September 2013.
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Because Hanson market makers are path independent, prices are given by the gra-
dient of a scalar field, the cost function. Consider the Hessian of that cost function

∇2C(·) =

⎡
⎢⎢⎣

∂p1
∂q1

· · · ∂pn
∂q1

...
. . .

∂p1
∂qn

· · · ∂pn
∂qn

⎤
⎥⎥⎦ .

The sum of the entries of the ith row of this matrix represents the change in the sum
of prices from adjusting qi. Since prices always sum to 1, each row of the matrix sums
to 0.

By the symmetry of second derivatives, the columns of the Hessian are identical to
the rows of the Hessian. Therefore, each column of the Hessian also sums to 0. So we
have ∑

j

∂pj

∂qi
= 0 =

∑
i

∂pj

∂qi
= 1 · ∇pj = ∇1pj,

where ∇1 represents the directional derivative along 1. Since the directional deriva-
tives of the prices along 1 are all 0, the prices are constant along 1, and so Hanson
market makers are liquidity insensitive.

3. INTRODUCING OUR MARKET MAKER

As we have discussed, a Hanson rule satisfies translation invariance and path inde-
pendence; it is not sensitive to liquidity and it will not make money in expectation. In
this section, we introduce our market maker, which is path independent, adaptive to
increased liquidity, and can arrive at situations in which it makes money regardless
of realized outcome. We delve into the theoretical properties of our market maker in
detail in Section 4.

We begin this section by considering two ways of modifying a Hanson rule in an
effort to make it more practical. Though we dismiss both approaches, their rejection
helps us frame the properties of the market maker we do end up constructing.

3.1. Imposing a Transaction Cost and Subsidizing Liquidity

One approach to make Hanson rules more practical is to directly impose a transaction
cost on each trade. That is, bets are calculated from the Hanson rule, but an additional
charge (e.g., 3%) is added to every transaction presented to a potential bettor. For
instance, if we present a trader with a bet that would normally cost 1 dollar according
to the Hanson rule, it would instead cost 1.03. The market maker can then keep 0.03.

Imposing a transaction cost enables a market maker to potentially run at a profit,
assuming a sufficient level of market activity. However, this scheme is still not liquidity
sensitive—prices respond identically to bets at all different volumes.

A second and more complex idea is to break the transaction fee between increasing
liquidity and collecting a fee. To our knowledge, this idea was originally proposed by
Todd Proebsting. For instance, a market maker can charge a 3% fee, but only keep 1%,
putting the other 2% towards increasing liquidity (perhaps by increasing the amount
of liquidity so that the worst-case loss is larger by the amount of the 2% subsidy).
Such a market maker would be liquidity sensitive and can run at a profit, but has two
shortcomings.

The first shortcoming is that increasing liquidity in this manner has a tendency
to distort prices towards 1/n. Recall that liquidity is a measure of how much the
market maker adjusts marginal prices in response to market activity. At higher levels
of liquidity, it takes larger magnitude quantity vectors to produce the same prices.

ACM Transactions on Economics and Computation, Vol. 1, No. 3, Article 14, Publication date: September 2013.
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14:8 A. Othman et al.

Therefore, increasing liquidity in the LMSR has the effect of dampening extreme
prices by pushing prices closer together. Another way of vieweing this effect is to
consider the equivalence between (convex) Hanson market makers and regularized
online follow-the-leader algorithms explored in Chen and Vaughan [2010]. As those
authors show, the concept of liquidity in automated market makers is analogous to
the amount of regularization applied to prices—that is, with more liquidity, prices
are closer to an initial prior, which is generally a uniform estimate of 1/n over each
state (this is the case for the LMSR). It is of particular concern that agents, knowing
this effect, could speculatively trade with an eye towards it occurring. For example, a
speculator can bet on low-probability events with the understanding that future trade
in the market will increase liquidity, and therefore increase the value of these bets as
their prices move toward the mean.

The second shortcoming is that it breaks path independence, because a series of
smaller orders will result in more updates to the liquidity parameter (e.g., the b term
in the LMSR) than a single large order.

Our market maker can be thought of as a way of adapting this scheme continuously
with order volume, so that prices are not distorted and so that path independence is
maintained.

