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Abstract. Options are a basic, widely-traded form of financial derivative that offer payouts based on the future price of an
underlying asset. The finance literature gives us option-trading algorithms that take into consideration information about how
prices move over time but do not explicitly involve the trades the agent made in the past. In contrast, the prediction market
literature gives us automated market-making agents (like the popular LMSR) that are event-independent and price trades based
only on the inventories the agent holds. We simulate the performance of five trading agents inspired by these literatures on a
large database of recent historical option prices. We find that a combination of the two approaches produced the best results in
our experiments: a trading agent that keeps track of previously-made trades combined with a good prior distribution on how
prices move over time. The experimental success of this synthesized trader has implications for agent design in both financial
and prediction markets.
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1. Introduction

Many prediction markets today rely on automated
market makers to price contracts. These are electronic
agents that stand ready to buy and sell contracts with
participants and adjust the prices they offer in response
to those trades. Prediction markets use these agents
because there may not be enough organic liquidity in
a market to have narrow bid/ask spreads, or the event
space the prediction market runs over is so large that
buyers and sellers could have trouble matching their
orders without the help of an intermediary (Pennock
and Sami, 2007; Chen and Pennock, 2010). These
automated market making agents typically price
contracts solely based on the trades the market-making
agent made in the past (i.e., the agent’s inventory).
Consequently, automated market makers are usually
outcome-agnostic, which means that they can be
applied to virtually any elicitation problem without
particular domain knowledge. This unlocks the “long
tail” of elicitation problems that are of specific, rather
than general, interest. For instance, Inkling Markets,
Crowdcast, and Consensus Point, which are start-up
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companies, offer clients the ability to use an internal
prediction market mediated by an automated market
maker to forecast the outcome of uncertain events that
are of interest to only a small number of people (for
instance, whether a project will be completed on time).

These market makers are almost always used in
fake-money applications, not with actual money on
the line. In a prediction market, the goal of a market
maker is often to assist in information elicitation, and
so the losses that inevitably result from these market
makers are viewed as subsidies to encourage traders
to participate and reveal their information (Hanson,
2003; Pennock and Sami, 2007; Chen and Pennock,
2010). This reasoning provides a contrast between
a market maker in a prediction market, which has
a designated role to provide liquidity and can lose
money acceptably, and a trading agent in a financial
market which speculates for its own account. We
specifically study the latter in this paper. A trading
agent will make or lose money based on whether
its distribution over futures states of the world is
better or worse than that of its counterparties, and
an outcome-agnostic agent, the norm for making
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prediction markets, generally has too much entropy in
its prior over outcomes to profit.

The finance literature, and particularly the finance
literature as it pertains to derivatives, has taken
a different modeling approach than the prediction
market literature. The modern derivatives literature
started with the seminal work of Black-Scholes and
Merton (BSM) (Black and Scholes, 1973; Merton,
1973). By providing a practical way to price options
contracts effectively, BSM led to the options markets
that are the precursors of modern derivatives trading.
Additionally, because the formula for calculating
prices is entirely self-contained, it provided the
constructive groundwork for the notion of autarky
within finance theory. The BSM formula takes only
three inputs—the current price, volatility, and the risk-
free rate of return—to produce an ensemble of options
prices. Although it is problematic to generalize over
the entire finance literature, speaking broadly, most
models of asset pricing operate using autarky as a
guiding principle. In an autarky model, prices are
philosophically prior to the agents that trade on them,
so these models have no reliance on an agent’s past
actions in determining prices.

In this paper, we synthesize ideas from the
prediction markets and finance literatures to create
more successful trading agents than either literature
on its own. The key insight in this paper is that these
two notions: having good priors, and learning from
inventories, are not oppositional. We combine them to
create a trading agent that develops actionable prices
based on both factors. Interestingly, the combination
of the two ideas is not straightforward, and there are
significant theoretical hurdles that serve to restrict
the valid combinations of prior distributions and the
utility models that determine how an agent reacts to its
inventory.

The principal contribution of our work is the
experimental simulation of five different trading
strategies on a large body of recent options data:

1. A zero-intelligence agent, added as an experi-
mental control, that trades randomly.

2. An orthodox BSM Log-normal distribution
trader.

3. A Normal distribution trader, with mean and
variance matched to the Log-normal trader.

4. The Logarithmic Market Scoring Rule (LMSR),
the most popular automated market maker in
Internet prediction markets (Hanson, 2003, 2007;
Pennock and Sami, 2007) which is equivalent to

an exponential utility trading agent with constant
uniform priors.

5. A hybrid agent that combines exponential utility
with normal distribution priors.

We find that by many different measures, including
expected return and worst-observed performance,
the hybrid trader outperforms the other traders.
Consequently, our results support the hypothesis that a
trader’s current exposure can be a profitable influence
on future actions, and that a trader can learn from their
past actions to create a more accurate estimate of the
future.

Even though the hybrid trader performs the best
on several key metrics, it does not stochastically
dominate the performance of the parametric traders
from the finance literature. This means it is possible
to construct a coherent utility function that would
prefer the performance of the parametric traders.
However, the relative performance of the hybrid trader
relative to the parametric traders provides insights
into the larger qualitative question of how the hybrid
trader is able to perform well. We believe our results
are best interpreted by the hybrid trader profitably
insuring against the risk that its model of the future is
inaccurate, a claim which we justify in detail.

It is important to clarify what we believe is
significant about our results. We do not believe that
our hybrid trader is the best options trading agent that
could be devised. Certainly, BSM can be considered
a theoretical model, rather than a practical trading
agent, and there are likely other agents that could be
constructed that would have better performance on our
dataset. These agents could employ more sophisticated
models about how prices move through time, detailed
order book information, or outside information like
press releases and macroeconomic forecasts. But what
is significant about our work is this: by incorporating
inventories into a Normal distribution trader, we
increase performance without incorporating any new
or more sophisticated information into the trading
process. Instead, we achieve these performance gains
simply by paying attention to information that autarky
models discard.

As artificial intelligence researchers we are par-
ticularly keen on interpreting our results within the
intellectual framework of our discipline. Much of
modern, optimization-based AI is grounded in the idea
of modeling (or actually constructing) a robot that can
observe its environment, effect an action, and receive
a reward that depends on its state and the actions it has
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chosen (see Russell and Norvig, 2003, Chapter 2). This
model fits naturally into trading options, where the
environment is the market, the actions are the contracts
to trade, and the rewards are literal monetary profits
and losses. History-keeping is vital to what constitutes
a rational agent in the AI literature. In a general
environment an agent that does not retain its history
cannot be rational. So in this context, our results are
not surprising: agent performance is enhanced by both
built-in knowledge about the future and the ability to
learn from one’s past actions.

2. Options

In this section we introduce options and their
associated terminology, as well as our dataset.

2.1. What are options?

Options contracts involve the future opportunity to
buy or sell some kind of underlying instrument (the
underlying) at a set price (the strike price).

There are two types of option contracts. A call
option gives its holder the right to buy an obligation at
a specified price, and a put option gives its holder the
right to sell an obligation at a specified price. These
contracts have a hinged form of payouts.

Definition 1. Let the underlying expire at price π.
A (European) call option with strike price s has value
max(π − s, 0). A (European) put option with strike
price s has value max(s− π, 0).

Options that strike close to the current price of the
underlying are known as at the money. Options that are
valuable at the current price of the underlying (high-
strike puts or low-strike calls) are known as in the
money. Options that are worthless at the current price
of the underlying (low-strike puts or high-strike calls)
are known as out of the money.

There are two principal ways that govern the
exercise of options. European options expire in cash
at a certain date, the strike date. In contrast, American
options can be exercised for delivery of the underlying
at any point before the strike date. The additional
optionality of American options makes them necessar-
ily at least as expensive as European options. How-
ever, this additional optionality is rarely exercised,
making American options essentially European in
practice. Varian (1987) provides a theoretical argument
based on no-arbitrage principles for European and
American options having exactly the same prices. We

examine both European and American options in our
dataset.

Options with the same underlying and strike date
form what is called an options chain. Chains consist
of an ensemble of contracts along with their associated
prices. For instance, a chain might consist of calls
and puts with strikes of 900, 1000, and 1100 for the
^SPX underlying expiring on December 22, 2007.
Each of these contracts has a price at which they can be
bought or sold (the ask and bid prices, respectively),
and theoretically all of these prices are based on some
underlying distribution over the expiration price. This
distribution changes over time as the price of the un-
derlying and the time until expiration changes. When
we perform our experiments, we step through simulat-
ing trading agents on snapshots of each options chain
as it evolves over time, from initiation until expiration.

2.2. Historical dataset

The dataset we use covers almost seven years
of data on eleven underlyings, taken at 15-minute
intervals. It is comprised of nearly 300 million
{underlying, expiration date, strike price, datetime,
best bid, best ask} tuples, and the corresponding
{underlying, datetime, underlying best bid, underlying
best ask} tuples for the underlying. The data spans
from January 2004 through September 2010. To our
knowledge this is the one of the more-detailed datasets
used in an academic study on options—studies
generally use data from daily closing prices, which
is much less detailed (and one of the most widely-
cited papers on empirical option pricing, Dumas et al.
(1998), uses weekly data). Table 1 gives an overview
of the dataset.

In order to provide a clean train/test separation,
we divide the first two years (January 2004 through
December 2005) to learn the relevant parameters
for our simulation, and only test on the remaining
data. A naïve split between training and testing data
that randomly placed chains or days into different
partitions would be tainted, because the training and
test sets would overlap temporally. Consequently, only
options chains that expire in 2006 and beyond are in
our testing set. The number of complete chains in the
testing set for each underlying is noted in the “Testing
chains” column of Table 1.
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Table 1
Our options dataset includes a diverse mix of underlyings, including indices, bonds, commodities, and equities of very liquid to moderately
liquid contracts cleared both in American and European ways

Underlying Description Clearing Number of records Testing chains

^SPX S&P 500 Index European 53.6 million 6

^DJX Dow-Jones Index European 43.7 million 9

^NDX NASDAQ Index European 30.1 million 3

^IRX Thirteen-week treasury bill European 3.4 million 19

^FVX Five-year treasury yield European 6.2 million 19

^TNX Ten-year treasury yield European 6.9 million 16

^XAU Gold-Dollar Index European 10.1 million 16

X US Steel American 9.3 million 5

C Citigroup American 7.5 million 6

GE General Electric American 7.7 million 5

MSFT Microsoft American 8.5 million 5

XOM Exxon-Mobil American 7.7 million 5

3. Agents based on Log-Normal and Normal
Distributions

In this section we introduce the first two traders we
used in our experiments, the Log-normal and Normal
distribution traders. These traders are derived from
existing work in the finance literature.

