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Abstract

We analyze the computational and communication complex-
ity of combinatorial auctions from a new perspective: the de-
gree of interdependency between the items for sale in the bid-
ders’ preferences. Denoting byGk the class of valuations
displaying up tok-wise dependencies, we consider the hier-
archyG1 ⊂ G2 ⊂ · · · ⊂ Gm, wherem is the number
of items for sale. We show that the minimum non-trivial de-
gree of interdependency (2-wise dependency) is sufficient to
render NP-hard the problem of computing the optimal allo-
cation (but we also exhibit a restricted class of such valua-
tions for which computing the optimal allocation is easy). On
the other hand, bidders’ preferences can be communicated
efficiently (i.e., exchanging a polynomial amount of infor-
mation) as long as the interdependencies between items are
limited to sets of cardinality up tok, wherek is an arbitrary
constant. The amount of communication required to trans-
mit the bidders’ preferences becomes super-polynomial (un-
der the assumption that only value queries are allowed) when
interdependencies occur between sets of cardinalityg(m),
whereg(m) is an arbitrary function such thatg(m) → ∞
asm → ∞. We also considerapproximateelicitation, in
which the auctioneer learns, asking polynomially many value
queries, an approximation of the bidders’ actual preferences.

Introduction
Combinatorial auctions (CAs) have emerged as an impor-
tant mechanism for resource and task allocation in multia-
gent systems. CAs have been used to trade transportation
services, pollution permits, land lots, spectrum licenses, and
so on. In a CA, bidders can expresscomplementarities(i.e.,
the value of a package of items being worth more than the
sum of the values of the individual items in the package), and
substitutabilities(i.e., the value of a package of items being
worth less than the sum of the values of the individual items
in the package). (Complementarities are also referred to
assuper-additivity, and substitutabilities assub-additivity.)
The function that, given a package of items, returns the bid-
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der’s value for that package, is called thevaluation function,
or simplyvaluation.

The implementation of CAs poses several challenges, in-
cluding computing the optimal allocation of the items given
the valuation functions of the agents (aka. thewinner deter-
minationproblem), and eliciting enough information about
the bidders’ valuation functions to determine a good alloca-
tion (aka. thepreference elicitationproblem).

Of these two problems, the interests of computer scientists
were first focused on the winner determination problem. It is
NP-hard (Rothkopf, Pekeč, & Harstad 1998) and even find-
ing an approximation is NP-hard (Sandholm 2002). How-
ever, modern search algorithms can often solve the struc-
tured winner determination problems that arise in typical
practical domains to optimality, even in the large (Sandholm
2006).

Therefore, the preference elicitation problem is in fact
the bigger bottleneck in obtaining the economic efficiency
that CAs can offer in principle. It is not feasible to have
every bidder submit a valuation for every one of the ex-
ponentially many packages. Requiring all of this informa-
tion is undesirable for several reasons. First, determining
one’s valuation for any specific bundle can be computa-
tionally demanding (Sandholm 1993; 2000; Parkes 1999b;
Larson & Sandholm 2001)—thus requiring this computation
for exponentially many packages is impractical. Second,
communicating exponentially many bids can be prohibitive
(e.g., wrt. network traffic). Finally, agents may prefer not
to reveal their valuation information for reasons of privacy
or long-term competitiveness (Rothkopf, Teisberg, & Kahn
1990).

Early approaches to addressing the preference elicita-
tion problem (although it was not called that then) involved
designing different ascending combinatorial auctions (e.g.,
(Parkes 1999a; Wurman & Wellman 2000; Ausubel & Mil-
grom 2002; de Vries, Schummer, & Vohra 2003)). More re-
cently, the general preference elicitation framework for CAs
was introduced, where the auctioneer is enhanced by elicitor
software that incrementally elicits the bidders’ preferences
using queries until enough information has been elicited to
determine the right allocation of items to bidders (Conen
& Sandholm 2001).1 Several elicitation algorithms, based

1If enough information is elicited to determine the optimal al-



on different classes of queries (e.g., value, rank, and order
queries), have been proposed (Conen & Sandholm 2001;
2002; Hudson & Sandholm 2004). Ascending auctions are a
special case of the framework, where the queries are demand
queries, and the prices are restricted to being increasing.

