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Abstract. We develop the first general, algorithm-agnostic, solution quality guar-
antees for Nash equilibria and approximate self-trembling equilibria computed in
imperfect-recall abstractions, when implemented in the original (perfect-recall)
game. Our results are for a class of games that generalizes the only previously
known class of imperfect-recall abstractions where any results had been obtained.
Further, our analysis is tighter in two ways, each of which can lead to an expo-
nential reduction in the solution quality error bound.
We then show that for extensive-form games that satisfy certain properties, the
problem of computing a bound-minimizing abstraction for a single level of the
game reduces to a clustering problem, where the increase in our bound is the
distance function. This reduction leads to the first imperfect-recall abstraction al-
gorithm with solution quality bounds. We proceed to show a divide in the class
of abstraction problems. If payoffs are at the same scale at all information sets
considered for abstraction, the input forms a metric space, and this immediately
yields a 2-approximation algorithm for abstraction. Conversely, if this condition
is not satisfied, we show that the input does not form a metric space. Finally, we
provide computational experiments to evaluate the practical usefulness of the ab-
straction techniques. They show that running counterfactual regret minimization
on such abstractions leads to good strategies in the original games.

1 Introduction

Game-theoretic equilibrium concepts provide a sound definition of how rational agents
should act in multiagent settings. To operationalize them, they have to be accompanied
by techniques to compute equilibria, an important topic that has received significant
attention in the literature [23, 22, 10, 30, 16, 20].

Typically, equilibrium-finding algorithms do not scale to very large games. This
holds even for two-player zero-sum games (that can be solved in polynomial time [18])
when the games get large. Therefore, the following has emerged as the leading frame-
work for solving large extensive-form games [24]. First, the game is abstracted to gen-
erate a smaller game. Then the abstract game is solved for (near-)equilibrium. Then,
the strategy from the abstract game is mapped back to the original game. Initially, game
abstractions were created by hand, using domain dependent knowledge [26, 2]. More
recently, automated abstraction has taken over [8, 10, 30]. This has typically been used
for information abstraction, whereas action abstraction is still largely done by hand [12].
Recently, automated action abstraction approaches have also started to emerge [14, 15,
25, 3].
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Ideally, abstraction would be performed in a lossless way, such that implementing
an equilibrium from the abstract game results in an equilibrium in the full game. Loss-
less abstraction techniques were introduced by Gilpin and Sandholm [10] for a class of
games called game of ordered signals. Unfortunately, lossless abstraction often leads to
games that are still too large to solve. Thus, we must turn to lossy abstraction. However,
significant abstraction pathologies (nonmonotonicities) have been shown in games that
cannot exist in single-agent settings: if an abstraction is refined, the equilibrium strategy
from that new abstraction can actually be worse in the original game than the equilib-
rium strategy from a coarser abstraction [28]! Until recently, all lossy abstraction tech-
niques for general games of imperfect information were without any solution quality
bounds. Basilico and Gatti [1] give bounds for the special game class called patrolling
security game. Johanson et al. [17] provide computational methods for evaluating the
quality of a given abstraction via computing a best response in the full game after
the fact. Sandholm and Singh [25] provide lossy abstraction algorithms with bounds
for stochastic games. Lanctot et al. [21] present regret bounds in a class of imperfect-
recall abstractions for equilibria computed using the counterfactual regret minimization
algorithm (CFR) [30], with their result also extending to perfect-recall abstractions.
Finally, Kroer and Sandholm [19] show solution quality bounds for a broad class of
perfect-recall abstractions. They leave as an open problem whether similar bounds can
be achieved for imperfect-recall abstractions, which are the state of the art in practical
poker solving [27, 17, 5]. In a somewhat related vein, Waugh et al. [29] introduce an
approach that uses functional regret estimation within CFR; their technique converges
to a Nash equilibrium if the regrets are realizable by the function approximator. In a
somewhat different line of research, Brown and Sandholm [4] introduce a technique for
simultaneously computing an equilibrium and refining the abstraction. This eventually
converges, but does not give guarantees without after-the-fact best-response calculation.

Generalizing the notion of skew well-formed games introduced by Lanctot et al.
[21], we adapt the techniques of Kroer and Sandholm [19] to give similar results for
imperfect-recall abstractions. The solution quality bounds we derive are exponentially
stronger than those of Lanctot et al. [21] which had a linear dependence on the num-
ber of information sets, and did not weight the leaf reward error by the probability of
a given leaf being reached. The reward error term in our result has only a linear de-
pendence on tree height (actually, just the number of information sets any single player
can experience on a path of play). Our leaf reward error term is weighted by the proba-
bility of the leaf being reached. Each of these two reasons can lead to an exponentially
tighter bound. Furthermore, our bounds are independent of the equilibrium computation
method, while that prior work was only for CFR.

Our results actually extend to a new game class which we coin chance-relaxed skew
well-formed (CRSWF) games, a relaxation of skew well-formed games. It allows for a
richer set of abstractions where nodes can go in the same abstract information set even
if the nature probabilities of reaching those nodes and going from those nodes are not
the same. This enables dramatically smaller abstractions for such games.