3.1. The BSM model

Option pricing was revolutionized and popularized
by the work of Black and Scholes (1973) and Merton
(1973) (BSM). Those authors described a parametric
framework under which prices on the underlying
change according to a log-normal distribution, which
was the solution to a differential equation.

This framework was essentially unchallenged until
“Black Monday” of 1987, where stock prices dropped
precipitously in a single day. After this, options now
show a persistent “volatility smile” or “volatility
skew”, where out-of-the-money options are overpriced
relative to BSM (MacKenzie, 2006). An interpretation
of this phenomenon is that the log-normal distribution
of future prices as predicted by BSM is inaccurate, and
the skew represents an effort to make the predicted
distribution heavier-tailed. Another interpretation is
that investors use options to provide insurance against
the state of the world in which extremely low values
of the underlying are realized.

3.2. Calculating contract values when the underlying
is log-normally distributed

We use a constant (daily) volatility parameter σ
for each underlying. These values are learned from

Table 2
The (daily) volatility parameters σ are learned by taking the MLE of
the daily changes of each underlying in the training set

Underlying σ

^SPX .006814
^DJX .006781
^NDX .010448
^IRX .014504
^FVX .016970
^TNX .012679
^XAU .018846
X .027520
C .008436
GE .009329
MSFT .010200
XOM .012430

our training data in order to assure a clean train/test
separation. Table 2 shows the values we used in our
experiments.

In addition to the current price and the volatility
parameter σ, the BSM model takes an additional
input, the so-called risk-free rate of return. This value
reflects the time-cost of money. In our exploratory
data analysis over our training data we did not
see significant changes in performance for different
realistic values of the risk-free rate (between zero and
five percent annualized). For consistency, in our tests
we set this value equal to zero for all the trading
agents. In practice, banks, market makers, and large
hedge funds will have small risk-free rates over short
time horizons. Furthermore, setting this rate equal to
zero means that any returns generated are exclusively
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from options trading, and not from interest on passive
income.

Because of the popularity of the BSM model,
the formulas to calculate prices from a log-normal
distribution are well-known. The so-called partial
expectation of the log-normal distribution has an
analytic expression. Let f denote the density function
and F the distribution function of a log-normal
distribution parametrized by µ and σ. Then the partial
expectation formula is:∫ ∞

s

xf(x)dx = eµ+σ2/2Φ
(
µ+ σ − log s

σ

)
where Φ(·) is the distribution function of the

standard normal distribution.
When this value is known, the price of a call option

can be calculated, because the price of a call option
with strike s is∫ ∞
s

(x− s)f(x)dx =
∫ ∞
s

xf(x) dx−
∫ ∞
s

sf(x) dx

= eµ+σ2/2Φ
(
µ+ σ − log s

σ

)
− s(1− F (s)).

By the use of the well-known put-call parity we can
calculate the price of a put option at the same strike.
The parity says that the price of a call at a strike, plus
that strike, equals the price of a put at that strike, plus
the value of the underlying. (Throughout this work,
when we buy or sell underlyings it is assumed that
the position will be closed when the options expire.)
Once we have calculated the value of the call, the only
unknown value in the put-call parity equation is the
value of the put.

3.3. Calculating contract values when the underlying
is normally distributed

We also implemented a trader that models the
underlying’s expiration price as a normal distribution,
instead of a log-normal. This trader sets the mean and
variance of the normal distribution to match that of the
log-normal distribution.

Normal distributions are a feature of much of the
literature on market making in both prediction markets
and finance. As O’Hara (1995) discusses, theoretical
frameworks often model underlying prices as normal
distributions because the conjugate prior to a normal

distribution (with known variance) is another normal
distribution. Consequently, it is common for agents
to have a normal prior distribution and then update
that distribution to a posterior normal distribution
as more (normally-distributed) information arrives.
This allows agents in models to act rationally while
still retaining closed-form expressions for analytical
tractability. Examples of models using normal distri-
butions to project the future price of an asset include
the classic models of Glosten and Milgrom (1985) and
Kyle (1985), as well as more recent models such as
that of Das and Magdon-Ismail (2009).

In the context of options, however, normal dis-
tributions are conceptually much more problematic
than log-normal distributions. This is because they
have support over the whole real line, rather than
just over positive values. Since negative values cannot
exist as termination prices (shareholders are not
personally liable for the debts of a company), this
makes the normal distribution inherently unrealistica.
Recognition of this problem dates back to some of
the earliest work on asset pricing (Merton, 1971).
Reflecting this intuition, our results showed that the
normal distribution trader generally performed worse
than the log-normal distribution trader, even though
the two traders matched the mean and variance of their
distributions.

To solve for prices using a normal prior, we
used Gauss-Hermite quadrature (Judd, 1998). Let
Eµ,σ(f) denote the expectation of the function f
under a normal distribution with mean µ and standard
deviation σ. Gauss-Hermite quadrature provides a set
of nodes xi and weights wi such that

Eµ,σ(f) ≈
∑
i

wif(xi)

by implicitly converting the function f to an approxi-
mation by orthonormal polynomials.

4. The LMSR as an option trading agent

In this section we discuss how we implemented the
LMSR, the de facto automated market maker used

aOne way to overcome this limitation is to instead deal
with truncated normal distributions, where the probability mass
that exists below zero is re-distributed over the positive values
(e.g., Chang and Shanker, 1986). However, these concerns are
more theoretical than practical, because in our simulations the total
probability mass for negative realization values appeared to be small
enough that truncating the distribution would not have changed
agent actions.
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in Internet prediction markets, as an options trading
agent.

4.1. Background

Internet prediction markets typically do not have
enough organic liquidity or interest to support
trade. Therefore, prediction markets can benefit from
automated market makers—algorithmic agents that
provide liquidity. In a typical market of this type,
traders place bets directly with the automated market
maker, who then adjusts the prices of the bets offered
to traders in response to the inventory the market
maker now holds. The presence of an automated
market maker gives even the least (organically) liquid
markets a relatively tight bid/ask spread to facilitate
price discovery and the ability for traders to liquidate
their positions whenever they choose. Introductions to
automated market making can be found in Pennock
and Sami (2007) and Chen and Pennock (2010).

Unlike market makers in financial markets, the
automated market makers of prediction markets are
designed to facilitate trade first and make profits sec-
ond. In fact, many prediction markets are designed so
that the market maker will lose money in expectation
to the set of traders; these losses are viewed as a
subsidy paid from the market administrator to the
traders to pay for the information they supply. Because
of this subsidy, most Internet prediction markets use
artificial currencies or raffle tickets, rather than real
cash.

The most popular automated market maker used
in Internet prediction markets is the LMSR, an
automated market maker with particularly desirable
properties (Hanson, 2003, 2007). The LMSR is
used by a number of companies including Inkling
Markets, Consensus Point, Yahoo!, Microsoft, and the
large-scale non-commercial Gates Hillman Prediction
Market at Carnegie Mellon (Othman et al., 2010).
The LMSR is also the focus of academic studies
about market microstructure (Othman and Sandholm,
2010b) and laboratory studies of market maker perfor-
mance (Das, 2008; Brahma et al., 2010; Chakraborty
et al., 2011). We proceed to give a mathematical
formulation of the LMSR.

4.2. Representation

Let the space of possible futures be exhaustively
partitioned into n events, {ω1, . . . , ωn}, so that exactly
one ωi will be realized. Let x be a vector of payouts,

so that xi is the amount the market maker must pay
out if ωi is realized. The LMSR is a cost function
that translates these payout vectors into a single scalar
value. The LMSR is given by

C(x) = b log

(∑
i

exp(xi/b)

)

Where b > 0 is an exogenous constant known as
the liquidity parameter. Larger values of b correspond
to larger worst-case losses by the LMSR, which loses
at most b log n. On the other hand, larger values of
b produce tighter bid/ask spreads. When b= 1, the
LMSR is equivalent to the entropic risk measure
from the finance literature (Föllmer and Schied,
2002), however, the techniques were developed
independently. (Agrawal et al. (2009) discusses the
similarities between automated market makers and risk
measures.)

Automated market makers work by charging a
trader that wishes to move the market maker’s payout
vector from x to y the amountC(y)−C(x). Consider,
for instance, an automated market maker pricing
bets on a baseball game between the Red Sox and
Yankees, so that the events are ω1 = Red Sox win and
ω2 = Yankees win. Assume that b= 100, and that the
market maker’s current state is (300, 200), so that the
market maker must pay out 300 dollars if the Red
Sox win and 200 dollars if the Yankees win. Now,
imagine a trader wishes to buy a bet that would pay
out 50 dollars if the Red Sox win. Accepting that bet
would change the market maker’s payout vector from
(300, 200) to (350, 200). Consequently, the market
maker quotes the trader a price of

C((350, 200))− C((300, 200)) ≈ 39

dollars for the bet.
One feature of the LMSR is that the gradient of its

cost function produces a probability distribution over
the states

∇iC(x) =
exp(xi/b)∑
j exp(xj/b)

.

4.3. Compressing the state space

For the log-normal and normal distributions, we
took the view that the underlying would expire as a
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continuous process. In reality, the space of expirations
is countably infinite, delimited by one-cent intervals.

It is natural, however, to reduce this infinite space to
a finite range of possibilities. This is a lossy operation;
there is perhaps the chance the final outcome will fall
outside the range we specify. Therefore, we should
take a wide range. Consider the ^SPX underlying,
which tracks the S&P 500; it has a value of around
1000. It is reasonable to assume that for near-term
options, its expiration price will be between 100 and
10,000. With one-cent discretization, this implies a
space of about n = 1 million events.