Unfortunately, a recent result (Nisan & Segal 2005) shows
that elicitation algorithms have no hope of considerably re-
ducing the communication complexity in the worst case. In
fact, obtaining a better approximation than that generated by
auctioning off all objects as a bundle requires the exchange
of an exponential amount of information. Thus, the com-
munication burden produced byany combinatorial auction
design that aims at producing a non-trivial approximation of
the optimal allocation is overwhelming, unless the bidders’
valuation functions display some structure. Of course, in
practice, such structure is very likely to be present, because
otherwise bidders’ cognitive limitations would presumably
prevent them from producing a separate value for each of
the exponentially many bundles.

Given the winner determination and preference elicitation
hardness results, several authors have presented restricted
CA settings, in which solving either the winner determi-
nation problem, or the preference elicitation problem, or
both, are easy even in the worst case (LaMura 1999; Zinke-
vich, Blum, & Sandholm 2003; Blumet al. 2004; Lahaie
& Parkes 2004; Santi, Conitzer, & Sandholm 2004; Chang,
Li, & Smith 2003; Rothkopf, Pekěc, & Harstad 1998;
Lehmann, O’Callaghan, & Shoham 2002; Nisan 2000;
Tennenholtz 2000; Sandholm 2002; Sandholmet al. 2002;
Sandholm & Suri 2003; Conitzer, Derryberry, & Sandholm
2004). The challenge is to identify classes of valuations
that are sufficiently general (in the sense that they allow the
bidders to express super-, or subadditivity, or both, among
items) and realistic, yet easy to solve.

In this paper, we analyze the complexity of winner deter-
mination and preference elicitation in CAs from a new per-
spective: the degree of mutual interdependency between the
items. In general, a set of items displays some form of in-
terdependency when their value as a bundle is different from
the sum of their values as single items, resulting in comple-
mentarity or substitutability between the objects. It can be
argued that this is the distinguishing feature of CAs.

The degree of mutual interdependency between objects is
clearly related to the computational and communication ef-
ficiency of CAs. When there is no interdependency, then the
bidders’ preferences are linear (i.e., the valuation of a bundle
is the sum of the values of the items it contains); in this sit-
uation, computing the optimal allocation is straightforward,
and communication complexity is not an issue. However,
this case does not require a CA, since the items could be auc-
tioned sequentially with the same economic efficiency. On
the other hand, when the degree of mutual interdependency
is maximal (i.e., up tom-wise dependencies are exhibited
in the bidders’ valuations, wherem is the number of items

location, and what the optimal allocation would have been with
each bidder’s bids removed in turn, then answering the elicitor’s
queries truthfully can be made an ex post equilibrium strategy us-
ing the Vickrey-Clarke-Groves mechanism, as proposed in (Conen
& Sandholm 2001).

for sale), we have fully general valuations, and both winner
determination and preference elicitation are hard.

In this paper, we study the case where the degree of inter-
dependency between items is somewhere between 1 andm
(of course, some of the items in the CA may exhibit lower
degree of interdependency). We believe that this type of val-
uation is likely to arise in many economic scenarios. For
instance, when the items for sale are related to a geomet-
ric or geographic property (e.g., spectrum frequencies, rail-
road tracks, land slots,...), it is reasonable to assume that
only items that are geometrically/geographically close dis-
play some form of interdependency. Another consideration
that motivates our interest ink-wise dependent valuations is
that, due to cognitive limitations, it might be difficult for a
bidder to understand the inter-relationships between a large
group of items.

Another paper that independently introduces essentially
the same model appeared in October 2004 in a DIMACS
workshop (Chevaleyreet al. 2004)—a few weeks after we
had presented the work in this paper at another DIMACS
workshop (the DIMACS Workshop on Computational Is-
sues in Auction Design, Rutgers University, New Jersey).
In any case, the results do not overlap, except for the NP-
completeness result that we give later, which is stronger than
one presented in the other paper (Chevaleyreet al. 2004)
since we prove hardness in a more restricted setting.