3.2. Relaxing Translation Invariance

Since we cannot satisfy all three of our desiderata (path independence, translation
invariance, and liquidity sensitivity) simultaneously, we should consider which of them
to relax. As we have discussed, Hanson market makers relax liquidity sensitivity. A
more reasonable desideratum to relax is translation invariance, because it does not
match how we would expect a market to function in the real world. In particular, one
would like a market maker to be able to derive a profit from transacting with traders.
So rather than enforcing the translation invariance condition∑

i

pi(q) = 1

for all valid q, we would actually prefer∑
i

pi(q) ≥ 1.

That way, if traders cannot take on negative quantities, the prices they face always
sum to at least one.

3.3. Moving Forward in Obligation Space

Of course, with a path independent market maker, if it costs more than one dollar
to acquire a dollar guaranteed payout, a trader could arbitrage the market maker by
selling dollar guaranteed payouts to the market maker for more than a dollar.

One way to get around this problem is to only allow the obligation space to move
forward. In this section we present two closely related ways to accomplish this goal.

3.3.1. No Selling. In this scheme, traders always purchase shares on outcomes from
the market maker. Formally, let the market be at state q0, and let a trader attempt to
impose an obligation q on the market maker, where

min
i

qi < 0.

Let
q̄ ≡ − min

i
qi.

ACM Transactions on Economics and Computation, Vol. 1, No. 3, Article 14, Publication date: September 2013.
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A Practical Liquidity-Sensitive Automated Market Maker 14:9

Under the usual cost function scheme, that trader would pay

C(q0 + q) − C(q0)

but instead, in an always moving forward scheme, the trader pays

C(q0 + q + q̄1) − q̄ − C(q0)

and the market maker moves to the new state

q0 + q + q̄1

noting that the vector q + q̄1 consists of all non-negative components. This is what we
mean by the market maker always moving forward in obligation space.

This scheme is still fully expressive, because with an exhaustive partition over fu-
ture events the logical condition of betting against an event is equivalent to the logical
condition of betting for its complement. Essentially, traders can take on the same obli-
gations as in a traditional scheme, only they will cost more. Furthermore, if∑

i

pi(q) > 1,

then with this scheme when a trader imposes an obligation and then sells it back to
the market maker, the trader ends up with a net loss—just like the markets we see in
the real world.

3.3.2. Covered Short Selling. In this scheme, traders are allowed to sell back to the
market maker contracts that they have previously purchased, but are not allowed to
directly sell contracts to the market maker.

Let qt represent the vector of payoffs held by trader t, so that qt
i represents the

amount the market maker must pay out to trader t if the ith event occurs. In a covered
short selling scheme, the cost function operates as usual unless trader t suggests a
trade that would result in

min
i

qt
i < 0

Then, similar to the no selling scheme discussed above, the trader’s payoff vector is
translated by t̄ ≡ − mini qt

i, so that instead the trader acquires the vector

qt + t̄1

noting that for all events i,

(qt + t̄1)i ≥ 0

The operation of selling any contract previously purchased from the market maker
does not result in a trader holding a negative payoff on any event. Consequently, in this
scheme, traders can buy and then immediately sell back contracts from the market
maker at no net cost.

3.3.3. Discussion. Even though both schemes use the same cost function, they will
produce distinct market makers when used with the cost functions we develop later in
this section. A market maker that allows covered short selling permits a trader to buy
and then immediately sell at no net cost. With a no selling scheme, a trader that buys
and then immediately sells will incur a small loss. Which scheme is better depends on
the setting; if the set of traders is sophisticated and profitability is a concern, then the
no selling scheme is a better choice because it weakly dominates in terms of revenue

ACM Transactions on Economics and Computation, Vol. 1, No. 3, Article 14, Publication date: September 2013.
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for the same set of trades. However, if some traders are unsophisticated and user ex-
perience is a concern, then the covered short selling scheme could be a better choice
because it will not punish users for mistaken bets that they quickly cancel.

In contrast, Hanson market makers operating with either scheme (or with no scheme
at all) produce exactly the same quoted costs. Let H be a Hanson market maker. Then
because H is translation invariant

H(q0 + q + q̄1) − q̄ = H(q0 + q + q̄1 − q̄1) = H(q0 + q).

3.4. The Logarithmic Market Scoring Rule (LMSR)

Our pricing rule is derived from the logarithmic market scoring rule (LMSR) [Hanson
2003]. The LMSR uses the cost function

C(q) = b log

(∑
i

exp(qi/b)

)
,

where b > 0 is the constant liquidity parameter. This function’s pre-image is the entire
space R

n. The function’s gradient, the pricing rule, is

pi(q) = exp(qi/b)∑
j exp(qj/b)

.