Very large event spaces like this pose two problems
for the LMSR; one practical, and the other theoretical.
First, the LMSR is numerically unstable over large
event spaces; this problem was noted in the Gates
Hillman Prediction Market (Othman and Sandholm,
2010a), and was also a problem in Yahoo’s Predictalotb

(which ran over a combinatorially large event space).
This numerical instability makes implementing the
LMSR over very large event spaces challenging,
unwieldy, and potentially inaccurate. The second prob-
lem with large event spaces is that they correspond to
larger worst-case losses; in order to maintain realistic
worst-case losses the b parameter would need to be
much smaller, leading to a large bid/ask spread that
would not facilitate much trade.

In full form, the size of the event space we would
need to consider makes applying the LMSR to options
markets extremely challenging. Fortunately, we can
achieve a significant lossless dimensionality reduction
that makes automated market making for options
feasible. The key to compressing the state space is
to focus only on the strike prices, not the expiration
prices. Let the set of ordered strike prices be given
by s = {s1, s2, . . . , sn} and the market maker have
corresponding payout vector x = {x1, x2, . . . , xn}.
This idea, of compressing the state space only to
relevant strike prices, is a feature of many options
trading models (e.g., Varian, 1987).

Lemma 1. Let the expiration price be si < s < si+1,
such that s = αsi+(1−α)si+1. Then if there exist no
contracts written for a strike price between si and si+1,
the market maker must pay out αxi + (1− α)xi+1.

Proof. An options contract is piecewise linear with
a joint at its strike price, underlyings are linear, and
our portfolio consists only of these contracts. Since

bhttp://www.predictalot.com

a combination of linear functions is also linear, if
no contract has a strike price between si and si+1,
our payoffs will move linearly with the realized price
between si and si+1. �

This linearity result allows us to, in effect, collapse
the continuous state space of possible prices [s1, sn]
into the set of discrete prices {s1, . . . , sn} by bounding
our realized loss.

Proposition 1. Let x= maxi xi represent the maxi-
mum value the market maker must pay out if s ∈
{s1, . . . , sn} is realized. Then x is also the maximum
value the market maker must pay out if s ∈ [s1, sn] is
realized.

If a value outside of the strike price range is realized,
we might lose more than what would be suggested by
the xi. One way to solve this problem is to include
two dummy strike prices: one at zero, and another
at an arbitrarily large value. This essentially prevents
the final state from falling outside of the span of
the strike prices. While this is appropriate for more
general settings (e.g., sparsely-traded underlyings) we
did not implement these dummy strikes into our LMSR
trading agent. We found that for our underlyings the
extreme strike prices of our option chains generally
gave reasonable bounds on the expiration price.

4.4. Implementation details

Recall that trades are priced in the LMSR based
on the vector of payouts currently held by the market
maker. In this section we describe how to go from
an inventory of options contracts to a payout vector.
Let {s1, . . . , sn} be the ordered set of strikes we are
considering, and x = {x1, . . . , xn} be the payout
vector corresponding to the realization of each strike.
Formally, selling a call at strike s corresponds to the
payout vector x = {xi}ni=1 where

xi =
{
si − s if si ≥ s
0 if si < s

Selling a put at strike s corresponds to the payout
vector

xi =
{

0 if si > s
s− si if si ≤ s

Selling the underlying corresponds to a payout
vector of

xi = si
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The payout associated with an event (i.e., xi)
depends directly on the strike price associated with that
event (i.e., si). For example, selling a contract of the
underlying corresponds to a payout of 30 dollars if the
underlying expires at 30, and a payout of 50 dollars if
the underlying expires at 50. Selling a call at a strike
of 20 corresponds to a payout of 0 if the underlying
expires at 20 (or below), but a payout of 30 if the
underlying expires at 50.

Buying any contract induces the negative payout
vector of selling that contract. Observe that when we
quote the price to buy a contract the value will be
negative, suggesting that we need to compensate our
counterparty (i.e., pay out money for) the contract in
question.

The set of strike prices we model for the LMSR
trader is all the currently-offered strike prices, plus
any strike prices corresponding to contracts we traded
in the past. Given an inventory I of bought and sold
contracts, we can calculate the payout pi at any strike
si by doing an element-wise sum for the payout vector
x of each accumulated contract:

pi =
∑
x∈I

xi

This cumulative payout vector p is then used to
price the available options in the chain; if a prospective
contract induces a payout vector y the LMSR trader
prices the contract at

C(p + y)− C(p)

The final issue is how to set the liquidity param-
eter b. For our experiments we set b equal to 2500
times the initial underlying price, a value that yielded
good performance over the training data. Values much
smaller than this resulted in sharply diminished trade
because the bid/ask spread was too large. Values much
larger than this resulted in marginal prices which
stayed close to a uniform distribution for the entire
trading period.

4.5. The LMSR as a constant-utility cost function

In this section we introduce an alternate formulation
of the LMSR as a constant-utility cost function (Chen
and Pennock, 2007). The cost functions define a utility
function and then charge interacting traders precisely
as much as required to maintain constant expected
utility. In the finance literature, these schemes are
known as indifference pricing (Carmona, 2009).

Definition 2. Let u : R 7→ R be an increasing concave
function, π be a probability mass function over the
ωi, and x0 ∈ dom u. A constant-utility cost function
implicitly solves∑

i

πiu(C(x)− xi) = u(x0)

The marginal prices of a constant-utility cost
function are given by

∇iC(x) =
πiu
′(C(x)− xi)∑

j πju
′(C(x)− xj)

(see Jackwerth, 2000; Chen and Pennock, 2007 for
details.)

By recalling that the marginal prices in the LMSR
are given by

∇iC(x) =
exp(xi/b)∑
j exp(xj/b)

it is easy to see that the LMSR is equivalent to
a constant-utility cost function with πi = 1/n and
u(x) = − exp(−x/b). In words, the LMSR is an
exponential utility agent with a uniform prior over the
events. In the next section, we explore how to change
the prior distribution from uniform to something more
accurate.

5. Trading agents based on constant exponential
utility

We have presented two different ways of thinking
about how to price options. The first is the traditional
approach from finance, derived from projecting a
distribution over the future and pricing obligations
based on this projection. The second approach is
derived from automated market making in prediction
markets. It involves pricing obligations based only on
trades previously made. In this section, we explore
how to achieve a synthesis between these two ideas,
creating a market maker with a good prior that also
responds to past trades.

This effort is immediately complicated by the
fact that models from finance typically involve
generating continuous distributions over the final
strike price, while the LMSR, as we discussed in
the previous section, is for discrete distributions. In
order to synthesize these two models one needs to
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either discretize a continuous distribution, or develop
a continuous analogue to the LMSR. Since the
existing literature in financial options is based around
continuous distributions, we choose to do the latter in
order to better align our work with that literature. (We
study a version of the LMSR with a good discrete prior
in Appendix C. We found that it performs better than
the maximum-entropy LMSR, but much worse than
the trader developed in this section.)

We synthesize the two methodologies by developing
a version of the LMSR over continuous spaces by
viewing it as a constant-utility cost function.We can
generalize the constant-utility cost function framework
we described in Section 4.5 to continuous event
spaces. In the continuous setting, our payout vectors
are functions x : R 7→ R, and cost functions become
functionals that map these functions to scalars, C :
(R 7→ R) 7→ R.

Definition 3. Let µ be a probability distribution over
possible expiration prices, u : R 7→ R be an increasing
concave function, and x0 ∈ dom u. A continuous
constant-utility cost function C(x) is given implicitly
by the solution to∫ ∞

0

µ(t)u(C(x(t))− x(t)) dt = u(x0)

Given this framework, it seems like it would
be straightforward to combine the LMSR with the
orthodox BSM forecasting model: simply set µ to be
equal to the appropriate log-normal and set u equal
to exponential utility. Surprisingly, this approach does
not work as planned and instead produces undefined
prices for simple actions.

5.1. The undefined prices phenomenon

In a nutshell, what produces undefined prices is
the tradeoff between how quickly the tails of the
agent’s prior distribution fall off, and how severely the
trading agent’s risk aversion reacts to extreme losses.
If the aversion to large losses is strong enough, it can
outweigh the very small probabilities associated with
those large losses. The resulting trading agent would
not offer to trade a contract that could produce those
losses at any price.

The specific failure of exponential utility and log-
normal priors to produce always-defined prices is
known in the finance literature (Henderson, 2002), but
working through a realistic example will shed light on

how and why this pairing fails. We will then generalize
the intuition gained from the example to multiple
trades, distributions, and utilities, with a particular
focus on what happens with exponential utility.

5.1.1. Example
For this example, we will assume a log-normal prior

with µ = 5 and σ = 0.5. Now consider the calculation
involved in pricing the sale of the underlying. The
sale of the underlying is given by the payout vector
(function) x(t) = t. With exponential utility, recall that
the cost function solves, for some v < 0:∫ ∞

0

−e−( C(x)−x(t)
b )µ(t) dt = v

Because of the form of the utility function, we can
uncouple the cost, which does not feature the dummy
integrating variable t, from the vector of payouts∫ ∞

0

−ex(t)/bµ(t) dt = veC(x)/b

which shows that the cost function is defined if and
only if∫ ∞

0

−ex(t)/bµ(t) dt

converges. For our specific example, with the sale of
the underlying and the log-normal distribution, this
integral is

∫ ∞
0

−et/b
(
e(log t−µ)2/2σ2

t
√

2πσ2

)
dt

Figure 1 shows a plot of the integrand. The x-axis
is log-scaled. The integrand tends towards zero for
large expiration values (in the thousands, the median
of the prior distribution is e5 ≈ 148). However, for
unrealistically extreme expiration values (more than
100 times the fictional current price) the integrand
explodes negatively, and the integral diverges.