When considering communication complexity, we will
focus our attention on a restricted case of preference elici-
tation, in which the elicitor can ask onlyvalue queries(what
is the value of a particular bundle?) to the bidders. Our inter-
est in value queries is due to the fact that, from the bidders’
point of view, these queries are very intuitive and easy to un-
derstand. They are also, together with demand queries, the
most commonly studied query class in the CA literature.

2-wise dependent valuations
Let I denote the set of items for sale (also called thegrand
bundle), with |I| = m. A valuation functionon I (valua-
tion for short) is a functionv : 2I 7→ R+ that assigns to any
bundleS ⊆ I its valuation. To make the notation less cum-
bersome, in this paper we will use notationa, b, . . . to de-
note singletons,ab, bc, . . . to denote two-item bundles, and
so on.

In the following, we will focus on the valuation function
of an arbitrary bidderA. Let us consider an arbitrary pair
a, b of items inI.

We have:

– if v(ab) = v(a) + v(b) thena andb areindependent;

– if v(ab) > v(a) + v(b) thena andb aresuper-additive;

– if v(ab) < v(a) + v(b) thena andb aresub-additive.

Given the dependencies between any pair of items inI, let
the2-wise dependency graphG2 be constructed as follows:

– let there be a node for every item inI;

– label nodea with v(a);2

2Slightly abusing the notation, we usea to denote both the item
and the corresponding node in the graph.



– if a andb are super- or sub-additive, put an (undirected)
edge(a, b) in the graph, and label the edge withv(ab) −
(v(a) + v(b)).

Under the assumption that there exist only 2-wise item
dependencies in the valuation function of bidderA, theG2

graph can be used to calculate the valuation of any possible
subsetS of I as follows: consider the subgraphGS of G2

induced by node setS; sum up all the node and edge labels
in GS . Formally, the class of2-wise dependent valuations
is exactly the class of valuations for which this computation
produces the correct valuation of any subsetS, i.e. the class
of valuations that can be accurately represented by theirG2

graphs.
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60

7080

70

-15 5

10

8

13

A B

C

D

Figure 1: 2-wise dependency graph representing the bidder’s
valuation in the auction of fashion clothing.

An example of a 2-wise dependent valuation could be the
following. Consider an auction of fashion clothing. In this
scenario, it seems reasonable to assume that items display
super- of sub-additivity depending on how good they look
together. In Figure 1, there are four items for sale: a rust
sweater, an olive green sweater, dark green trousers, and a
pair of dark brown shoes. The items have values as single-
tons (e.g., the rust sweater is worth $80 to the bidder), and
show 2-wise dependencies when bundled together. For in-
stance, the bundle composed of the olive green sweater, dark
green trousers and dark brown shoes has a super-additive
valuation ($223 instead of $200), because these items to-
gether form a nice outfit. Conversely, the rust sweater and
the dark green trousers clash, so their value as a bundle is
sub-additive ($125 instead of $140).

Note that the setting at hand (2-wise dependent valua-
tions) is not equivalent to allowing only bids on bundles
composed of at most two items: what we are bounding here
is the degree of interdependency between item valuations
when several items are bundled together, and not the cardi-
nality of the bundle. Indeed, the class of 2-wise dependent
valuations is significantly different from those correspond-
ing to existing bidding languages. For example, even the
simple example given above cannot be expressed using ORs
and XORs over bundles of two items.

The class of 2-wise dependent valuations is efficient from
the communication complexity point of view. In fact, it is
easy to see that any valuation in this class can be elicited by
asking onlym(m+1)

2 value queries (m single item queries,

and m(m−1)
2 queries for the two item bundles). The price

that must be paid for this is that not all possible preferences
can be expressed usingG2 graphs.