For games where abstraction of a subset of information sets at a single level is guar-
anteed to result in a CRSWF game, we show an equivalence between the problem of
computing an abstraction that minimizes our theoretical solution quality guarantees and
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a class of clustering problems. Using the decrease in solution quality bound from ab-
stracting a pair of information sets as a distance function, we show that such abstraction
problems form a metric space. This yields a 2-approximation algorithm for perform-
ing abstraction at a signle level in the game tree when information sets differ only by
the actions taken by players. When information sets differ based on nature’s actions,
our equivalence yields a new clustering objective that has not, to our knowledge, been
previously studied. Our clustering results yield the first abstraction algorithm for com-
puting imperfect-recall abstractions with solution quality bounds. Finally, we use these
results to conduct experiments on a simple die-based poker game that has been used as
a benchmark for game abstraction in prior work. The experiments show that the CFR
algorithm works well even on abstraction where different nature probabilities are ab-
stracted together, and that the theoretical bound is within 0 to 2 orders of magnitude of
the regrets at CFR convergence.

2 Extensive-form games

An extensive-form game Γ is a tuple 〈N,A, S, Z,H, σ0, u, I〉. N is the set of players
in the game. A is the set of all actions in the game. S is a set of nodes corresponding
to sequences of actions. They describe a tree with root node r ∈ S. At each node s,
some Player i is active with actions As, and each branch at s denotes a different choice
in As. The set of all nodes where Player i is active is called Si. Z ⊂ S is the set of
leaf nodes, where ui(z) is the utility to Player i of node z. We assume, without loss
of generality, that all utilities are non-negative. Zs is the subset of leaf nodes reachable
from a node s.Hi ⊆ H is the set of heights in the game tree where Player i acts.H0 is
the set of heights where nature acts. σ0 specifies the probability distribution for nature,
with σ0(s, a) denoting the probability of nature choosing outcome a at node s.
Ii ⊆ I is the set of information sets where Player i acts. Ii partitions Si. For any

two nodes s1, s2 in the same information set I , Player i cannot distinguish among them,
and As1 = As2 . We let X(s) denote the set of information set and action pairs I, a in
the sequence leading to a node s, including nature. We let X−i(s), Xi(s) ⊆ X(s) be
the subset of this sequence such that actions by the subscripted player(s) are excluded
or exclusively chosen. Let Xb(s) be the set of possible sequences of actions players
can take in the subtree at s, with Xb

−i(s), X
b
i (s) being the set of future sequences ex-

cluding or limited to Player i, respectively. We denote elements in these sets as a.
Xb(s,a), Xb

−i(s,a), Xb
i (s,a) are the analogous sets limited to sequences that are con-

sistent with the sequence of actions a. We let s[I] denote the predecessor ŝ of the node
s such that ŝ ∈ I .

Perfect recall means that no player forgets anything that that player observed in the
past. Formally, for every Player i ∈ N , information set I ∈ Ii, and nodes s1, s2 ∈
I : Xi(s1) = Xi(s2). Otherwise, the game has imperfect recall. For games Γ ′ =
〈N,A, S, Z,H, σ0, u, I ′〉 and Γ = 〈N,A, S, Z,H, σ0, u, I〉, we say that Γ is a perfect-
recall refinement of Γ ′ if Γ has perfect-recall, and for any information set I ∈ I : ∃I ′ ∈
I ′, I ⊆ I ′. That is, the game Γ can be obtained by partitioning the nodes of each infor-
mation set in I ′ appropriately. For any perfect-recall refinement Γ , we let P(I ′) denote
the information sets I ∈ I such that I ⊆ I ′ and

⋃
I∈P(I′) = I ′. For an information set
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I in a perfect-recall refinement Γ of Γ ′, we let fI denote the corresponding information
set in Γ ′.

We will focus on the setting where we start out with some perfect-recall game Γ , and
wish to compute an imperfect-recall abstraction such that the original game is a perfect-
recall refinement of the abstraction. Imperfect-recall abstractions will be denoted by
Γ ′ = 〈N,A, S, Z,H, σ0, u, I ′〉. That is, they are the same game, except that some
information sets have been merged.

We denote by σi a behavioral strategy for Player i. For each information set I where
it is the player’s turn to move, it assigns a probability distribution over AI , the actions
at the information set. σi(I, a) is the probability of playing action a. A strategy profile
σ = (σ0, . . . , σn) consists of a behavioral strategy for each player. We will often use
σ(I, a) to mean σi(I, a), since the information set uniquely specifies which Player i is
active. As described above, randomness external to the players is captured by the nature
outcomes σ0. Using this notation allows us to treat nature as a player when convenient.
We let σI→a denote the strategy profile obtained from σ by having Player i deviate to
taking action a at I ∈ Ii.

Let the probability of going from node s to node ŝ under strategy profile σ be
πσ(s, ŝ) = Π〈s̄,ā〉∈Xs,ŝσ(s̄, ā) where X(s, ŝ) is the set of pairs of nodes and actions on
the path from s to ŝ. We let the probability of reaching node s be πσ(s) = πσ(r, s), the
probability of going from the root node r to s. Let πσ(I) =

∑
s∈I π

σ(s) be the prob-
ability of reaching any node in I . For probabilities over nature, πσ0 (s) = πσ̄0 (s) for all
σ, σ̄, s ∈ S0, so we can ignore the superscript and write π0. Finally, for all behavioral
strategies, the subscript −i refers to the same definition, but without including Player i.