This cost function has worst-case loss b log n for the market maker. (This loss is
achieved by starting from identical prices on all events.)

3.5. Defining our Market Maker

The conventional LMSR cost function can be written as

C(q) = b(q) log

(∑
i

exp(qi/b(q))

)
,

where b(q) = b is an exogenously set constant. Instead, our market maker uses the
LMSR cost function, but with a variable b(q) that increases with market volume as
follows:

b(q) = α
∑

i

qi,

where α > 0 is a constant. The valid region for our market maker is the set of
n-dimensional vectors with all non-negative components (i.e., the positive orthant),
omitting the origin. In order to stay in this region, we always move forward in
obligation space, as described in Section 3.3.

While it is straightforward that our market maker is path independent (because it
has a cost function), it remains to be shown that it is liquidity sensitive, or in a larger
sense, has any desirable qualities at all. In the next section, we explore the properties
of our market maker in depth.

4. PROPERTIES OF OUR MARKET MAKER

Even though our modification to the LMSR is simple, it results in a cascade of intrigu-
ing properties.

ACM Transactions on Economics and Computation, Vol. 1, No. 3, Article 14, Publication date: September 2013.
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Fig. 1. In a 2-event market with α = .05, this plot illustrates the relationship between qx and px for qy =
250, 500, and 750, respectively. The liquidity sensitivity of our market maker is evident in the decreasing
slope of the price response for increasing qy.

4.1. Prices

In a path-independent market maker, the price of state i is given by the partial deriva-
tive of the cost function along i. With constant b, this expression is simply

pi(q) = exp(qi/b)∑
j exp(qj/b)

.

When b(q) = α
∑

i qi, however, the expression becomes more complex, but still analyt-
ically expressible:

pi(q) = α log

⎛
⎝∑

j

exp(qj/b(q))

⎞
⎠ +

∑
j qj exp(qi/b(q)) − ∑

j qj exp(qj/b(q))∑
j qj

∑
j exp(qj/b(q))

.

Figure 1 illustrates the liquidity sensitivity of these prices in a 2-event market. As
the number of shares of the complementary event increases, the market’s price re-
sponse for a fixed-size investment becomes less pronounced.

Figures 2 and 3 show the price of a one-unit bet at various levels of liquidity in a
two-event market. Figure 2 shows the price of a one-unit bet when the two events have
equal quantities outstanding, while Figure 3 has the first event with proportionately
higher quantities outstanding. Thus, the unit bet is more expensive in the former than
the latter. Though the two figures differ quantitatively, they agree qualitatively: the
price of a fixed-size contract shrinks as the level of outstanding quantities increase.

Figures 2 and 3 also illustrate an important distinction in our market maker be-
tween instantaneous prices and cumulative prices. Even though, as we show in the
next section, the sum of instantaneous prices (i.e., the marginal price for a vanishingly
small quantity) is bounded quite modestly for all possible outstanding quantities, at
low levels of liquidity these instantaneous prices increase quite quickly. Thus, at very
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Fig. 2. In a 2-event market with α = .05, this plot illustrates the cost of a unit bet on the first outcome
when both outcomes have the designated outstanding quantity.

Fig. 3. In a 2-event market with α = .05, this plot illustrates the cost of a unit bet on the first outcome
when the first outcome has ten percent greater quantity outstanding than the second outcome, where the
second outcome’s quantity is listed (i.e., a value of 10 corresponds to (11, 10)).

small outstanding quantities, the cost of a unit bet is more than 90 cents, because
our market maker is very sensitive to bets of large size relative to the quantities out-
standing. At higher levels of outstanding quantities, an additional unit bet is relatively
small and cumulative prices do not increase much past instantaneous prices.

ACM Transactions on Economics and Computation, Vol. 1, No. 3, Article 14, Publication date: September 2013.
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4.2. Tight Bounds on the Sum of Prices

In this section, we establish tight bounds on the sum of prices. In particular, we show
that

1 ≈ 1 + n
[
α log(exp(1/α) + n − 1) − exp(1/α)

exp(1/α) + n − 1

]
≤

∑
i

pi(q) ≤ 1 + αn log n

and therefore our market maker achieves the desirable liquidity-sensitivity properties
we discussed in Section 3.2.

Prices achieve their upper bound only when q = k1 for k > 0. Recall that 1 is the
vector where each element is a 1, so the product k1 yields a vector where each element
is a k. Prices achieve the lower bound as qi → ∞.

PROPOSITION 4.1. Prices at k1, for all k > 0, sum to 1 + αn log n.