An interesting comparison can be made between the ex-
pressive power of 2-wise dependent valuations and that
of other classes of valuations, such as those presented
in (Zinkevich, Blum, & Sandholm 2003), which can also be
elicited asking a polynomial number of value queries. We
omit this comparison due to space constraint.
Remark. Costly disposalcan be easily expressed using 2-
wise dependencies graphs. Costly disposal models those sit-
uations in which the bidder incurs a cost for disposing of
undesired items. Thus, the monotonicity assumption typi-
cal of thefree disposalsetting, i.e. thatv(S′) ≥ v(S) for
anyS′ ⊇ S, need not hold. For instance, the fact that the
bidder valuesa at 2 andb at 5, wants at most one of the
items, and incurs a cost of 1 for disposing of an extra item,
can be represented using theG2 graph which assigns weight
2 to nodea, 5 to nodeb, and weight -3 to the edge(a, b).
To the best of our knowledge, 2-wise dependent valuations
are the only known class of valuation functions that can ex-
press costly disposal and can be elicited asking a polynomial
number of queries. In fact, the classes of easy to elicit val-
uations defined in (Blumet al. 2004; Nisan & Segal 2005;
Zinkevich, Blum, & Sandholm 2003), as well as the pref-
erence elicitation techniques proposed in (Hudson & Sand-
holm 2004) and referred therein, are based on the free dis-
posal assumption.

Learning almost2-wise dependent valuations
Let G2 denote the class of valuation functions that can
be expressed using aG2 graph. In this section, we con-
sider the case in which the valuation functionv does not
belong toG2, but it can be well approximated by some
v′ ∈ G2. (Care must be taken in using these approxi-
mations of valuations: for example, using approximations
of the bidders’ preferences may break the incentive com-
patibility of the VCG (Vickrey 1961; Clarke 1971; Groves
1973) mechanism. Of course, most real-world combinato-
rial auctions do not actually use the VCG mechanism due to
problems from which it suffers (Ausubel & Milgrom 2006;
Conitzer & Sandholm 2004). Moreover, if the costs of as-
sessing one’s valuations are taken into account, a recent re-
sult shows thatno mechanism (not even VCG) is incentive
compatible (Larson & Sandholm 2005).)

Bidder preferences can be represented using thehyper-
cube representation, which is defined as follows. Given the
setI of items for sale, we build the undirected graphHI in-
troducing a node for any subset ofI (including the empty
set), and an edge between any two nodesS1, S2 such that
S1 ⊂ S2 and |S1| = |S2| − 1. It is immediate thatHI

is a binary hypercube of dimensionm. Nodes inHI can
be partitioned into levels according to the cardinality of the
corresponding subset: level 0 contains the empty set, level 1
them singletons, and so on.

The valuation functionv can be represented usingHI by
assigning a weight to each node ofHI as follows. We assign
weight 0 to the empty set, and weightv(a) to any singleton



a. Let us now consider a node at level 2, say nodeab.3 The
weight of the node isv(ab) − (v(a) + v(b)). At the gen-
eral stepi, we assign to nodeS1, with |S1| = i, the weight
v(S1) −

∑
S⊂S1

w(S), wherew(S) denotes the weight of
the node corresponding to subsetS. The hypercube repre-
sentation of valuationv on item setI is denotedHI(v). It is
easy to see that any valuation functionv admits a hypercube
representation, and this representation is unique.

Given the hypercube representationHI(v) of v, the val-
uation of any bundleS can be obtained by summing up the
weights of all the nodesS′ in HI(f) such thatS′ ⊆ S.
These are the only weights contained in the sub-hypercube
of HI(v) “rooted” atS. We denote this sub-hypercube with
HS
I (v).
We will use the concept of the distance of a valuation

function from a class, defined as follows.

Definition 1 Let v be an arbitrary valuation function, and
C be an arbitrary class of valuation functions. Given a func-
tion v′ ∈ C, we say thatv′ is a δ-approximation ofv if
|v(S)−v′(S)| ≤ δ for every bundleS. The distance between
v and C, denotedd(v,C), is defined asmin{δ|∃v′ ∈ C
such thatv′ is a δ-approximation ofv}.

If the valuation function v to be elicited is aδ-
approximation of a 2-wise dependency functionv′, then the
following theorem shows that aO(m2δ)-approximation of
v can be learned askingm(m+1)

2 value queries.