For information set I and action a ∈ AI at level k ∈ Hi, we let DaI be the set of
information sets at the next level inHi reachable from I when taking action a. Similarly,
we let DlI be the set of descendant information sets at height l ≤ k, where DkI = {I}.
Let tsa be the node transitioned to by performing action a ∈ As at node s. Finally, we
let Da,j

s be the set of information sets reachable from node s when action-vector s is
played with probability one.

2.1 Chance-relaxed skew well-formed (CRSWF) games

In this paper we will only be concerned with imperfect-recall abstractions where the
original game is a perfect-recall refinement satisfying a certain set of properties. We call
imperfect-recall games with such refinements CRSWF games. They are a relaxation of
the class skew well-formed games introduced by [21].

Definition 1. For an extensive-form game Γ ′, and a perfect-recall refinement Γ , we
say that Γ ′ is an CRSWF game with respect to Γ if for all i ∈ N, I ′ ∈ I ′i, I, Ĭ ∈ P(I ′),
there exists a bijection φ : ZI → ZĬ such that for all z ∈ ZI :

1. In Γ ′, X−{i,0}(z) = X−{i,0}(φ(z)), that is, for two leaf nodes mapped to each
other (for these two information sets in the original game), the action sequences of
the other players on those two paths must be the same in the abstraction.1

1 It is possible to relax this notion slightly: if two actions of another player are not the same,
as long as they are on the path (at the same level) to all nodes in their respective full-game
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2. In Γ ′, Xi(z[I], z) = Xi(φ(z)[Ĭ], φ(z)), that is, for two leaf nodes mapped to each
other (for information sets I and Ĭ in the original game), the action sequence of
Player i from I to z and from Ĭ to φ(z) must be the same in the abstraction.

This definition implicitly assumes that leaf nodes are all at the same level. This is with-
out loss of generality, as any perfect-recall game can be extended to satisfy this.

With this definition, we can define the following error terms for a CRSWF refine-
ment Γ of an imperfect-recall game Γ ′ for all i ∈ N, I ′ ∈ I ′i, I, Ĭ ∈ P(I ′)

–
∣∣∣ui(z)− δI,Ĭui(φ(z))

∣∣∣ ≤ εR
I,Ĭ

(z), the reward error at z, after scaling by δI,Ĭ at Ĭ .

–
∣∣∣π0(z[I], z)− π0(φ(z)[Ĭ], φ(z))

∣∣∣ ≤ ε0
I,Ĭ

(z) , the leaf probability error at z.

–
∣∣∣π0(z[I])
π0(I) −

π0(φ(z)[Ĭ])

π0(Ĭ)

∣∣∣ ≤ εD
I,Ĭ

(z[I]) , the distribution error of z[I].

Lanctot et al. [21] require π0(z) = lI,Ĭπ0(φI,Ĭ(z)), where lI,Ĭ is a scalar defined on
a per information set pair basis. We omit any such constraint, and instead introduce
distribution error terms as above. Our definition allows for a richer class of abstractions.
Consider some game where every nature probability in the game differs by a small
amount. For such a game, no two information sets can be merged according to the skew
well-formed games definition, whereas our definition allows such abstraction.

We define uI,Ĭ(s) = maxz∈Zs ui(z) + εR
I,Ĭ

(z), the maximum utility plus its scaled
error achieved at any leaf node for Player i. This will simplify notation when we take
the maximum over error terms related to probability transitions.

Conditions 1-3 above define approximation error terms. We now define additional
aggregate approximation error terms. These will be useful when reasoning inductively
about more than one height of the game at a time. We do not subscript by the player
index i, since all analysis in the remainder of the paper is conducted on a per-player (as-
sumed to be i) basis. We define the reward approximation error εR

I,Ĭ
(s) for information

sets I, Ĭ ∈ P(I ′) and any node s in Ĭ to be

εR
I,Ĭ

(s) =


εR
I,Ĭ

(z) if ∃z ∈ Z : z = s∑
a∈As σ0(s, a)εR

I,Ĭ
(tsa) if s ∈ S0

maxa∈As ε
R
I,Ĭ

(tsa) if s /∈ S0 ∧ s /∈ Z
,

We define the transition approximation error ε0
I,Ĭ

(s) for information sets I, Ĭ ∈ P(I ′)

and any node s in Ĭ to be

ε0
I,Ĭ

(s) =


ε0
I,Ĭ

(z)uI,Ĭ(z) if ∃z ∈ Z : z = s∑
a∈As ε

0
I,Ĭ

(tsa) if s ∈ S0

maxa∈As ε
R
I,Ĭ

(tsa) if s /∈ S0 ∧ s /∈ Z

information sets (I and Ĭ), they do not affect the distribution over nodes in the information
sets, and are thus allowed to differ in the abstraction.
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We define the distribution approximation error for an information set pair I, Ĭ ∈ P(I ′)
to be

εD
I,Ĭ

=
∑
s∈I

εD
I,Ĭ

(s)uI,Ĭ(s)

2.2 Value functions

We define value functions both for individual nodes and for information sets. The value
for Player i of a given node s under strategy profile σ is V σi (s) =

∑
z∈Zs π

σ(s, z)ui(z).
We use the definition of counterfactual value of an information set, introduced by Zinke-
vich et al. [30], to reason about the value of an information set under a given strategy
profile. The counterfactual value of an information set I is the expected utility of the
information set, assuming that all players follow strategy profile σ, except that Player
i plays to reach I , normalized by the probability of reaching the information set. This
latter normalization, introduced by Kroer and Sandholm [19], is not part of the origi-
nal definition, but it is useful for inductively proving bounds over information sets at
different heights of the game tree.