PROOF. For q = k1, we have qi = qj for all i and j, which allows us to simplify
considerably.

∑
i

pi(k1) =
∑

i

α log

⎛
⎝∑

j

exp(qj/b(q))

⎞
⎠

= nα log

⎛
⎝∑

j

exp(qj/b(q))

⎞
⎠

= nα log
(

n exp
(

1
αn

))

= nα log
(

exp
(

1
αn

))
+ nα log n

= 1 + αn log n.

PROPOSITION 4.2. The maximum of the sum of prices is obtained at every point
of the form k1, where k > 0. Furthermore, these are the only points that achieve the
maximum.

PROOF. Consider the set of all quantity vectors that sum to b > 0. We will show
that the quantity vector where each event has equal quantity (each one having b/n)
maximizes the sum of prices.

The sum of prices at quantity vector q is given by∑
i

pi(q)

Without loss of generality, take
∑

i qi = 1/α, so that the space of vectors we consider
are those for which b(q) = 1.

So, without loss of generality, we can rewrite the sum of prices as

1 + nα

⎡
⎣log

⎛
⎝∑

j

exp(qj)

⎞
⎠ −

∑
j qj exp(qj)∑

j exp(qj)

⎤
⎦

We will show that

log

⎛
⎝∑

j

exp(qj)

⎞
⎠ −

∑
j qj exp(qj)∑

j exp(qj)
≤ log n,
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with equality occurring only when q = k1. We can rewrite the above expression as

∑
j

qj exp(qj) ≥
⎛
⎝∑

j

exp(qj)

⎞
⎠ log

(∑
j exp(qj)

n

)

Take pj ≡ exp(qj). The expression then becomes

∑
j

pj log(pj) ≥
∑

j

pj log

(∑
j pj

n

)

Without loss of generality, we can scale the pj to define a probability distribution,
to get

∑
j

pj log(pj) ≥ log

(∑
j pj

n

)

≥ − log(n)

This is a result from basic information theory, which establishes that the uniform dis-
tribution has maximum entropy over all possible probability distributions [Cover and
Thomas 2006]. Therefore, equality holds only in the case of a uniform distribution,
which corresponds to the quantity vector having equal components (q = k1).

PROPOSITION 4.3. At any valid q,
∑

i pi(q) ≥ 1.

PROOF. Define

ri ≡ qi

b(q)

and

si ≡ exp(ri)∑
j exp(rj)

Observe that the si form a probability distribution. Then, using the entropy operator H:

H(x) = −
∑

i

xi log xi

we can express prices as

pi(q) = si + αH(s)

and therefore the sum of prices as∑
i

pi(q) = 1 + αnH(s) ≥ 1.

Because the entropy operator is bounded below by zero, the sum of prices is at least 1.

There are two ways to produce a zero entropy distribution of the si in the above
result.

— Were our market maker defined over all of R
n, we could produce a zero entropy

distribution by sending qi → ∞ and qj → −∞ for i �= j. However, our market maker
is not defined over all of Rn, but rather only in the positive orthant.
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— As α ↓ 0, the entropy of the distribution of the si can approach 0. Letting qi be
positive and qj = 0 for j �= i, we have

ri = 1/α and rj = 0

and therefore

si = exp(1/α)

exp(1/α) + n − 1
sj = 1

exp(1/α) + n − 1
a distribution which, for fixed n, approaches a unit mass on si as α ↓ 0.

Consequently, for fixed positive α, the distribution of the si can have nearly zero
entropy, but cannot achieve absolutely zero entropy. Thus the minimum sum of prices
is not unity but rather very close to it, equal to unity to first order and well within
machine precision for small values of α. The following proof formalizes this.

PROPOSITION 4.4. The minimum sum of prices is

1 + n
[
α log(exp(1/α) + n − 1) − exp(1/α)

exp(1/α) + n − 1

]
.

This minimum is achieved when qi > 0 and qj = 0 for i �= j. For small α � 0,

1 + n
[
α log(exp(1/α) + n − 1) − exp(1/α)

exp(1/α) + n − 1

]
= 1 + O

(
α2

)
.

PROOF. From our result, the minimum sum of prices is achieved when the distri-
bution of the si has minimum entropy. When restricted to the positive orthant, the
corresponding distribution with largest entropy sets one qi to be positive and the other
qj = 0 where j �= i.

At these values, we have

pi(q) = α log(exp(1/α) + n − 1)

and

pj(q) = α log(exp(1/α) + n − 1) + 1 − exp(1/α)

exp(1/α) + n − 1
.