Theorem 1 Assume that the valuation functionv is a δ-
approximation ofv′, for somev′ ∈ G2. Then, a function
g ∈ G2 can be learned asking them(m+1)

2 value queries on
bundles of size1 and2, such that for any bundle of itemsS,

|v(S)− g(S)| ≤ δ
(

1 +
|S|(|S| − 1)

2

)
.

Proof: Due to space limitations, we omit the proofs of most
of the results in this paper.

Theorem 2 The bound stated in Theorem 1 is tight for the
elicitation technique used in the proof. (For any value ofm,
there exist valuation functionsv, v′, with v′ ∈ G2 such that
v′ is a δ-approximation ofv, and the functiong learned in

polynomial time is aδ
(

1 + m(m−1)
2

)
-approximation ofv.)

Next, let us consider valuations such that all the weights
in the correspondingHI graph are non-negative. We call
these valuationsstrongly super-modularvaluations.4 It is
not hard to see that strongly super-modular valuations are
hard to elicit with value queries, because they require ex-
ponentially many values to specify. The following theorem

3Slightly abusing the notation, we denote withab both the bun-
dle composed by the two itemsa andb, and the corresponding node
in HI .

4The reason for this name is the following. If a valuation has
the property that all the weights in the correspondingHI graph are
non-negative, then it is super-modular. On the other hand, there
exist super-modular valuations such that some of the weights in
the corresponding hypercube are strictly negative. (Super-modular
valuations are valuations with increasing marginal utility.)

gives an upper bound on the distance between any strongly
super-modular valuation and theG2 class, which contains
easy to elicit valuations.

Theorem 3 Let v be an arbitrary strongly super-modular
valuation, and letv2 be the unique valuation function inG2

that coincides withv on the singletons and two-item bundles.
Let ci(v) = maxS,|S|=i{v(S) − v2(S)}, and letM(v) =
maxi=3,...,m

2ci(v)
i(i+1) . Then, there exists a functionv′ ∈ G2

such that|v(S)− v′(S)| ≤ M(v)
2 · |S|(|S|+1)

2 for any bundle

S. Thus, we haved(v,G2) ≤ M(v)
2 · m(m+1)

2 .

The following theorem shows that the bound stated in
Theorem 3 is tight.

Theorem 4 There exist strongly super-modular valuations
v such thatd(v,G2) = M(v)

2 · m(m+1)
2 .

The results stated in theorems 1 and 3 can be combined
into the following theorem, which gives an upper bound
on the error that we have when an arbitrary strongly super-
modular valuationv is approximated using a function inG2

using polynomially many queries.

Theorem 5 Let v be an arbitrary strongly super-modular
valuation. Then, a functiong ∈ G2 can be learned asking
m(m+1)

2 value queries such that|v(S)− g(S)| is at most:

M(v)
2

(
|S|(|S|+ 1)

2

)(
1 +
|S|(|S| − 1)

2

)
for any bundleS, whereM(v) is defined as in the statement
of Theorem 3.

Although the bound on the approximation error stated in
Theorem 5 is considerable, it is interesting that ifv has a
certain property (which is not sufficient to make it easy to
elicit), then the approximation error that we have if we ask
only m(m+1)

2 out of the2m − 1 possible value queries can
be bounded in a non-trivial way.

The approximation bound of Theorem 5 is composed of
two factors: the first factor,M(v)

2 · |S|(|S|+1)
2 , is due to the

fact thatv in general is this far away fromG2 valuations; the

second factor,
(

1 + |S|(|S|−1)
2

)
, derives from the fact that

the elicitor does not know the functionv′ ∈ G2 that best
approximatesv. While the first factor in the approximation
error in general cannot be improved, since it derives from the
fact thatv /∈ G2, a natural question is whether the elicitor
might do better than the functiong. We leave this as an open
problem.

Allocation with G2 valuations
In this section, we investigate the computational complex-
ity of the winner determination problem when all the bid-
ders participating in the auction have valuation functions in
G2. We focus on computing theoptimal allocation (as is
required, for example, for executing the VCG mechanism).