Definition 2. For a perfect-recall game Γ , the counterfactual value for Player i of a
given information set I under strategy profile σ is

V σi (I) =

{∑
s∈I

πσ−i(s)

πσ−i(I)

∑
z∈Zs π(s, z)ui(z) if πσ−i(I) > 0

0 if πσ−i(I) = 0

We sometimes write V (I) = V σi (I) when the strategy and player are both clear from
context. For the information set Ir that contains just the root node r, we have that
V σi (Ir) = V σi (r), which is the value of playing the game with strategy profile σ. We
assume that at the root node it is not nature’s turn to move. This is without loss of gener-
ality since we can insert dummy player nodes above it. For imperfect-recall information
sets, we let W (I ′) =

∑
s∈I′

πσ(s)
πσ(I′)V (s) be the value of an information set.

In perfect-recall games, for information set I at height k ∈ Hi, V σi (I) can be written
as a sum over descendant information sets at height k̂ ∈ Hi, where k̂ is the next level
below k that belongs to Player i (a proof is given by Kroer and Sandholm [19]):

V σi (I) =
∑
a∈AI

σ(I, a)
∑
Î∈DaI

πσ−i(Î)

πσ−i(I)
V σi (Î) (1)

We will later be concerned with a notion of how much better a player i could have
done at an information set: the regret for information set I and action a is r(I, a) =
V σI→ai (I)−V σi (I). That is, the increase in expected utility for Player i obtained by de-
viating to taking action a at I . The immediate regret at an information set I given a strat-
egy profile σ is r(I) = maxa∈AI r(I, a). Regret is define analogously for imperfect-
recall games using W (I).
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2.3 Equilibrium concepts

In this section we define the equilibrium concepts we use. We start with two classic
ones.

Definition 3 (ε-Nash and Nash equilibria). An ε-Nash equilibriumis a strategy profile
σ such that for all i, σ̄i: V σi (r) + ε ≥ V

σ−i,σ̄i
i (r). A Nash equilibrium is an ε-Nash

equilibrium where ε = 0.

We will also use the concept of a self-trembling equilibrium, introduced by Kroer and
Sandholm [19]. It is a Nash equilibrium where the player assumes that opponents make
no mistakes, but she might herself make mistakes, and thus her strategy must be optimal
for all information sets that she could mistakenly reach by her own fault.

Definition 4 (Self-trembling equilibrium). For a game Γ , a strategy profile σ is a self-
trembling equilibrium if it satisfies two conditions. First, it must be a Nash equilibrium.
Second, for any information set I ∈ Ii such that πσ−i(I) > 0, and for all alternative
strategies σ̄i, V σi (I) ≥ V

σ−i,σ̄i
i (I). We call this second condition the self-trembling

property.

An ε-self-trembling equilibrium is defined analogously, for each information set I ∈
Ii, we require V σi (I) ≥ V

σ−i,σ̄i
i (I) − ε. For imperfect-recall games, the property

πσ−i(I
′) > 0 does not give a probability distribution over the nodes in an information

set I ′, since Player i can affect the distribution over the nodes. For such information
sets, it will be sufficient for our purposes to assume that σi is (approximately) utility
maximizing for some (arbitrary) distribution over P(I ′): our bounds are the same for
any such distribution.

3 Strategies from abstract near-equilibria have bounded regret

To prove our main result, we first show that strategies with bounded regret at informa-
tion sets in CRSWF games have bounded regret at their perfect-recall refinements (All
proofs can be found in the appendix).

Proposition 1. For any CRSWF game Γ ′, refinement Γ , strategy profile σ, and infor-
mation set I ′ ∈ I ′ such that Player i has bounded regret r(I ′, a) for all a ∈ AI′ , the
regret r(I, a∗) at any information set I ∈ P(I ′) and action a∗ ∈ AI is bounded by

r(I, a∗) ≤ max
Ĭ∈P(I′)

δI,Ĭr(I
′, a∗) + 2

∑
s∈I

πσ(s)

πσ(I)

(
ε0
I,Ĭ

(s) + εR
I,Ĭ

(s)
)

+ εD
I,Ĭ

Intuitively, the scaling variable δI,Ĭ ensures that if the regret at I ′ is largely based
on some other information set, then the regret is scaled to fit with the payoffs at I .