Why does this occur? It is because for extremely
large realization values our sensitivity to the prospect
of extreme loss (since we are selling the underlying
we lose when it expires high) outweighs the extremely
small probabilities that the log-normal distribution
produces for those values. We can show that this
behavior holds regardless of the particular b, µ, σ
parameterization chosen. Again, consider the pricing
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Fig. 1. Because exponential utility increases faster than log-normal probability falls off, our sensitivity to large losses grows unboundedly.

integral corresponding to the sale of the underlying.
With a log-normal distribution and exponential utility,
we have

µ(t) ∈ Θ(e− log2 t) and u(x(t)) ∈ Θ(et),

so

u(x(t))µ(t) ∈ Θ(et−log2 t).

Since

lim
t→∞

et−log2 t 6= 0,

the pricing integral diverges. It is easy to see that this
asymptotic analysis also applies to selling a call, since
when we sell a call with strike price s,

u(x(t)) ∈ Θ(et−s) ∈ Θ(et).

Consequently, there exists no amount of money an
exponential utility cost function with a log-normal
prior would sell an underlying or a call for.

5.1.2. The theoretical basis of undefined prices
For any probability distribution, the density at

extremely large realizations is very small, but our
utility function could react to these realizations in a
pronounced way. Hence, we have a tension between
the density of the distribution at its tails and the
response of the utility function. In this section, we
provide theoretical bounds for this phenomenon, moti-
vated by demonstrating why using exponential utility
with normal priors succeeds, while with log-normal
(and many other) priors it fails. Geweke (2001) also

explores diverging (undefined) prices, given certain
priors and utilities, but only for a specific family of
utility functions.

The following result rules out using utility functions
like log and −1/x with infinite-domain probability
distributions.

Proposition 2. In a continuous constant-utility cost
function, if the prior probability distribution is defined
over (0,∞) but the utility function is not defined over
all of R, then there exists a transaction with undefined
price.

Proof. We will show that the utility function will be
evaluated at an undefined value. Let x(t) = t denote
the function corresponding to selling an underlying.
By assumption, the utility function is not defined at
v ∈ R. Now, consider C(0) > v. Because the utility
function is increasing, the cost function is increasing,
and therefore C(x) > C(0). But because C(x) is
finite and the prior distribution is defined at every t ∈
(0,∞), there exists some t for which C(x) − x(t) =
C(x)− t = v, so the utility function will be evaluated
at v, producing an undefined value. This argument
holds by symmetry in the case where C(0) < v, in
which case we would buy the underlying instead to
force the undefined evaluation. �

The following result shows that one way to achieve
well-defined costs is to only consider finite probability
distributions.

Proposition 3. In a continuous constant-utility cost
function, if the utility function is defined and finite over
all of R and the prior distribution is bounded, so that
there exists a T such that for all t > T, µ(t) = 0, then
the cost function is well-defined.
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Proof. The limits of integration are finite and the
utility function is defined and finite for any argument.
It follows that the integral to determine the cost
function is always well-defined. �

One application of this result to the option trading
problem is to consider a trading agent with a log-
normal prior distribution that is truncated above some
upper boundary T . (The remaining probability mass
above the upper bound could be re-distributed below
the bound, or, because it is likely to be so small
in magnitude, safely ignored.) Proposition 3 suggests
then that the cost function would always be defined
when using such a distribution.

However, this truncation scheme is numerically
hazardous because it provides no guidance for which
upper bound of T to select. Consider again Figure 1,
which shows the weighted utility of a contract. Since
the utility of the contract calculated without an upper
bound on the prior diverges, where the upper bound
T is set will have a great effect on the calculated
utility of taking on the contract. To be concrete, it is
clear from inspection that setting the upper bound at
1,000, 10,000, or 100,000 will produce vastly different
calculations for the utility of the trader, and therefore
for the fair price of the contract.

Now specifically focusing on exponential utility, it
turns out we must have very light tails for the cost
function to be well-defined.

Proposition 4. A continuous exponential-utility cost
function is defined for every set of options transactions
if and only if∫ ∞

0

ec·tµ(t) dt

is bounded for every c ≥ 0.

Proof. Recall we have defined prices if and only if∫ ∞
0

−e
x(t)

b µ(t) dt

is well-defined. By removing constant factors, we see
that ∫ ∞

0

ex(t)µ(t) dt

must be well-defined. Options contracts are continu-
ous, piecewise-linear functions, so therefore x(t) is a

continuous, piecewise-linear function. Therefore there
exists some c such that x(t) ≤ c · t, where the bound
is tight by selling c underlyings. Now since ex is an
increasing function, this implies∫ ∞

0

ex(t)µ(t) dt ≤
∫ ∞

0

ec·tµ(t) dt

so if the right-hand equation is finite, the left-hand
equation is finite also. �

Recall that the expression∫ ∞
0

ec·tµ(t) dt

is also known as the moment generating function
of the distribution µ. However, moment generating
functions are generally used only for the values of
their derivatives at the argument c = 0, whereas for
our result here the function must be defined for any
positive c.

This result has the effect of significantly limiting
what distributions we can use with exponential utility.
We have already discussed how we cannot use the log-
normal distribution, but other distributions, like the
chi-square, exponential, and Weibull are also ruled out.
(This begs the question of whether there is a theoretical
or empirical reason to use these distributions.)

Now, consider that for the normal distribution,

µ(t) ∈ Θ(e−t
2
)

This means that for arbitrary c the integrand is

Θ(ec·t−t
2
)

which results in a well-defined integral for any c. This
means we can combine a normal distribution prior with
exponential utility and still get defined prices.

5.2. Our Exponential utility trader

For our Exponential utility trading agent, we use the
same normal distribution prior as the Normal trader
and the same b parameter as the LMSR trader. This is
to better facilitate comparisons between the traders.
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6. Random agent as a control

In order to provide a performance benchmark, we
introduce a random trading agent as a control in our
experiments. Random is a trading agent that performs
a uniform random action over the set of possible
actions at each time step. That is, for all the bids
and asks on the relevant calls, puts, and the affiliated
underlying, Random selects a bid or ask to trade
uniformly at random. Random can be thought of as a
zero-intelligence agent (Gode and Sunder, 1993) that
does not learn or optimize.

We would expect Random to consistently produce
slightly negative returns. Consider that the bid and ask
prices are spread, so we should expect that an agent
that takes either side of the market at random should
consistently “eat” this spread. That is, we can roughly
think of the Random trader as buying an option at
price p + ε and then selling it at p − ε, resulting in a
guaranteed loss of 2ε.

7. Experimental setup

As we discussed in Section 2, we simulated the
performance of the trading agents on each options
chain in our testing set. In our simulations, we step
through 15-minute increments on each chain from
initiation to expiration. Figure 2 shows a flowchart of
the simulation steps over each testing chain (recall the
number of testing chains for each underlying is listed

in Table 1). Appendix A features a worked example of
the simulation process with each trading agent on one
snapshot of a single option chain.

Any simulation on historical data is fraught with
the risk of overfitting, producing an unreasonably rosy
picture of real-world performance. We took several
steps to combat overfitting. These limits are intended
to give a more accurate picture of live performance
than a naïve optimization over the dataset.

It is, of course, impossible in hindsight to accurately
produce a counterfactual answer to the question of
how well a trading bot would have performed. The
bids and asks we fill could cause changes in the
behavior of other traders, which is an effect we cannot
judge from past data. However, Even-Dar et al. (2006)
suggest that, as long as agents in the market trade
on absolute values (fixed prices) rather than relative
values (based on the current state of the order books),
overall price series will be resistant to the small
changes produced by simulation. Options markets are
driven mainly by BSM-style models and often feature
relatively large (compared to the underlying) bid/ask
spreads. Therefore, we believe that these markets are
populated mostly by traders of the absolute, rather
than the relative type, making simulation by an agent
trading a small amount of total volume appropriate.

Another concern related to the difference between
real trading and simulation involves the effect of
adding orders. In the real world, we would be able
to add our own limit orders to the order book so that
we would both provide as well as consume liquidity.

NOTime advances 
15 minutes

Agent receives 
payoff from 

inventory

Agent observes 
market prices

Agent computes 
fair prices for 

available 
contracts

The set of 
favorable trading 
opportunities is 

determined

Exactly one 
contract from the 

set, selected 
uniformly at 

random, is traded

Does the chain
expire now?

YES

Fig. 2. The steps taken by an agent over each option chain. Agents differ in the second step, the way they determine the fair prices for the offered
contracts.
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However, for robustness we do not model this property
within our data; we only take prices and do not
simulate the effect of adding limit orders to the dataset.
Presumably, adding the ability to place limit orders at
auspicious prices would only help the performance of
these trading agents in the real world.

We take two more steps to handicap the perfor-
mance of our trading agents to avoid overfitting to the
historical data:

• We limit the frequency of trading to only a single
contract every 15 minutes. We are concerned
about slippage—the tendency of prices to move
against a trader’s actions as the trader absorbs
liquidity. Trading a single contract is a conserva-
tive measure of performance that avoids slippage,
because when a counterparty sets a price, the
counterparty must sell at least one contract at that
price.
• We choose which contract to trade uniformly at

random from the set of desirable contracts. Say
that our algorithm has identified purchasing an
underlying, selling a call at 20, and buying a put at
30 to be beneficial trades given the current market
prices. Then we will do only one of these, each
with probability one third. This is the case even
if, say, our trading algorithm thinks that buying
the underlying would be better than selling the
call at 20. This restriction is designed so as to
not overfit on our static snapshots of prices. In a
real setting, trading opportunities may arise and
disappear quickly and we may not be able to
trade the best opportunity that exists at a given
moment.
We contrast the results of trading a random con-
tract with trading only the contract an agent thinks
is best in detail in Appendix B. Our results show
the former model disadvantages the inventory-
based traders more than the finance literature
traders, so this restriction is conservative, as
desired, for the conclusions we will draw in
Section 8.
Furthermore, when we examined the trading
behavior that arose from only trading the best
contracts, we saw that it was biased towards
trading the same contracts again and again. This
is unrealistic behavior, because presumably the
liquidity associated with those contracts will be
exhausted if they are traded so frequently, and
the prices would slip. Since a trading agent
generally has several contracts it is interested in

trading at a given time step, trading uniformly at
random produced more realistic behavior in the
simulation by spreading trading activity among
several contracts.