Observe that pi ≈ 1 and pj ≈ 0.
Adding these terms together and simplifying we get that the sum of prices is

1 + n
[
α log(exp(1/α) + n − 1) − exp(1/α)

exp(1/α) + n − 1

]
.

Within the braces, the left term is larger than unity while the right term is smaller
than unity, meaning that the sum of prices as a whole is greater than unity, which is
to be expected from our previous result.

As we will discuss, it is natural for α to be set very small. Let

f (α) = n
(

α log(exp(1/α) + n − 1) − exp(1/α)

exp(1/α) + n − 1

)
.

Then the Taylor series of the sum of prices on the axes, taken around α = 0, is given by∑
i

pi = 1 + f (0) + αf ′(0) + O
(
α2

)
.

Since

lim
α↓0

α log(exp(1/α) + n − 1) − exp(1/α)

exp(1/α) + n − 1
= 1 − 1 = 0,
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Fig. 4. Sum of prices where n = 2 and α = 0.05. The sum is bounded between 1 and 1 + αn log n ≈ 1.07,
achieving its maximum where qx = qy.

the f (0) term of the expression is zero, meaning that the total deviation away from 1
for small α is given by the term αf ′(0). The derivative is a complex expression that we
give for completeness:

f ′(α) = n

(
e1/α

α2(n + e1/α − 1)
− e2/α

α2(n + e1/α − 1)2 − e1/α

α(n + e1/α − 1)
+ log

(
n + e1/α − 1

))
.

By taking the limit of this expression, we see that

lim
α↓0

f ′(α) = 0.

Thus, for small α, the sum of prices is bounded below by

1 + O
(
α2

)
Put another way, to first order the lower bound of the sum of prices of our market
maker is 1.

Figure 4 is a plot of the sum of prices in a simple two-quantity market. Prices achieve
their highest sum when qx = qy and are bounded below by 1.

4.3. Selecting α

A possible complaint about our scheme is that we have replaced one a priori fixed
value, b, of the LMSR with another a priori fixed value, our α. In this section, we
discuss how the α parameter has a natural interpretation that makes its selection
relatively straightforward.

The α parameter can be thought of as the commission taken by the market maker.
Higher values of α correspond to larger commissions, which leads to more revenue. At
the same time, setting α too large discourages trade.

ACM Transactions on Economics and Computation, Vol. 1, No. 3, Article 14, Publication date: September 2013.
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As we have shown, the sum of prices with our market maker is bounded by 1 +
αn log n, and this value is achieved only when all quantities are equal. This bound
provides a guide to help set α.

How large should administrators set α within our market maker? We can look to
existing market makers (and bookies) for an answer. Market makers generally operate
with a commission of somewhere between 2 and 20 percent. To emulate a commission
that does not exceed v in our market maker, one can simply set

α = v
n log n

.

So, the larger the event space (larger n), the smaller α should be set to maintain a
given percentage commission.

Though the sum of prices increases in α, this provides no guidance as to the behavior
of the cost function itself—it is not immediate that the cost function increases in α,
because it has conflicting effects within our cost function. Increasing α decreases the
terms qi/b(q) in the cost function, but scales up the output of the log function. However,
the following proposition establishes that our cost function is non-decreasing in α. We
are assisted in this result by the following lemma.

LEMMA 4.5. For our cost function

C(q) ≥ max
i

qi.

PROOF. Suppose there exists a valid q such that

C(q) < max
i

qi

without loss of generality, let

q1 = max
i

qi

and define

ri = qi

b(q)
≥ 0,

then we have

log

(∑
i

exp(ri)

)
< r1

∑
i

exp(ri) < exp(r1)

∑
i�=1

exp(ri) < 0,

which is a contradiction because exp(x) is non-negative for all x.

PROPOSITION 4.6. Our cost function is nondecreasing in α.

PROOF. This result follows if we can show
∂

∂α
C(q) ≥ 0.
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After taking the partial derivative of our cost function and simplifying, we get(∑
i

exp(qi/b(q))

)
C(q) ≥

∑
i

qi exp(qi/b(q)).

From Lemma 4.5, we have

C(q) ≥ max
i

qi

and so(∑
i

exp(qi/b(q))

)
C(q) ≥

(∑
i

exp(qi/b(q))

) (
max

i
qi

)
≥

∑
i

qi exp(qi/b(q)),

which completes the proof.