With this result, we are ready to prove our main results. First, we show that strate-
gies with bounded regret at each information set in CRSWF games are ε-self-trembling
equilibria when implemented in any perfect-recall refinement.
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Theorem 1. For any CRSWF game Γ ′ and strategy σ with bounded immediate regret
rI′ at each information set I ′ ∈ Γ ′ where σ−i(I ′) > 0, σ is an ε-self-trembling equi-
librium when implemented in any perfect-recall refinement Γ , where ε = maxi∈N εi
and

εi = max
a∈Xbi (r)

∑
j∈Hi,j≤l

∑
I∈Da,j

r

πσ−i(I)

(
max

Ĭ∈P(fI)
δI,Ĭr(fI)

+2
∑
s∈I

πσ(s)

πσ(I)

(
ε0
I,Ĭ

(s) + εR
I,Ĭ

(s)
)

+ εD
I,Ĭ

)

This version of our bound weights the error at each information set by the proba-
bility of reaching the information set, and similarly, the error at each of the nodes in
the information set is weighted by the probability of reaching it. This is important for
CFR-style algorithms, where the regret at each information set I only goes to zero when
weighted by πσ−i(I), the probability of it being reached if Player i played to reach it.
In some instances it might be desirable to work with a different version of our bound.
If one wishes to compute an abstraction that minimizes the bound independently of a
specific strategy profile, it is possible to take the maximum over all player actions. Im-
portantly, this preserves the probability distribution over errors at nature nodes. In the
previous CFR-specific results of Lanctot et al. [21], the reward error bound for each
information set was the maximum reward error at any leaf node. Having the reward
error be a weighted sum over the nature nodes and only maximized over player action
sequences allows significantly finer-grained measurement of similarity between infor-
mation sets. Consider any poker game where an information set represents the hand that
the player holds, and three hands: a pair of aces IA, pair of kings IK , or pair of twos I2.
When the reward error is measured as the maximum over nodes in the information set,
IA and IK are as dissimilar as IA, I2, since the winner changes for at least one hand
held by the opponent for both information sets. In contrast to this, when reward errors
are weighted by the probability of them being reached, we get that IA, IK are much
more similar than IA, I2.

Our proof techniques have their root in those of Kroer and Sandholm [19]. We de-
vise additional machinery, mainly Proposition 1 and the notion of CRSWF abstractions,
to deal with imperfect recall. In doing so, our bounds get a linear dependence on height
for the reward approximation error. The prior bounds [19] have no dependence on height
for the reward approximation error, and are thus tighter for perfect-recall abstractions.

We now show a second version of our result, which concerns the mapping of Nash
equilibria in CRSWF games to approximate Nash equilibria in perfect-recall refine-
ments.

Theorem 2. For any CRSWF game Γ ′ and Nash equilibrium σ, σ is an ε-Nash equi-
librium when implemented in any perfect-recall refinement Γ , where ε = maxi∈N εi
and

εi = max
a∈Xbi (r)

∑
j∈Hi,j≤l

∑
I∈Da,j

r

πσ−i(I)

(
max

Ĭ∈P(fI)
2
∑
s∈I

πσ(s)

πσ(I)

(
ε0
I,Ĭ

(s) + εR
I,Ĭ

(s)
)

+ εD
I,Ĭ

)
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For practical game solving, Theorem 1 has an advantage over Theorem 2: any algorithm
that provides guarantees on immediate counterfactual regret in imperfect-recall games
can be applied. For example, the CFR algorithm can be run on a CRSWF abstrac-
tion, and achieve the bound in Theorem 1, with the information set regrets πσ−i(I)r(fI)

decreasing at a rate of O(
√

(T )). Conversely, no good algorithms are known for com-
puting Nash equilibria in imperfect-recall games.

4 Complexity and algorithms

We now investigate the problem of computing CRSWF abstractions that minimize the
error bounds in Theorem 2. First, we show that this is hard, even for games with a single
player and a game tree of height two2.

Theorem 3. Given a perfect-recall game and a limit on the number of information sets,
determining whether a CRSWF abstraction with a given bound as in Theorem 1 or 2
exists is NP-complete. This holds even if there is only a single player, and the game tree
has height two.

Performing abstraction at a single level of the game tree that minimizes our bound
reduces to clustering if the information sets considered for clustering satisfy Condi-
tions 1 and 2. The distance function for clustering depends on how the trees match on
utility and nature error, and the objective function depends on the topology higher up the
tree. In such a setting, an imperfect-recall abstraction with solution quality bounds can
be computed by clustering valid information sets level-by-level in a bottom-up fashion.
In general, a level-by-level approach has no optimality guarantees, as some games allow
no abstraction unless coupled with other abstraction at different levels (a perfect-recall
abstraction example of this is shown by Kroer and Sandholm [19]). However, consid-
ering all levels simultaneously is often impossible in practice. A medical example of a
setting where such a level-by-level scheme could be applied is given by [6], where an
opponent initially chooses a robustness measure, which impacts nature outcomes and
utility, but not the topology of the different subtrees. Similarly, the die-roll poker game
introduced by Lanctot et al. [21] as a game abstraction benchmark is amenable to this
approach.

We now show that single-level abstraction problems where Conditions 1 and 2 of
Definition 1 are satisfied for all merges form a metric space together with the distance
function that measures the error bound for merging information set pairs. Clustering
problems are often computationally easier when the input forms a metric space, yielding
approximation algorithms with constant approximation factors [13, 7].