Theorem 6 Computing the optimal allocation in a CA
where all the bidders have 2-wise dependent valuation func-
tions is NP-complete, even when each bidder places only



values of 0 on individual items, and places nonzero values
on only two (adjacent) edges (in fact, a value of1 on each
of these edges).

Proof: It is easy to see that (the decision variant of) the prob-
lem is in NP: for any assignment of items to bidders, we can
compute the value of that assignment to each bidder in poly-
nomial time, and sum these values to get the assignment’s
total value.
To show that the problem is NP-hard, we reduce an arbitrary
instance of the NP-complete EXACT-COVER-BY-3-SETS
problem to an instance of the winner determination problem
as follows. Recall that in an EXACT-COVER-BY-3-SETS
problem instance, we are given a setS with |S| = m, and
subsetsS1, S2, . . . , Sn with |Sj | = 3 for all j, and are asked
whetherm3 of the subsets coverS. Then, in our clearing
problem instance, let there be an itemis for everys ∈ S,
and, for everySj = {s1

j , s
2
j , s

3
j} (wheres1

j , s
2
j , s

3
j is an ar-

bitrary ordering of the elements of the subset), a bidbSj
which places a value of1 on edges(is1j , is2j ) and(is2j , is3j ),
and places a value of 0 on everything else (including all ver-
tices). We are asked whether it is possible to obtain a value
of 2m

3 in this auction. We show the instances are equivalent.
First suppose there exists an exact cover by 3-sets. Then,
for eachSj in the cover, give the bidder corresponding to
bSj the itemsis1j , is2j , is3j . This is a valid allocation because
none of these sets of items overlap (because none of the sets
in the cover overlap). Moreover, because each such bidder’s
value in this allocation is2, and there arem3 such bidders,
the total value of the allocation is2m3 . So there exists an
allocation that achieves the target value.
Now suppose there is an allocation that achieves the tar-
get value. Letn(b) be the number of items allocated to
the bidder corresponding to bidb, and letv(b) be the value
of the allocation to that bidder. Then the following must
hold: if this bidder receives at least one item, we must have
v(b)
n(b) ≤

2
3 . Moreover, the inequality is strict unless the bid-

der receives exactly the three items that are endpoints of his
nonzero edges. The reason is the following:v(b) can be at
most2, and will be less unless the bidder receives at least
the three items that are endpoints of his nonzero edges, so
this is certainly true forn(b) ≥ 3. If n(b) = 2, thenv(b)
can be at most1 and the fraction can be at most1

2 < 2
3 ;

if n(b) = 1, thenv(b) = 0. Because the value of any al-
location is

∑
b∈W

n(b) v(b)
n(b) (whereW is the set of bids that

win at least one item), it follows that the target value can
be achieved if and only if all items are allocated to bidders,
and v(b)

n(b) = 2
3 for all b ∈ W . But because this equality

holds only if everybSj ∈ W receives itemsis1j , is2j , is3j , it
follows that theSj corresponding to winning bids in an al-
location achieving the target value constitute an exact cover
by 3-sets.

This contrasts, for example, with the case where bids are
on bundles of at most size 2 (and any number of a bidder’s
bids can be accepted), which can be solved in polynomial
time (Rothkopf, Pekěc, & Harstad 1998).

On the other hand, the following result shows that if the
graph obtained by merging theG2 graphs of the bidders dis-
plays certain structure, then the auction can be cleared in
polynomial time. (Similar results have appeared for other
graphical models of the bids (LaMura 1999; Sandholm &
Suri 2003; Conitzer, Derryberry, & Sandholm 2004).)

Theorem 7 Consider the graph of all vertices (items), and
all edges between items such that at least one bidder places
a nonzero value on the edge. Suppose this graph has no
cycles (it is a forest). Then the optimal allocation can be
computed inO(nm) time, wheren is the number of bidders.