Recalling that the cost function defines the amount paid into the market maker, an
informal way to interpret this result is that the market maker’s revenue increases
with the α parameter for any given quantity vector. Of course, increasing α results in
higher prices, which can affect trader behavior, so the overall effect in practice might
be ambiguous.

4.4. Bounded Loss

Like the LMSR, our market maker has bounded loss. In this section, we first explore
why having some possible loss is actually desirable for a market maker, and then prove
that our market maker has finite, arbitrarily small loss.

When pricing an obligation, a market maker could price it at least as high as the
payout a trader would receive in every state of the world. But then it would not be
rational for any trader to accept these offered bets. For it to be rational for a trader to
accept a bet with the market maker, the bets the market maker offers must therefore
(at least sometimes and possibly always) expose the market maker to a worst-case loss.

On the other hand, it is highly undesirable for a market maker to lose an infinite
amount in some cases—particularly if we are using real money.

Definition 4.7. The loss of a market maker that starts in state q0 and ends in state
q, with the realization of event i, is

C(q0) − C(q) + qi

Recall that here C(·) is the cost function and qi is the amount the market maker has
to pay out in the end upon event i occurring.

Definition 4.8. A pricing rule has bounded loss if for all initial states q0 and all
states q,

C(q0) − C(q) + max
i

qi < ∞
PROPOSITION 4.9. Our pricing rule has bounded loss. Specifically, its loss is

bounded by C(q0).

PROOF. By Lemma 4.5

C(q) ≥ max
i

qi
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and so

max
i

qi − C(q) ≤ 0 ⇒ C(q0) + max
i

qi − C(q) ≤ C(q0)

so our market maker’s loss is bounded by

C(q0).

Since

lim
q→0

C(q) = 0,

setting the initial market quantities close to 0, the worst-case loss becomes arbitrarily
small. But reducing the initial vector too much comes at a cost, however, because

lim
q→0

b(q) = 0

so the market becomes arbitrarily sensitive to small bets in its initial stage.
In contrast, to get near-zero loss in the LMSR, one would have to set b near zero,

which would cause arbitrary sensitivity to small bets throughout the duration of the
market. Since other Hanson market makers are not liquidity sensitive either, they
suffer from the same problem. In our market maker, by setting the initial quantities
close to zero, we achieve near-zero loss while containing the high sensitivity to the
initial stage only.

4.5. Worst-Case Revenue

In addition to always having bounded loss (and near-zero loss if desired), under broad
conditions on the final quantity vector of the market, we can guarantee that our mar-
ket maker actually makes a profit (regardless of which event gets realized). The worst-
case revenue is

R(q) ≡ C(q) − max
i

qi − C(q0).

If R(q) > 0 when the market closes, the market maker will book a profit regardless of
the outcome that is realized. We say that in such states the market maker has outcome-
independent profit. Figures 5 and 6 show the set of market states for which R(q) > 0
for various values of α and initial quantity vectors q0.

Figure 5 shows varying values of α. From Theorem 4.6, the cost function is non-
decreasing in α, which is reflected by the increasing areas of outcome-independent
profit as α gets larger. Figure 6 shows varying initial quantity vectors. Since revenue
is trivially decreasing in the cost of the initial quantity vector, as the cost of our initial
quantity vector increases, the area of outcome-independent profit shrinks.

From the figures, it might appear that large portions of the state space will result
in our market maker losing money. However, prices and quantities have a highly non-
linear relationship: prices quickly approach 1 as quantities become imbalanced. The
straight black rays on the plane represent a price of .95 for one of the two events.
Therefore, the plots indicate that as long as markets are terminated while events have
reasonable levels of uncertainty (i.e., where the price of one event is not asymptotically
close to unity), the market maker can book a profit regardless of the realized future.

Figure 7 contrasts the revenue of our market maker against the LMSR. In particular,
the figure shows the revenue surplus of the LMSR relative to our market maker. Pos-
itive values represent how much more our market maker would collect if the market
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Fig. 5. The shaded regions show where the market maker has outcome-independent profit in a two-outcome
market with initial quantity vector (1, 1) and various values of α. Figure (a) sets α equal to .01, Figure (b)
equal to .03, and Figure (c) equal to .06. The top black ray represents py = .95 and the bottom black ray
represents px = .95.