Definition 5. A metric space is a set M and a distance function d : M ×M → R such
that the following holds for all x, y, z ∈M :

1. d(x, y) ≥ 0
2. d(x, y) = 0⇔ x = y (identity of indiscernibles)

2 Sandholm and Singh [25] already showed hardness of computing an optimal abstraction in the
sense of minimizing the actual loss of a unique equilibrium.
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3. d(x, y) = d(y, x) (symmetry)
4. d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality)

Proposition 2. For a set of information sets Im such that any partitioning of Im yields
a CRSWF abstraction (without scaling variables), and a function d : Im × Im → R
describing the loss incurred in the error bound when merging I, Ĭ ∈ Im, the pair
(Im, d) forms a metric space.

Conversely to our result above, if the scaling variables can take on any value, the triangle
inequality does not hold, so (Im, d) is not a metric space. Consider three information
sets I1, I2, I3, each with two nodes reached with probability 0.9 and 0.1, respectively.
Let there be one action at each information set, leading directly to a leaf node in all
cases. Let I1 = {1, 2}, I2 = {5, 11}, I3 = {10, 23}, where the name of the node is also
the payoff of Player 1 at the node’s leaf. We have that I1 and I2 map onto each other
with scaling variable δI1,I2 = 5 to get εRI1,I2 = 1 and I2,3 with δI2,I3 = 2, εRI2,I3 = 1.
However, I1 and I3 map onto each other with δI1,I3 = 10 to get εRI1,I3 = 3 which is
worse than the sum of the costs of the other two mappings, since all reward errors on
the right branches are multiplied by the same probability 0.1, i.e.,

0.1 · εRI1,I2 + 0.1 · εRI2,I3 < 0.1 · εRI1,I3
.

The objective function for our abstraction problem has two extreme versions. The
first is when the information set that is reached depends entirely on players not in-
cluding nature. In this case, the bound on error over the abstraction at the level is the
maximum error of any single information set. This is equivalent to the minimum diam-
eter clustering problem, where the goal is to minimize the maximum distance between
any pair of nodes that share a cluster; Gonzalez [13] gave a 2-approximation algorithm
when the distance function satisfies the triangle inequality. Above we gave conditions
when the abstraction problem is a metric space (which implies that the triangle inequal-
ity is satisfied). This gives a 2-approximation algorithm for minimizing our bound over
single-level abstraction problems.

The other extreme is when each of the information sets being reached differ only in
nature’s actions. In this setting, the error bound over the abstraction is a weighted sum
of the error at each information set. This is equivalent to clustering where the objective
function being minimized is the weighted sum over all elements, with the cost of each
element being the maximum distance to any other element within its cluster. To our
knowledge, clustering with this objective function has not been studied in the literature,
even when the weights are uniform.

Generally, the objective function can be thought of as a tree, where a given leaf node
represents some information set, and takes on a value equal to the maximum distance
to any information set with which it is clustered. Each internal node either takes the
maximum or weighted sum of its child-node errors. The goal is to minimize the error at
the root node.

In practice, integer programs (IPs) have sometimes been applied to clustering in-
formation sets for extensive-form game abstraction [9, 11] (without bounds on solution
quality, and just for perfect-recall abstractions), and are likely to perform well in our
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setting. An IP can easily be devised for any objective function in the above tree form. A
real-valued variable is introduced for each internal node in the objective function tree
described above. If the node takes the maximum, constraints are introduced forcing its
variable to be larger than the value of each child node. If the node takes the weighted
sum, a constraint is introduced forcing it to be larger than the weighted sum.

5 Experiments

We now investigate what the optimal single-level abstraction bounds look like for the
die roll poker (DRP) game, a benchmark game for testing abstraction [21]. Die-roll
poker is a simple two-player zero-sum poker game where dice, rather than cards, are
used to determine winners. At the beginning of the game, each player antes one chip to
the pot. Each player then rolls a private six-sided die. It is an incomplete-information
game since the players don’t observe each other’s die rolls. After each player has rolled
their first die, a betting round occurs. During betting rounds, a player may fold (causing
the other player to win the game), call (match the current bet), or raise (increase the
current bet by a fixed amount), with a maximum of two raises per round. In the first
round, each raise is worth two chips. In the second round, each raise is worth four chips.
The maximum that a player can bet is 13 chips, if each player uses all their raises. At
the end of the second round, if neither player has folded, a showdown occurs. In the
showdown, the player with the largest sum of the two dice wins all the chips in the pot.
If the players are tied, the pot is split.

DRP has the nice property that abstractions computed at the bottom level of the tree
satisfy Conditions 1 and 2 of Definition 1. At heights above that one we can similarly
use our clustering approach, but where two information sets are eligible for merging
only if there is a bijection between their future die rolls such that the information sets
for the future rolls in the bijection have been merged. Thus, a clustering would be com-
puted for each set in the partition that represents a group of information sets eligible
for merging. In the experiments in this paper we will focus on abstraction at the bottom
level of the tree. We use CPLEX to solve an IP encoding the single-level abstraction
problem, which computes the optimal abstraction for the level, given a limit on the
number of abstract information sets. The results are shown in Figure 1. For one or

Fig. 1. Regret bounds for varying numbers of abstract information sets at the last level in DRP.
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two clusters, the bound is bigger than the largest payoff in the game, but already at
three clusters it is significantly lower. At eight clusters, the bound is smaller than that
of always folding, and decreases steadily to zero at eleven clusters, where a lossless
abstraction is found (the original game has 36 information sets). While these experi-
ments show that our bound is relatively small for the DRP game, they are limited in
that we only performed abstraction at a single level. If abstraction at multiple levels is
performed, the bound is additive in the error over the levels. Nonetheless, our bounds
are significantly tighter than the only previously known bounds, and in future work it
would be interesting to see whether the height dependence can be removed.