8. Results

We begin by providing the numerical results from
our experiments and then discussing those results
qualitatively.

8.1. Quantitative results

In terms of real-world trading performance, it would
be most appropriate to quantify performance of trading
agents in terms of net annualized return (e.g., “10% a
year”). Of course, net return is a function of both value
generated as well as value risked. Because of the form
of the options contracts, determining the value risked
is not straightforward. Single contracts, like selling a
call, could lose an unbounded amount of money in the
worst case. Combinations of options could amplify or
hedge these losses. In practice, traders need to put up
a certain fraction of their positions with the exchange
(the margin) in order to maintain those positions. The
precise margin amount depends on the rules of the
particular exchange the options are traded on and is
generally based around historical models of how prices
move over time.

While percent return is difficult to calculate and
depends on a host of practical matters, net performance
(gain or loss) is simple to calculate. Therefore, we
use net performance as a measure of trading agent
performance. To normalize net performance, we divide
a trading agent’s gain or loss for a chain by the
initial underlying price and by the number of days the
chain is active. The resulting figure gives a meaningful
way to compare chains where the underlying is in
the thousands (like ^SPX) or the ones (like C), over
differing numbers of days. We refer to this normalized
value as net underlyings per day (NUPD).

Table 3 provides summary statistics for the perfor-
mance of each trading agent over the 114 testing chains
in terms of NUPD. The Exponential utility agent had
the most positive instances, highest mean, and best
worst-observed performance. The Log-normal agent
had the highest median performance. The Random
trading agent had the worst performance along each of
these dimensions.
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Table 3
A summary of comparing each agent along a number of dimensions.
Mean, median, and worst-observed trials are measured in terms of
NUPD. Higher values are better

Agent Frac. positive Mean Median Worst

Log-normal .54 .15 .89 −6.6
Normal .54 .12 .85 −6.7
LMSR .46 −1.57 −.76 −37.8
Exponential utility .55 .32 .70 −3.6
Random .08 −1.58 −.82 −38.5

Table 4
Percent of the bootstrapped experiments in which the trader on the
left had a higher number of positive instances, mean, median, and
worst-observed loss relative to the trader on the right

Trader Frac. positive Mean Median Worst Opponent

Exp. utility 68 93 26 99 Log-normal
Exp. utility 60 95 25 100 Normal
Exp. utilty 100 100 100 100 LMSR
Exp. utility 100 100 100 100 Random
Log-normal 48 57 56 98 Normal
Log-normal 100 100 100 100 LMSR
Log-normal 100 100 100 100 Random
Normal 100 100 99 100 LMSR
Normal 100 100 100 100 Random
LMSR 100 57 42 98 Random

To assess the significance of the values in Table 3,
we performed a bootstrap analysis that simulated
running our experiments 10,000 times. Bootstrap
analysis was a natural choice for this setting because
of the complexity of estimating e.g., worst-observed
loss using standard techniques (Davison and Hinkley,
2006). The head-to-head results of this analysis is
given in Table 4. For instance, the first value in
the table indicates that in 68% of our bootstraped
experiments the Exponential utility trader had a higher
fraction of positive runs than the Log-normal trader.

Table 5 shows the relative performance of each
trading agent against the others. The values are the
number of testing chains in which the agent in the
row beat the agent in the column. Our results establish
the strict transitive ordering Exponential utility > Log-
normal > Normal > LMSR > Random, where “a > b”
means that trading agent a beat trading agent b in a
majority of our testing chains.

Table 6 provides statistical significance context to
the results observed in Table 5. Given the produced
data, the hypothesis “Trader A has a higher NUPD
than Trader B on this chain” was tested for all traders
and chains. If the probability that a trader outperforms

Table 5
The number of times the agent in the row beat the agent in the
column in our 114 testing chains. Majority winners are denoted in
bold

Log-normal Normal LMSR Exp. utility Random

Log-normal X 66 69 52 75
Normal 48 X 70 49 77
LMSR 45 44 X 41 62
Exp. utility 62 65 73 X 82
Random 39 37 52 32 X

Table 6
Counts of head-to-head performance of traders taking into account
statistical significance. If a trader had > 99% chance of out-
performing its opponent on a chain, it is recorded as a “Win”. If it
had < 1% chance, it is recorded as a “Loss”. All other significance
levels are recorded as “Ties”

Trader Wins Ties Losses Opponent

Exp. utility 41 40 33 Log-normal
Exp. utility 36 44 34 Normal
Exp. utility 71 5 38 LMSR
Exp. utility 75 12 27 Random
Log-normal 20 80 14 Normal
Log-normal 68 7 39 LMSR
Log-normal 68 13 33 Random
Normal 66 5 43 LMSR
Normal 71 8 35 Random
LMSR 57 9 48 Random

Table 7
Distribution of the performance of the Exponential utility trader
against the Normal and LMSR traders. “Blended” refers to an equal
parts mix of the Normal and LMSR traders

Relative Exponential utility performance Frequency

Beats both .37
Beats one, loses to one .47
Loses to both .16

Beats blended .67

the other was greater than 0.99, it was recorded as a
win for that trader and a loss for the other. All the
chains in which the probability lied between 1% and
99% are recorded as ties. Table 6 shows the resulting
counts. All of the conclusions from Table 5 still hold;
in particular, the Exponential utility trader is still the
Condorcet winner.

Table 7 compares the performance of the Exp-
onential utility trader against its “parents”, the
Normal distribution trader and the LMSR trader. The
Exponential utility agent beats the performance of both
of these traders in 42 of the testing chains (37%)
while losing to both in only 18 of the chains (16%).
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Fig. 3. The kernel-smoothed CDFs of the NUPD for each of our traders. The Log-normal and Normal CDFs coincide for much of the plot. Lower
function values are better.

It outperformed a blend composed of equal parts of
Normal and LMSR traders in 76 testing chains (67%).

The NUPD of each trading agent over our testing
chains can be viewed as noisy realizations of a con-
tinuous random variable. We can recover this variable
by smoothing the realizations with a kernel. Figure 3
shows the kernel-smoothed CDFs of these random
variables for a likelihood-maximizing Gaussian ker-
nel. The figure plots the fraction of instances that had
net performance no better than the given value. Both
the LMSR and Random trading agents had chains
on which they performed worse than −10 NUPD,
and so the CDFs for those traders do not start 0
on the plot. The Normal and Log-normal CDFs are
indistinguishably close together for much of the plot.

Our 114 chains include a mix of bonds, indices,
equities, and commodities. We did not observe a sub-
stantial difference between the relative performance
of our trading agents in any of the underlyings. This
may be due to the fact that the volatility parameter
σ is fit differently for each underlying, allowing
for appropriate responses to both volatile and stable
underlyings.

One notable feature of the financial markets
captured in our dataset was the financial collapse of
late 2008. Chains that expired in late 2008 and early
2009 showed the worst performance for our parametric
traders. In particular, the Log-normal and Normal
traders delivered their worst performances over the

^FVX chain that expired December 20th, 2008. The
performance of the underlying from the expiration
of the prior chain on September 22nd to expiry is
plotted in Figure 4. There are several days in which
the underlying moved down or up more than 10%. The
collapse was not an “anomaly” in our dataset. It was
a real event that our trading agents would have been
involved in and must be considered when evaluating
trading agents on real data.

Finally, we did not see any significant difference in
the total volume traded by each agent. We attribute
this to the diversity of contracts offered to the trading
agents at each time step, all of which generally have
tight bid/ask spreads. In our simulation, an agent needs
to find only one of the dozens of possible actions
desirable at each time step in order to trade. This
result could be seen as a consequence of selecting a b
parameter for the inventory-based traders large enough
to result in small bid/ask spreads (e.g., the snapshot
example in Appendix A); substantially smaller b
values would have resulted in larger bid/ask spreads
in the agents’ prices and consequently less trading
activity.

8.2. Qualitative results

In this section we attempt to distill our quantitative
findings into qualitative facts about the performance of
our automated traders.
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Fig. 4. The option chain expiring December 20th, 2008 was particularly volatile, leading to poor performance by the parametric traders.

8.2.1. The Random and LMSR traders had the worst
performance

Both the Random and LMSR traders were char-
acterized by low mean and median performance and
terrifically bad worst-case losses. As Figure 3 shows,
the LMSR was much more volatile than Random.
Random had its performance on the vast majority of
the testing chains (about 80%) fall between −2 and 0
NUPD, while the LMSR had many testing chains do
better or worse.

As we have discussed, the LMSR is equivalent to
an agent with exponential utility and a uniform prior
over the strikes. One interpretation of this uniform
prior is that the LMSR neither has nor relies on any
domain knowledge. Our quantitative results with the
LMSR are in line with the recent findings of Brahma
et al. (2010) that suggest the LMSR struggles in
comparison to trading agents with domain knowledge,
and of Chakraborty et al. (2011), who compare the
LMSR to a Bayesian market maker that relies on both
priors and inventory. Their lab experiments showed
that the Bayesian market maker was generally much
more profitable than the LMSR. Furthermore, the
LMSR’s results are not unexpected; it is traditionally
used to provide liquidity and subsidize a set of traders
for their information in Internet prediction markets.
With its losses here, the LMSR did the same thing in
our experiments.

One dimension along which the LMSR was able
to out-perform Random significantly was the fraction
of positive instances over the testing chains. Random
recorded positive NUPD in fewer than eight percent
of our trials, while the LMSR was positive on about
47% of the trials. Table 4 shows that in 100% of

our bootstrapped experiments the LMSR trader had a
higher fraction of positive instances than the Random
trader. This confirms our intuition that the Random
trader would “eat the spread” and lock in small losses.
Interestingly, the performance of Random was the best
relative to the other traders on the highly volatile
chains at the end of 2008. For instance, the Random
trader had the best performance of all the traders on the
^FVX chain that expired December 20th, 2008, losing
about 1.2 NUPD (better than its mean performance
over the testing set as a whole). We credit this to the
fact that the Random trader is highly non-parametric,
and so its performance is not affected by the relative
volatility of the underlying.