Proof: The algorithm solves each tree in the forest sepa-
rately. Fix a rootr of the tree. For any vertexi in the
tree, lett(i, b) be the highest value that can be obtained in
the auction from itemi and its descendants alone (that is,
if we throw away all other items), under the constraint that
the bidder corresponding to bidb gets itemi. Let A(i, b)
be the set of all allocations of the descendants that achieve
this value. Then, for any clearing that assignsi to the bid-
der corresponding tob, without any loss we can change the
allocation of the items in the subtree to be consistent with
any element ofA(i, b) (assigning the descendants ofi in
the exact same manner); this will achieve at least as large
total value from edges and vertices within the subtree; the
value from all other vertices and all other edges that are dis-
joint from the subtree is clearly unaffected; and the only
other edges that have one of the vertices of the subtree as
an endpoint havei as that endpoint—and becausei is still
assigned to the bidder corresponding tob, they remain un-
affected. Letc1, . . . , cmi be the children ofi. Then, we

can conclude thatt(i, b) = vb(i) +
mi∑
k=1

max{vb(i, ck) +

t(ck, b),maxb′ 6=b t(ck, b′)}. This allows us to set up a sim-
ple dynamic program that will compute thet(i, b) from the
leaves upwards, and thus will eventually computet(r, b) for
all b, and the highest sucht(r, b) is the optimal allocation
value. We observe that for every bidder, for every edge(i, j),
the valuevb(i, j) is read exactly once; also, for anyb andi,
the expressionmaxb′ 6=b t(i, b′) takes only constant time to
compute, because there are only twob′’s for which we ever
(for anyb) need to look att(i, b′): one that maximizest(i, b′)
(call it bi1), and another one (bi2) which maximizest(i, b′)
over all the remainingb′ (which gives the second highest
t(i, b′))—for the case whereb = bi1. It follows that the run-
ning time of the algorithm isO(mn). The straightforward
extension of the program to compute a best partial allocation
a(i, b) (with the restriction thati is allocated to the bidder
corresponding tob) will allow for also computing an opti-
mal allocation.

Note that Theorem 7 defines a non-trivial class of costly
disposal valuation functions which can be elicited using
a polynomial number of value queries, and for which the
winner determination problem can be solved in polynomial
time. To the best of our knowledge,this is the first class of
computational and communication efficient costly disposal
valuations in the literature.



Generalization: k-wise dependency
The 2-wise dependency model can be easily extended to the
case ofk-wise dependency, for somek ≤ m, by adding
to the graphj-multiedges between subsets of the items of
cardinality j, for any j = 3, . . . , k. These multiedges ac-
count for up tok-wise dependencies between items. Given
thek-wise dependency graphGk, the valuation of a bundle
S is obtained by considering the subgraphGS induced by
nodes inS, and summing up the weights of the nodes and
of the edges (including multiedges) inGS . An example of a
G4 graph, along with the corresponding valuation function,
is shown in Figure 2. The class of valuations that can be
expressed using aGk graph is denotedGk. (We note that
these are exactly the valuation functions whose hypercube
representation has nonzero weights only on levels1 through
k.)
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Figure 2: Example of 4-wise dependence graph, and the cor-
responding valuation functionv. Multiedges are represented
as dashed lines.

The following proposition shows that if a valuation func-
tion is included inGk for some constantk < m, then it can
be elicited in polynomial time.

Proposition 1 Let k be an arbitrary constant, and assume
that there exist only up tok-wise dependencies between
items in the valuation functionv. Then,v can be elicited
askingO(mk) value queries.

The following theorems generalize some of the results
presented in the previous sections to the case ofk-wise de-
pendent valuations.

Theorem 8 Assume that the valuation functionv is a δ-
approximation ofv′, for somev′ ∈ Gk, with k an arbitrary
positive constant. Then, a functiong ∈ Gk can be learned
askingO(mk) value queries, such thatv(S) = g(S) for any
bundleS with |S| ≤ k, and

|v(S)− g(S)| < δ

(
1 +

(
|S|
k

))
for any bundleS with |S| > k.