Fig. 6. The shaded regions show where the market maker has outcome-independent profit in a two-outcome
market with α = .03 and various initial quantity vectors. Figure (a) sets q0 equal to (.5, .5), Figure (b) equal
to (1, 1), and Figure (c) equal to (2, 2). The top black ray represents py = .95 and the bottom black ray
represents px = .95.

terminates in the each obligation state. The comparison between the two market mak-
ers is valid because both the market makers have the same bound on worst-case loss,
set by aligning the α and q0 parameters in our market maker with the b parameter in
the LMSR. What is especially notable is how large the revenue difference between the
two market makers becomes for lopsided obligation vectors, when the market maker
has to pay out much more if one event happens than if the other event happens. As
Figures 5 and 6 showed, generally at lopsided obligation vectors our market maker
does not book an outcome-indepedent profit. However, as Figure 7 shows, our market
maker delivers significantly less loss than the LMSR for lopsided obligation vectors.

4.6. Homogeneity

Recall that a positive homogeneous function f of degree k has

f (γ x) = γ kf (x)

for γ > 0. “Positive homogeneous functions of degree one” are often referred to as
just “positive homogeneous”. As it turns out, the cost function of our market maker
is positive homogeneous, and in this section we prove and explore the implications of
that result.

PROPOSITION 4.10. Our cost function is positive homogeneous of degree one.
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Fig. 7. A plot of the revenue surplus between the our market maker and the LMSR. The z-axis is how much
more our market maker makes than the LMSR. The parameters are aligned so that the two market markers
have the same worst-case loss (∼ 104.2), reflected by the zero revenue surplus at q0. In our market maker,
α = .03 and q0 = (100, 100), and in the LMSR, b = 150.27.

PROOF. Let γ > 0 be a scalar and q be some valid quantity vector. Without loss of
generality, we can assume

∑
i qi = 1. Then,

C(γ q) = b(γ q) log

(∑
i

exp(γ qi/b(γ q))

)

= γα log

(∑
i

exp
(

γ qi

γα

))

= γ C(q)

It is crucial that the cost function be positive homogeneous, because that allows
the price response to scale appropriately in response to increased quantities. One of
the primary concerns about using the LMSR is the relation of the fraction of wealth
invested in the market to the displayed prices. If the b parameter is set too low in
the LMSR, that is, if the market is thick but the market maker’s price response is too
sensitive, then tiny fractions of the overall wealth in the market can move prices a
great deal. On the other hand, if the b parameter is set too high all the wealth in the
market would be insufficient to move prices significantly enough to reflect this skewed
distribution of bets.

A market maker would ideally provide a price response proportional to the amount
of wealth in the market. Such a market maker would appropriately scale liquidity,
requiring progressively larger trades to achieve the same price response as the market
accumulated more and more money. Scaling price responses proportional to the state
of the market is the correct liquidity-sensitive behavior because it yields a relative
price response that is the same regardless of whether the amount of money in the
market is tens, thousands, or millions of dollars. Another way of thinking about this
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property is that a proportional-scaling market maker is currency independent: without
any further adjustment it will function equally as well regardless of whether trading
is done in millions of yen or fractions of a dollar, because only the relative, rather than
absolute, amounts wagered affect the market maker’s price response. This leads us to
the following definition.

Definition 4.11. Prices scale proportionately if

pi(q) = pi(γ q)

for all i, q and scalar γ > 0.

In fact, only homogeneous cost functions provide this price response.

PROPOSITION 4.12. Prices scale proportionately if and only if the cost function is
positive homogeneous of degree one.

PROOF. Proportional scaling is equivalent to the price functions being positive
homogeneous of degree zero. Since the kth derivative of a positive homogeneous
function of degree d is itself a positive a positive homogeneous function of degree
d − k, if and only if the cost function is positive homogeneous of degree one will prices
scale proportionately.

5. DISCUSSION

Two of the main practical hurdles to more widespread use of Hanson’s LMSR market
maker are (1) the liquidity level b is set manually and never changes, and (2) the
operator can expect to lose money in proportion to b. We presented a new automated
market maker design that overcomes both of these hurdles while retaining path
independence, thus ensuring the market maker cannot be exploited and greatly
simplifying the implementation. We proved that if we want sensitivity to liquidity
and path independence, then we must relax the translation invariance condition that
constrains prices of disjoint and exhaustive assets to sum to exactly one dollar. In our
case, prices can sum to more than one, meaning that they no longer directly map into
probabilities. However, as we showed, prices summing to more than one can enable
the market maker to extract a profit from running the market if the entropy of final
prices is sufficiently high. For a broad range of terminal market states our market
maker actually makes a profit regardless of the event that gets realized. With the
LMSR, the market operator must ante a larger subsidy to obtain reasonable liquidity.
With our liquidity-sensitive market maker, the subsidy can be set arbitrarily low
without harming liquidity (except in the initial stage). Perhaps most importantly in
practice, our market maker is able to achieve all these properties with a simple and
explicit closed form. Simplicity of representation has been one of the largest factors
driving the widespread adoption of the LMSR.