8.2.2. The LMSR learned plausible distributions
While the LMSR lagged in quantitative perfor-

mance, that does not mean the concepts behind it
are unsound. Figure 5 shows an in-progress run
of the LMSR (on an ^IRX chain). The implicit
probability distribution over strike prices in the LMSR
closely matches the fit produced by the Normal
distribution trader. This is significant because the
Normal trader knows the historical volatility and the
current underlying price, while the LMSR trader only
knows the trades it has made. This is made more
remarkable by the fact that the trading agent has only
six crudely-shaped tools (buying or selling calls, puts,
or the underlying) to create this distribution.

One perspective on what is happening is that the
LMSR learns the correct distribution of prices because
it is equivalent to a no-regret learning algorithm (Chen
et al., 2008; Chen and Vaughan, 2010). Essentially,
with each time step through the options chain the
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Fig. 6. The K-L divergence of the LMSR from the log-normal distribution taken over four chains.

LMSR trader makes a small correction to get its
implicit probability distribution closer to the market’s
distribution. This also implies the similarity between
the LMSR’s probabilities and the Normal distribution
trader in Figure 5 is partly fallacious, because the
LMSR has not been learning from that specific
snapshot of the chain but rather making a series of
small adjustments in probabilities over time.

A deeper perspective on this learning process is
visible in Figure 6. This figure shows the ^IRX chain
used above and three other (arbitrarily chosen) chains
with nearby expiration dates, and measures the K-L
divergence of the LMSR trader’s marginal prices and
the Log-normal trader’s probability distribution.

Recall that K-L divergence is a measure of how
dissimilar two distributions are. (Decreasing K-L
divergence means the distributions are more similar.)

Formally, let LN t denote the log-normal probability
density function at time t, and let πti be the marginal
probability of the LMSR trader at strike price si. Then
the K-L divergence at time t, KLt, on the above plot
is calculated as

KLt ≡
∑
i

πti log2

(
πti

LN t(i)

)
One interpretation of the K-L divergence is the number
of extra bits required for the log-normal distribution to
encode the LMSR marginal distribution.

Although the trend is not consistent, the K-L
divergence between the two distributions seems to
decrease slowly until roughly 75 days before expiry,
when it begins to increase significantly. We have
truncated the plot at an upper boundary of 10, but
in the final days before expiry the K-L divergence
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increases without bound. It appears to be accurate,
then, to divide the LMSR’s behavior into two regimes:
the last 75 days, in which the K-L divergence becomes
arbitrarily large, and the time previous, in which the
K-L divergence is stable or slightly falls. This earlier
period represents the LMSR’s “learning” process, as
the marginal prices begin to approach the log-normal
distribution.

The reason the K-L divergence increases so dramati-
cally immediately before the market expires is that
the log-normal distribution becomes tighter and tighter
around a single value (the current price), eventually
converging to a single unit mass at the expiration
price in the final time step. These progressively tighter
distributions require huge numbers of additional bits
to encode the more spread out LMSR distribution,
because the extreme strike prices have such a low
likelihood when the log-normal distribution is tight.
Consequently, the K-L divergence between a tight,
late-stage log-normal distribution and a more diffuse
LMSR distribution is large, and as the log-normal
distribution approaches a unit mass, it goes to infinity.

8.2.3. Log-normal slightly outperformed Normal
A log-normal distribution is intuitively a better

and more-realistic fit for stock prices than a normal
distribution, because the former reflects that the
stock price cannot go below zero. Reflecting this
intuition, the Log-normal trader performed better than
the Normal trader in our experiments. The Log-
normal trader had a slightly higher mean and median
performance than the Normal trader and won the
majority of head-to-head comparisons between the
traders. However, the performance characteristics on
the whole were close, as can be seen visually by the
overlapping density lines in Figure 3. Table 4 shows
that in our bootstrap analysis, neither trader had a
higher fraction of positive instances, mean NUPD, or
median NUPD in more than 57% of the experiments.
Finally, Table 6 also shows that for the bulk of option
chains (80 out of 114, or 70%), neither the Log-normal
or Normal trader produced higher values with 99%
confidence. This similarity could be considered as a
likely consequence of the design of the two traders,
because the Normal trader matches the mean and
standard deviation of the Log-normal trader at each
timestep.

8.2.4. Exponential utility won but did not
stochastically dominate

The Exponential utility trader was the winner in
our trials by most of the measures we used. It had

the highest mean and fraction of positive testing
instances, a much better worst-case loss, and only
a slightly lower median than the Log-normal and
Normal traders. The bootstrap analysis in Table 4
suggests that the Exponential utility trader consistently
outperformed the Log-normal and Normal traders in
terms of mean performance and worst-case loss, but
that neither the Exponential utility trader’s higher
fraction of positive trials nor the Normal and Log-
normal traders’ higher median performance were
observed in more than 75% of the bootstrapped
experiments. (However, the Exponential utility trader
had higher mean performance in only 93 percent of the
bootstrapped experiments, and so we should qualify
our discussion of its relative performance by noting
that more research is necessary to derive a result that
is traditionally regarded as statistically significant for
this specific case.)

The Exponential utility trader was also the Con-
dorcet winner in head-to-head comparisons against the
other traders, beating each of them over a majority of
the testing chains. Furthermore, the Exponential utility
trader outperformed a mix of the Normal and LMSR
traders in two-thirds of our testing chains, indicating
that it is more sophisticated than a mere combination
of the two techniques. However, the Exponential
utility agent did not stochastically dominate the
finance literature agents, and so it is possible for
some utility functions to prefer the returns of the
standard BSM model instead. These utility functions
would weight average- and better-case performance
and discount worst-case losses.

8.2.5. Exponential utility had more accurate
actionable beliefs

One perspective on how the Exponential utility
agent performed so well can be found by considering
the areas of Figure 3 where its CDF diverges from the
CDF of the Normal and Log-normal traders. There is a
large gap between the lines for negative NUPD, where
the Exponential utility trader out-performs the Log-
normal and Normal traders, and a smaller gap between
1 and 2 NUPD, where the Log-normal and Normal
outperform Exponential utility. What this implies is
that the Exponential utility trader is practicing a form
of insurance against bad outcomes. It transfers wealth
between states of the world in which good things
happen (the positive net return realizations) into states
of the world in which bad things happen (negative net
return realizations). As a result, the good cases become
slightly worse (the gap between Normal/Log-normal
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and Exponential utility on the positive side) but the
bad cases are severely reduced (the gap on the negative
side).

This interpretation makes sense when we consider
that the Exponential utility trader is a risk-averse
analogue of the Normal trader. As a risk-averse trader
the Exponential utility agent is more willing to hedge
future risk, trading off future profits to avoid large
losses, and will not increase its exposure to existing
risks unless at the offered prices doing so seems
exceptionally profitable.

One of the ways the Exponential utility trader
accomplished this insurance is by having effectively
heavier tails (more probability mass) on extreme cases
than its corresponding normal prior. These tails make
actions like buying a low-strike put or buying a high-
strike call more desirable. These contracts are out
of the money, and so they would require significant
price movement to not expire worthless; consequently
they are also priced cheaply. When a trading agent
purchases one of these contracts, a small amount
of wealth is transferred from states where extreme
events are not realized to become a larger amount of
wealth in states in which those extreme events are
realized. Another way of thinking about this is that
the Exponential utility trader endogenously produced
the market’s volatility “smirk” or “smile” by over-
pricing out-of-the-money options relative to the Log-
normal trader. Of course, the Exponential utility trader
only produced this view as a result of the market’s
prodding; if the market prices in the dataset had
corresponded to a volatility “frown”, instead of a
smile, then the Exponential utility trader would have
mirrored that prediction.

This insurance allowed the Exponential utility trader
to outperform the Normal and Log-normal traders,
because those traders’ models were not correct but
those agents traded as if they were. Consider that,
if a trader’s beliefs are indeed the correct model of
the world, then a risk-neutral agent trading on those
beliefs will have a higher expected return than a
risk-averse agent trading on those beliefs. (This is
because a risk-neutral agent maximizes his expected
return by definition.) Put another way, taking insurance
should not increase a risk-neutral agent’s payout if
that agent was acting on correct beliefs. Since, in
our experiments, the risk-averse Exponential utility
agent had higher expected returns than the risk-neutral
parametric traders from the finance literature, the
latter traders’ models of the world were incorrect.
Specifically, the heavier tails of the Exponential utility
agent could be a more accurate distribution over the
expiration price if there is a chance of large downward
shocks to the price (e.g., in the financial crisis).

Figure 7 is an in-progress shot of heavy tails in
a representative run (in this case, for a GE chain).
Here, the underlying price is about 38. The implied
probability distribution of the Exponential utility
trader has about twice the density at low underlying
realizations (the plot is log-scaled to make this more
clear). For a continuous constant-utility cost function,
we can calculate the implied probability density at t
for vector x by

∇C(x)(t) =
µ(t)u′(C(x)− x(t))∫∞

0
µ(k)u′(C(x)− x(k)) dk
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Fig. 7. In this capture of an in-progress run, the heavier tails of the Exponential utility trader relative to the Normal trader are evident. The y-axis
is log-scaled.
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9. Discussion

In terms of practical impact, we acknowledge that
there are considerable gaps between our experiments
and the actual implementation of a trading strategy.
These include features like margin rules, which dictate
how much of our currently-held position we are
required to stake, and trading costs, which determine
how expensive it would be to take on new positions.
Of course, once these practical hurdles are known
they could be incorporated into the decision logic
of a trading agent, but regardless, they are likely to
affect performance. However, we do believe that our
experiments are robust in terms of implementation,
particularly because we handicapped the trading
volumes and frequencies of our agents. This was
done with the intention of producing experimental
results that would be more accurate reflections of the
actual performance of those strategies in real markets.
In summary, we are guardedly optimistic about the
efficacy of this line of research in practice, although
implementing these strategies in a real market poses
obstacles that could deleteriously impact returns.

The framework we used to construct the Exponen-
tial utility trader, combining a utility function with a
probability distribution, is very general. We believe
there are significant opportunities for expanding and
broadening the model in terms of each component.