Theorem 9 Let v be an arbitrary strongly super modu-
lar valuation, and letvk be the unique valuation function
in Gk that coincides withv on the bundles of cardinal-
ity at mostk. Let ci(v) = maxS,|S|=i{v(S) − vk(S)},

and letM(v) = maxi=k+1,...,m
ci(v)∑

j=1...k (ij)
. Then, there

exists a functionv′ ∈ Gk such that|v(S) − v′(S)| ≤
M(v)

2 ·
∑
j=1...k

(|S|
j

)
for any bundleS. Thus, we have

d(v,Gk) ≤ M(v)
2 ·

∑
j=1...k

(
m
j

)
.

It may appear that the bound stated in Theorem 9 is looser
than the one reported in Theorem 3, which would be coun-
terintuitive. However, we have to consider that, denoting
withM2(v) andMk(v) the value ofM as in the statement of
theorems 3 and 9, respectively, typicallyM2(v) � Mk(v).
In any case, denoting byd2, d3, . . . , dk the distance between
v and theG2,G3, . . . ,Gk classes, respectively, we have
d2 ≥ d3 ≥ . . . dk because the classes subsume each other.

The Gk hierarchy
LetGk denote the class ofk-wise dependent valuations. It is
clear that these classes define a hierarchy, whereGi ⊂ Gi+1

and every inclusion is strict. The bottom class of the hierar-
chy is theG1 class, which corresponds to the class of linear
valuations (i.e., the valuation of any bundle is simply the
sum of the values of the singletons). These valuations are
easy to elicit and to allocate, but are of no interest in the
CA setting. Let us consider the second element of the hi-
erarchy,G2. Theorem 6 shows that valuations in this class
are hard to allocate. This means that even the most lim-
ited form of interdependency between items (2-wise depen-
dency) is sufficient to render the problem of finding the op-
timal allocation hard. On the other hand, valuations that dis-
play up tok-wise item dependency (wherek is an arbitrary
constant) remain easy to elicit. The following proposition
shows that when the interdependencies are between sets of
g(m) objects, whereg(m) is an arbitrary function such that
g(m) → ∞ asm → ∞, preference elicitation with value
queries becomes hard.

Proposition 2 Let v be an arbitrary valuation inGg(m),
whereg(m) is an arbitrary function such thatg(m) → ∞
asm→∞. Thenv is hard to elicit with value queries.

Finally, it is easy to see that the class at the top of this
hierarchy,Gm, is fully expressive, i.e., it can express any
valuation function. Thus, we can end with the following
theorem.

Theorem 10 Let valuations which display up tok-wise de-
pendencies belong to theGk class. Then we have the fol-
lowing hierarchy:

G1 ⊂ G2 ⊂ · · · ⊂ Gm ,

where every inclusion is strict. Valuations inG1 are easy
to elicit and allocate. Valuations inGk, wherek ≥ 2 is an
arbitrary constant, are easy to elicit and hard to allocate.
Valuations inGg(m), whereg(m) is an arbitrary function
such thatg(m) → ∞ asm → ∞, are hard to elicit with
value queries and hard to allocate. The class at the top of
the hierarchy,Gm, contains all possible valuations.

Conclusions
We introduced the degree of interdependency between items
as a key notion in combinatorial auctions, and showed that



when this degree is bounded by a constant, polynomial elic-
itation is sufficient. Additionally, we showed how the auc-
tioneer can approximate bidders’ preferences by preferences
with a bounded degree of interdependency, using only poly-
nomially many queries. We showed that the winner determi-
nation problem is already NP-complete for preferences with
degree of interdependency 2 (this worst-case hardness may
not be a problem for winner determination algorithms in
practice), and we also demonstrated a special case in which
the winner determination problem can be solved in polyno-
mial time.

One path for future research is to experimentally study
the hardness of the communication and winner determina-
tion problems when bidders’ valuations are drawn according
to a model of bounded interdependency. Another path is to
find and study extensions of this model that allow for richer
valuation functions but nevertheless maintain (at least some
of) the desirable communication and winner determination
properties of valuations with bounded interdependency. Fi-
nally, we can attempt to generalize to variants and gener-
alizations such as combinatorial reverse auctions and ex-
changes.
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