Another important question is how well strategies computed in abstractions that are
good—as measured by our bound—perform in practice. This has already been partially
answered. Lanctot et al. [21] conducted experiments to investigate the performance of
CFR strategies computed in imperfect-recall abstractions of several games: DRP, Phan-
tom tic-tac-toe (where moves are observed a turn later than in regular tic-tac-toe), and
Bluff (also known as Liar’s Dice, Dudo, and Perudo). They found that CFR computes
strong strategies in imperfect-recall abstractions of all these games, even when the ab-
straction did not necessarily fall under their framework. Their experiments validate a
subset of the class of CRSWF abstractions: ones where there is no chance (nature) er-
ror. Our framework provides exponentially stronger bounds than those of Lanctot et al.
[21] for these settings.

Due to the existing experimental work of Lanctot et al. [21], we focus our exper-
iments on problems where abstraction does introduce nature error. One broad class of
problems where such error can naturally occur are settings where players observe im-
perfect signals of some phenomenon. For such settings, one would expect that there is
correlation between the observations made by the players. Concrete examples include
negotiation, sequential auctions, and strategic acquisition.

DRP can be thought of as a game where the die rolls are the signals. Regular
DRP has a uniform distribution over the signals. We now consider a generalization
of DRP where die rolls are correlated: correlated die-roll poker (CDRP). There are
many variations on how one could make the rolls correlated; we use the following.
We have a single correlation parameter c, and the probability of any pair of values
(v1, v2), for Player 1 and 2 respectively, is 1

#sides2 − c |v1 − v2|. The probabilities
for the second round of rolls is independent of the first round. As an example, the
probability of Player 1 rolling a 3 and Player2 rolling a 5 with a regular 6-sided die
in either round would be 1

36 − 2c. We generate DRP games with a 4-sided die and
c ∈ {0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07}.

For each value of c, we compute the optimal bound-minimizing abstraction for the
second round of rolls, with a static mapping between information sets such that for any
sequence of opponent rolls, the nodes representing that sequence in either information
set are mapped to each other. The bound cost of the mappings is precomputed, and
the optimal abstraction is found with a standard MIP formulation of clustering. This
scheme ensures that we compute an imperfect-recall abstraction that falls under the
CRSWF game class. After computing the optimal abstraction for a given game, we run
CFR on the abstraction, and measure the regret for either player in terms of their regret
in the full game. Figure 2 shows the results of these experiments. On the x-axis is the
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number of CFR iterations. On the y-axis is r1 + r2, where ri is the regret for Player i
for the strategy at a given iteration. Furthermore, the horizontal lines denote the regret
bound of Theorem 2 for an exact Nash equilibrium. On the left in Figure 2 is shown
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Fig. 2. Sum of the two players’ regrets as a function of CFR iterations on the bound-minimizing
abstraction of CDRP. The legends give the amount of correlation in the die rolls of the different
CDRP games on which we ran experiments. The horizontal lines show the respective ex-ante
regret bound of Theorem 2 for each of the CDRP games. (In the first game on the left where
the correlation is zero, the abstraction is lossless, so the horizontal line (not shown) would be at
zero.)

the results for the four smallest values of c, on the right the four largest values. As
can be seen, CFR performs well on the abstractions, even for large values of c: when
c = 0.7, a very aggressive abstraction, the sum of regrets still goes down to ∼ 0.25
(for reference, always folding has a regret of 1). We also see that for c ≥ 0.2, the regret
stops decreasing after around 1000 iterations. This is likely where CFR converges in
the abstraction, with the remaining regret representing the information lost through the
abstraction. We also see that our theoretical bound is at the same order of magnitude as
the actual bound even when CFR converges.

6 Conclusions and future research

This paper presented the first general solution quality guarantees for strategies com-
puted in imperfect-recall abstractions of games. We defined CRSWF games, extending
skew well-formed games to incorporate nature error, which was left as an open problem
by Lanctot et al. [21]. We proved exponentially stronger solution quality guarantees than
prior related bounds, achieving the first solution quality bounds that take nature prob-
abilities into account when measuring reward error. The exponential improvement in
bound quality was achieved in two senses: first, the prior result has a linear dependence
on information sets in the tree while ours only has a linear dependence on the number
of information sets that a given player can experience during one path of play. Second,
our bound weights the error by nature probabilities, which can decrease the bound ex-
ponentially in the number of nature branches on any given path from the root to a leaf
node.