Probability distribution In the time since the BSM
model was first promulgated, other ways of
analyzing how prices move through time have
also been proposed that better fit actual per-
formance. These include GARCH (Engle and
Ng, 1993) and jump models (Kou, 2002), and
they imply probability distributions over future
realizations that are not log-normal. Another
intriguing possibility for a prior distribution is
the technique of Ait-Sahalia and Lo (1998) that
uses non-parametric techniques to fit a probability
distribution to the prices in an option chain.

Utility function On the other side, it would be inter-
esting to explore other utility functions besides
exponential utility. We are particularly concerned
that exponential utility’s extreme weighting at
large values has a tendency to produce undefined
prices for many distributions. Perhaps a utility
function that had polynomial risk aversion, rather
than exponential, would provide a more intuitive
price response and would allow for the use of a
broader range of prior distributions. Regardless

of the utility function-prior distribution pairing,
they must still obey our results in Section 5.1.2.
In particular, power-law utilities (including log
utility, which could be considered a standard
choice) do not correspond to traders that produce
meaningful prices.

Most well-established option trading strategiesc in
the literature operate by trading multiple contracts in
a single chain. We modeled our experimental method-
ology after these approaches, and in our experiments
we treated each testing chain independently. But in
practice, there is a correlation between chains with
different expiration dates for the same underlying. For
instance, if an underlying expires at a low realization,
it is more likely that the chain expiring three months
later will also expire at a low realization. Another
extension to our model is to explore how to add a
time dimension to incorporate information between
the chains of different expiration dates for the same
underlying. In this view, the prior distribution would
be over paths of prices over time, and when contracts
are traded at expirations it affects the probability
distribution over those paths. Furthermore, different
expiration dates are linked through the underlying;
a trading agent may make plans to purchase an
underlying now to sell at a specific date in the future,
or to sell conditional on how prices move over time.

Finally, we have applied our techniques to options
markets but the experimental success of the Expo-
nential utility trader suggests traders that take into
account both a good prior distribution as well as
their previous trades could be successful in other
real applications, too. There are many settings where
we have good priors over the future, and they
often involve considerable financial risk and reward;
examples include a casino handling sports betting or a
proprietary trading desk at a bank. We are interested
in adapting the synthesized model to other trading
activities where we have reasonable priors over the
future and the ability to trade through time.
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Appendix

A. Snapshot of a single option chain

In this appendix we work through the pricing
behavior of each agent on a single snapshot of an
option chain, with the goal of giving the reader a better
sense of what our experiments entailed and how our
trading agents worked. We will consider the snapshot
of the ^TNX option chain expiring December 19th,
2009, taken at 9:45 AM on October 22nd, 2009.
This particular snapshot was chosen arbitrarily, but
with attention to having a relatively small number
of relevant strike prices. Table 8 shows the option
chain.

The actions of the Random trader are the simplest
to describe. At this snapshot the Random trader picks

Table 8
The example option chain at our snapshot. Contracts that do not have
open interest are designated by an “X”

Strike Call Bid Call Ask Put Bid Put Ask

17.5 15.6 20.4 X 1.5

20.0 13.1 17.9 X 1.5

22.5 10.6 15.4 X 1.5

25.0 9.0 12.0 X 1.5

27.5 6.6 9.6 X 1.5

30.0 4.6 7.0 X 1.5

32.5 2.6 5.0 X 1.5

Underlying: Current Price 34.34

35.0 1.45 2.95 0.9 2.4

37.5 0.35 1.85 2.15 3.9

40.0 X 1.5 3.7 6.1

42.5 X 1.5 5.6 8.6

45.0 X 1.5 8.0 11.0

47.5 X 1.5 10.5 13.5

50.0 X 1.5 12.1 16.9

52.5 X 1.5 14.6 19.4

55.0 X 1.5 17.1 21.9

57.5 X 1.5 19.6 24.4

60.0 X 1.5 21.9 26.9

one of the possible actions to perform uniformly at
random. Observe that not all actions associated with
the options chain are available. For instance, the
Random trader cannot sell the call at strike 60, because
there is nobody in the market who is offering to buy
that contract. The randomization is only over the set of
contracts with open interest.

Now consider the Log-normal and Normal trading
agents. Based on the historical volatility learned from
the training set, the time until expiration, and the
current price, the Log-normal trader sets its µ = 3.54
and σ = .0959. Matching the mean and variance
of this distribution, the Normal trader sets its µ =
34.5 and σ = 3.32. From these values, by using the
techniques we described in Section 3, we generate the
prices in Table 9.

By comparing the two tables, we see that the set of
positive-expectation actions for both traders is buying
the underlying and selling the call at 32.5. As per our
rules, only one of these actions is chosen at random to
be performed in this time step.

The LMSR and Exponential utility traders both
depend on the set of trades we have made in the
past. For a tractable exposition that still exhibits



A. Othman and T. Sandholm / Inventory-based versus Prior-based Options Trading Agents 117

Table 9
The prices generated by the Log-normal and Normal traders for our
example

Strike Log-normal Put Log-normal Call Normal Put Normal Call

17.5 0.00 17.00 0.00 17.00

20.0 0.00 14.50 0.00 14.50

22.5 0.00 12.00 0.00 12.00

25.0 0.00 9.50 0.00 9.50

27.5 0.01 7.01 0.02 7.02

30.0 0.10 4.60 0.14 4.64

32.5 0.52 2.52 0.57 2.57

Underlying: Both value at 34.50

35.0 1.60 1.09 1.60 1.10

37.5 3.37 0.37 3.33 0.33

40.0 5.60 0.09 5.57 0.07

42.5 8.02 0.02 8.01 0.01

45.0 10.50 0.00 10.50 0.00

47.5 13.00 0.00 13.00 0.00

50.0 15.50 0.00 15.50 0.00

52.5 18.00 0.00 18.00 0.00

55.0 20.50 0.00 20.50 0.00

57.5 23.00 0.00 23.00 0.00

60.0 25.50 0.00 25.50 0.00

realistic quantities, imagine that we currently hold the
following portfolio:d

1. Long 200 underlyings
2. Short 200 puts at 50
3. Short 200 puts at 45
4. Long 200 calls at 25
5. Short 200 calls at 35

This portfolio corresponds to the payout vector
given in Table 10.

The b parameter used in the LMSR and in the
Exponential utility agents is 52,875, which is 2500
times the initial underlying price at the first instance
of the chain, 21.15. Starting from our set of holdings,
we can calculate the fair prices for the LMSR
trader by incorporating a prospective contract into our
holdings and calculating the difference in cost. Unlike
in the Log-normal and Normal distribution traders,
the LMSR prices the bid and ask of each contract
separately, with a spread. (Due to decimal truncation,

dIf we ran our trading agent on the chain over time, it is highly
unlikely we would make 200 of the same trade, but we simulate
prices with such a portfolio here to balance the competing desires of
having a small number of distinct contracts with having a realistic-
size portfolio.

Table 10
The payout vector used in the LMSR for our example

Strike Payout

17.5 8500.0
20.0 7000.0
22.5 5500.0
25.0 4000.0
27.5 2000.0
30.0 0.0
32.5 −2000.0
35.0 −4000.0
37.5 −5500.0
40.0 −7000.0
42.5 −8500.0
45.0 −10000.0
47.5 −11000.0
50.0 −12000.0
52.5 −12500.0
55.0 −13000.0
57.5 −13500.0
60.0 −14000.0

Table 11
The option prices for the LMSR trader

Strike Call Bid Call Ask Put Bid Put Ask

17.5 19.42 19.42 0.0 0.0

20.0 17.1 17.1 0.18 0.18

22.5 14.95 14.95 0.53 0.53

25.0 12.96 12.97 1.04 1.04

27.5 11.14 11.14 1.72 1.72

30.0 9.47 9.48 2.55 2.55

32.5 7.96 7.96 3.54 3.54

35.0 6.59 6.59 4.67 4.67

Underlying: Bid 36.92 Ask 36.92

37.5 5.36 5.36 5.94 5.94

40.0 4.26 4.26 7.34 7.34

42.5 3.3 3.3 8.88 8.88

45.0 2.46 2.47 10.54 10.54

47.5 1.75 1.75 12.33 12.33

50.0 1.17 1.17 14.24 14.24

52.5 0.7 0.7 16.27 16.28

55.0 0.35 0.35 18.42 18.43

57.5 0.12 0.12 20.69 20.69

60.0 0.0 0.0 23.08 23.08

the spread is not always visible in the displayed
prices.)

By comparing Tables 8 and 11, we find that the set of
positive-expectation actions for the LMSR trader is to
buy the call at between 25 and 47.5 inclusive, buy the
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Table 12
The option prices for the Exponential utility trader

Strike Call Bid Call Ask Put Bid Put Ask

17.5 16.85 16.85 0.0 0.0

20.0 14.35 14.35 0.0 0.0

22.5 11.85 11.85 0.0 0.0

25.0 9.35 9.35 0.0 0.0

27.5 6.88 6.88 0.03 0.03

30.0 4.51 4.51 0.16 0.16

32.5 2.47 2.47 0.62 0.62

Underlying: Bid 34.35 Ask 34.35

35.0 1.04 1.04 1.69 1.69

37.5 0.31 0.31 3.46 3.46

40.0 0.06 0.06 5.71 5.71

42.5 0.01 0.01 8.16 8.16

45.0 0.0 0.0 10.65 10.65

47.5 0.0 0.0 13.15 13.15

50.0 0.0 0.0 15.65 15.65

52.5 0.0 0.0 18.15 18.15

55.0 0.0 0.0 20.65 20.65

57.5 0.0 0.0 23.15 23.15

60.0 0.0 0.0 25.65 25.65

underlying, and buy the puts between 27.5 and 42.5,
inclusive.

For the Exponential utility trader, we use the same
b parameter as the LMSR and the same µ, σ tuple as
the Normal distribution. Just like in the LMSR, but
unlike in the Normal distribution, we have separate bid
and ask prices for contracts (though in this example
the prices are close enough that they are equal when
truncated). Table 12 displays the option chain prices
for the Exponential utility trader.

The set of positive-expectation actions for the
Exponential utility trader is to sell the call at between
30 and 37.5 inclusive, and to buy the underlying.