While we have shown that our market maker has a broad range of new and appeal-
ing properties, they come at the consequence of forfeiting the translation invariance of
the LMSR. We proved that this was necessary: no cost function-based market maker
can be both liquidity sensitive and translation invariant. As a practical matter, though,
losing translation invariance means losing the direct correspondence between prices
and probabilities that the LMSR enjoys. Instead, what we are left with is a range of
possible probability estimates consistent with the prices from our market maker. For
instance, when q = k1, any probability between 1/n − α(n − 1) log n and 1/n + α log n
for each event is consistent with the market maker’s prices. Put another way, a my-
opic trader that had beliefs in this range would not trade with the market maker. The
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space of consistent probability estimates increases as the sum of prices increases; for
the small α that is natural to our setting the range of prices is relatively small and
dividing the price of each event by the sum of prices provides a simple, coherent way
of normalizing prices into probabilities.

If the market administrator is omniscient and can precisely set the correct amount
of liquidity in the LMSR, then the translation invariance of the LMSR, and the price-
probability duality it implies, is an argument for selecting the LMSR over the mar-
ket maker we have described. However, if the market administrator is not omniscient
and would incorrectly guess the optimal level of liquidity within the market, then the
market maker we have described here is able to set the correct level of liquidity en-
dogenously, while the LMSR would be stuck with a bad liquidity level. This makes
our market maker a better choice for domains where the volume of active trading is
unknown in advance—a feature of many markets, and of many Internet prediction
markets in particular.

There are several unsettled issues with our market maker, including how to incor-
porate prior information or learning into the way the market maker prices contracts.
One possible direction is suggested by the approach of Das [2008] and Das and
Magdon-Ismail [2009], which feature a heuristic market maker. However, that line of
research uses flexible market makers that focus more on average-case performance
with nonadversarial traders. It is difficult to see how to reconcile our market maker,
that provides strong bounds on quantities like worst-case loss and sums of prices, into
a heuristic framework. Another direction is taken by Chen et al. [2008] and Chen and
Vaughan [2010], which explore the link between Hanson market makers and no-regret
learning algorithms. However, as we showed here, it is necessary to break the duality
of prices and probabilities in order to achieve liquidity sensitivity. Consequently, it is
not immediately clear how the no-regret framework aligns with the approach of this
paper.

Additionally, our market maker operates in an online setting where traders either
accept or reject bets but do not have the option of setting persistent limit orders
(e.g., “I want the payoff vector x at a price not greater than p”) that may be filled
in the future. In our setting, the market maker is explicitly tasked with taking on
surplus quantity, and therefore risking loss, which can be contrasted with recent
work on limit order matching [Blum et al. 2006; Bredin et al. 2007]. Incorporating
limit orders into the market maker is tricky because persistent orders can induce
discontinuities and strange effects in the market maker’s price response as new orders
cause existing limit orders to be executed. Agrawal et al. [2009] present a solution
to this problem using a convex optimization technique to augment a market maker
with the ability to handle persistent limit orders; since our market maker is also
convex, it could be augmented in a similar fashion. However, we cannot implement
the solution of Agrawal et al. [2009] directly because the framework explored in that
paper relies on simplifications based on translation invariance that our market maker
does not satisfy. It would be interesting to explore how to handle these persistent
limit orders with our market maker, and how to mix sequential and batch order
processing.

Finally, our new market maker is just one instance of the class of liquidity-sensitive
market makers. Other liquidity-sensitive market makers can be developed that have
different relations to worst-case loss, profit, and liquidity. For instance, it might be
natural to have a liquidity-sensitive market that expands liquidity only up to a certain
point, after which it reaches a state of terminal liquidity and is no longer sensitive
to increased transaction volume. Large-cap equities intuitively seem to have reached
this terminal state; a purchase of shares of IBM today and a purchase of shares of IBM
a month from now are likely to face equivalent market depth, even though billions of
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dollars will have transacted in the interim. We anticipate the introduction of many
different liquidity-sensitive market makers, guided by our result that, in order to
have liquidity sensitivity, a market maker must break the duality between prices and
probabilities.
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