B. On the random uniform trading restriction

Recall that our second constraint on trading
simulations was to select a contract to trade uniformly
at random from the set of contracts identified as
favorable. This was done to avoid overfitting on
the fact that our data comes in the form of static
snapshots over the option chains. In a real trading
environment, favorable trades will come and go,
possibly quickly enough to preclude our trading
on them. Therefore, selecting uniformly at random
provides a more conservative measure of how each
trading agent would perform in real settings.

With this scheme, the performance of each trading
agent on each testing chain becomes a random
variable. When the trading agent keeps state (as in
the LMSR and Exponential utility agents), then this
random variable becomes quite complex as future
actions depend on the actions selected randomly in the
past.

This randomization gives rise to two concerns: First,
that the variance between different runs (realizations
of this random variable) is large enough to mitigate
the significance of the differences between agent
performance. Second, that uniformly trading, rather
than trading the best contract from the set of actions,
unfairly penalizes some agents over others. In this
section, we study each of these concerns in turn.

B.1. The difference between runs was generally small

We completed four runs over each agent over each
testing chain. To measure volatility, we took the
maximum difference in NUPD between the four runs.
This can be considered an adversarial measure that is
particularly sensitive to the outliers from each run. The
resulting differences appear in Table 13.

These results indicate that the runs were fairly
robust over different realizations of trading strategies.
For all but the Random agent, about two-thirds of all
runs had all four experimental runs fall in a range less
than 1/16 NUPD wide, and those agents had all of their
runs fall within a 0.5 NUPD band in more than 95% of
the chains.

As could be expected, the Random agent showed
particularly large volatility between different runs.
This is because the Random agent had the largest set of
possible actions in each time step (i.e., all the available
contracts). The Random agent over the ^XAU chain
expiring on 2009-09-30 had the largest difference in
trials overall, with NUPD of−0.10,−0.11,−10.3, and
−10.4. This appears to be due to a possible anomaly

Table 13
We performed four runs over each trading agent in the dataset. The
percent of chains with difference between maximum and minimum
NUPD is noted for each agent

Percent with max difference smaller than
Agent 0.0625 0.125 0.25 0.5 1.0 2.0

Log-normal 64 83 96 99 99 99
Normal 66 83 92 97 97 98
LMSR 67 83 92 96 97 98
Exponential utility 68 82 92 97 97 98
Random 46 65 83 92 96 96
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within the dataset: the best ask on a put option at 105
on September 28th, 2009 is listed in our data set at
200,000 dollars. When the Random agent buys this
contract, it induces a massive loss for the chain as a
whole. It is unclear whether this contract was actually
listed at this price on the exchange, or if it is an error
in the data set. Regardless, because this price was
so uncompetitive the other, intelligent, trading agents
were able to avoid it.

B.2. Trading only the best contracts produces no
qualitative changes

To see whether our results were significantly
affected by trading uniformly at random from the
set of contracts they deemed favorable, we also
simulated our trading agents trading only the best
(highest expected profit) contract from the set of
contracts they deemed favorable. Observe that this
produces a deterministic trading agent. (Consequently,
the Random trading agent is no longer relevant in this
setting and is omitted.) We are interested in testing
whether our qualitative results are merely an artifact
of the restriction to trading uniformly or not. We want
to examine how the agents from the finance literature
perform relative to the Exponential utility agent when
only the best contract is traded.

Table 14 shows the mean and median NUPD of
the deterministic agents relative to trading uniformly.
They are phrased in terms of surplus NUPD,
subtracting the deterministic NUPD for each chain
from the average NUPD of that chain when trading
occurs uniformly at random.

As might be expected, trading only the best
contracts produces slightly higher median NUPD for
all the deterministic agents. The LMSR agent is
notable for having significantly higher mean surplus
NUPD than the other agents. This appears to be
due to a combination of two factors: trading only

Table 14
The difference in NUPD between deterministic agents that only
trade the contracts they think will deliver the best return versus
trading uniformly at random from the set of agreeable trades, over
the 114 testing chains

Surplus NUPD
Agent Mean Median

Log-normal 0.00 0.04
Normal 0.04 0.09
LMSR 1.13 0.10
Exp. utility 0.26 0.13

the best contracts allows the LMSR agent to avoid
making some of the worst trades, and furthermore, the
LMSR agent’s performance was already poor enough
to allow for a large boost. These results suggest that
trading only the best contracts does not change the
qualitative performance ordering of the agents: the
Exponential utility trader outperforms the Log-normal
trader, which does about as well as the Normal trader,
which in turn outperforms the LMSR.

One feature of simulating only the best contract
that we observed, especially for the parametric finance
literature traders, was the tendency to buy (or sell)
exactly the same contract over and over again. It is
easy to see why this would be the case if there is
not a tremendous amount of movement in the market
in-between 15 minute intervals; in this case, the most
agreeable contract at the current time step is likely
to be the most agreeable contract 15 minutes later, as
well. Particularly for contracts at extreme strike prices,
this kind of behavior is inherently unrealistic in a
simulation because sustained trade in a single contract
is likely to move market prices. The Exponential
utility and LMSR agents are able to mitigate this
phenomenon because as they trade a contract, further
expansion of that position becomes less desirable.
However, our principal way of simulating in the
paper—taking a uniform sample from the set of
favorable trades—is a more conservative simulation.
As we have shown here though focusing on only
the best contracts does not change our qualitative
conclusions.

C. The LMSR with a better discrete prior

Recall that there were two differences between the
Exponential utility trader and the LMSR trader: a
better prior, and a continuous relaxation of the event
space. To investigate which of these changes was
responsible for the improvement in performance, in
this section we examine incorporating a good discrete
prior into the traditional LMSR.

C.1. The discrete prior

There are two equivalent ways to incorporate a prior
into the LMSR. In general, let the trader’s prior belief
over the set of events be π1, . . . , πn.
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The first way is to go back to the definition of
marginal prices within constant-utility cost functions:

∇iC(x) =
πiu
′(C(x)− xi)∑

j πju
′(C(x)− xj)

This equation gives an easy way to incorporate the
prior into prices. Since in the LMSR, u(x) =
− exp(−x/b), these prices correspond to the following
cost function

C(x) = b log

∑
j

πj exp(xj/b)


The second way is based on the relation of the

LMSR to the logarithmic proper scoring rule. The
connection between automated market makers and
scoring rules is deep, and is the focus of much prior
literature (Hanson, 2007; Pennock and Sami, 2007;
Lambert et al., 2008; Chen and Pennock, 2010).

Here, we initialize a “starting vector” q0 as the
payouts implied by the logarithmic scoring rule:

q0i = b log(πi)

Then the cost function proceeds as usual, but with
the addition of the q0 vector of payouts, so that

C(x) = b log

∑
j

exp((xj + q0j )/b)


These two methodologies are in fact equivalent

because

πi exp(xi/b) = exp(log(πi)) exp(xi/b)

= exp((xi + b log(πi))/b)

= exp((xi + q0i )/b)

We form the Discrete-prior LMSR trader by setting

πi ∝ LN(xi)

where LN is the density function of the Log-normal
trader for the same option chain at the same snapshot
in time. (As the prior of the Log-normal trader
changes over time, the discrete prior for the LMSR
trader changes, too.) To facilitate comparison, we

Table 15
Fraction of options chains on which the LMSR, Log-normal, and
Exponential utility traders out-performed the Discrete-prior LMSR

Comparison Trader Fraction

LMSR .37
Log-normal .61
Exponential utility .64

Table 16
Comparison of the Discrete-prior LMSR with other trading agents

Agent Frac. positive Mean Median Worst

Discrete-prior LMSR .46 −1.54 −.73 −37.7

Log-normal .54 .15 .89 −6.6
LMSR .46 −1.57 −.76 −37.8
Exponential utility .55 .32 .70 −3.6

keep the b parameter the same as in the LMSR and
Exponential utility trading agents, and we use the same
compression of the state space to strike prices that we
developed and motivated in Section 4.3.

C.2. Results and discussion

We replicated our experiments from Section 7 with
the Discrete-prior LMSR trader. Table 15 compares the
Discrete-prior LMSR trader against the LMSR, Log-
normal, and Exponential utility traders. The Discrete-
prior LMSR trader outperforms the LMSR trader over
63% of the option chains, but loses a similar frequency
of head-to-head matchups against the Log-normal and
Exponential utility trader.

Table 16 compares the performance of the Discrete-
prior LMSR with the Log-normal, LMSR, and
Exponential utility traders. The Discrete-prior LMSR
had performance that closely matches the original
LMSR, although with slightly better mean, median,
and worst-case loss.

While the Discrete-prior LMSR trader outper-
formed the LMSR trader, the difference was slight.
The common factor between the two agents was
the compression of the state space to just the
relevant strike prices, and our results suggest this
compression was the dominant factor in determining
the performance of the traders. Since both the Log-
normal and Exponential utility traders have much
better performance than the Discrete-prior LMSR,
this suggests that as the number of events (future
expirations) considered increases, the performance
of the discrete-prior LMSR would improve. This is
because as the number of events increases, the discrete
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market maker becomes a closer approximation to
these continuous market makers. However, as we
have discussed, an increasing number of events makes
the computation of values much more challenging,
and compressing the state space to only the traded
strike prices made a huge state space tractable without
opening the trader up to unbounded loss. Still, it
seems that compressing the state space to strike
prices, while not affecting worst-case loss, does come
with the hidden cost of a much less expressive
prior.

One issue that should not be lost in this discussion is
that using a discrete market maker with a fine-grained
prior does not provide a way to circumvent the

impossibility results of Section 5. Consider using
the LMSR with a large number of expiration prices
(events) with a prior that matches the distribution of
the Log-normal trader. The prior distribution that is
actually being generated is a log-normal distribution
truncated at the upper bound of the event space (the
largest expiration price considered). This truncation
scheme is covered by Proposition 3, which shows that
exponential utility will produce meaningful prices if
the prior distribution is identically zero above some
upper bound. However, as we discussed in Section 5,
this truncation is numerically hazardous because its
effect on prices is unpredictable and highly sensitive
to the upper bound.