We then investigated computing CRSWF abstractions and showed that this is NP-
complete. For single-level abstraction problems, we showed an equivalence between
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the problem of computing a bound-minimizing abstraction within our framework, and
that of computing a distance-minimizing clustering under a class of objective func-
tions; this lead to showing that clustering information sets with our error bound as the
distance function yields a metric space when the rewards at the information sets are at
the same scale. We also gave a counterexample, showing that clustering of informa-
tion sets with different reward scaling does not satisfy the triangle inequality, and thus
does not form a metric space with our distance function. Our metric space result imme-
diately yields a 2-approximation algorithm for the single-level abstraction problem in
games where information sets are distinguished by players’ choice (not nature’s). We
also introduced a new class of objective functions for clustering. One extreme of this
class is the maximum-diameter clustering problem. The other is a new natural objective
function that minimizes the sum over all elements of maximum intra-cluster distances.
Finally, our experiments showed that single-level abstraction problems can be solved
and yield bounds that are at the same order of magnitude as the regrets after CFR con-
vergence. We leave open the question of whether abstraction at multiple levels using our
theory yields bounds of practical importance, and whether the bounds can be tightened
such that the error has no dependence on tree height.

The perfect-recall results of Kroer and Sandholm [19] allow abstraction not only
by merging information sets as we do but also by removing branches from the tree.
The following approach can be adopted for bounded imperfect-recall abstraction with
branch removal. First, a valid perfect-recall abstraction is computed, where the desired
branches are removed. The results by Kroer and Sandholm [19] give bounds on the solu-
tion quality of equilibria computed in this abstraction. An imperfect-recall abstraction
can then be computed from this perfect-recall abstraction, with our results providing
bounds on solution quality for this step. Solution quality bounds can then be achieved
for the final abstraction by taking the sum of the bounds for the two steps. It is likely
that tighter bounds can be achieved by analyzing the distance between the original game
and the final abstraction directly.
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A Proof of Proposition 1

Proof. Given some I ′ such that πσ−i(I
′) > 0, we assume that πσi (I ′) > 0. For infor-

mation sets where this is not the case, we assume any distribution over the choices of
Player i leading to I ′. Note that other players cannot affect the distribution over P(I ′)
due to Condition 1 of Definition 1. By the definition of regret of an action, we have:

r(I ′, a∗) = WσI→a∗ (I ′)−Wσ(I ′)

=
∑
s′∈I′

πσ(s′)

πσ(I ′)

∑
z′∈Z

ts
′
a∗

πσ(ts
′

a∗z
′)ui(z

′)−
∑
s′∈I′

πσ(s′)

πσ(I ′)

∑
a∈AI

πσ(I ′, a)
∑

z′∈Z
ts
′
a

πσ(ts
′

a , z
′)ui(z

′)

=
∑

Ĭ∈P(I′)

∑
s′∈Ĭ

πσ(s′)

πσ(I ′)

 ∑
z′∈Z

ts
′
a∗

πσ(ts
′

a∗ , z
′)ui(z

′)−
∑
a∈AI

πσ(I ′, a)
∑

z′∈Z
ts
′
a

πσ(ts
′

a , z
′)ui(z

′)


Note that

∑
Ĭ∈P(I′)

∑
s′∈Ĭ

πσ(s′)
πσ(I′) =

∑
Ĭ∈P(I′)

πσ(Ĭ)
πσ(I′) sums over a probability dis-

tribution on P(I ′). We take the minimum over this distribution:

≥ min
Ĭ∈P(I′)

∑
s′∈Ĭ

πσ(s′)

πσ(Ĭ)
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Let Im = arg minĬ∈P(I′) be the minimizer. Now we can bound the value using the

reward approximation error term:

=
∑
s′∈Im

πσ(s′)
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Multiplying both sides by δI,Im gives

δI,Imr(I
′, a∗) ≥
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From now on, let s′ = z′[Im], s = φIm,I(z
′)[I], and similarly z = φIm,I(z

′). Now we
can apply the distribution approximation error:

≥
∑
s′∈Im

(
πσ(s)

πσ(I)
− εDI,Im(s)

) ∑
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For all a ∈ AI ,

∑
s′∈Ĭ

∑
z′∈Z

ts
′
a

can be rewritten as the sum
∑
s∈I
∑
z∈Ztsa

as

Condition 2 of Definition 1 ensures that if (Ĭ , a) is on the path to z, then (I, a) is on the
path to φIm,I(z). This gives us

=
∑
s∈I
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We rewrite the summation over Ztsa so that we first sum over the possible sequences

of actions Xb
−0(tsa) = Xb

−0(ts
′

a ) players excluding nature can take. We then sum over
the possible sequences of actions X0(ts

′

a ) nature can take for the chosen sequence a.
Since this uniquely specifies leaf nodes, we can treat elements of this summation as
such. Call this set Za

s . For any such node s and leaf node z, πσ(s, z) = πσ−0(a)π0(s, z).
We use this observation along with the transition approximation error to get
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Rearranging terms gives us that this is exactly equal to
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Summarizing, this gives us
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which completes the proof.

B Proof of Theorem 1

Proof. Consider some alternative strategy σ∗ where Player i deviates to a best response
and σ−i = σ∗−i. We prove the bound by induction over the levelsHi belonging to Player
i. For the base case, consider any abstract information set I ′ ∈ I ′i and any I ∈ P(I ′)
at the lowest level l in Hi. We know that no mixed strategy is better than the single
best action when the strategies of the other players are held constant. This fact and
Proposition 1 gives us that:
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For the inductive step, we assume the following holds for all information sets I at
heights l < k ∈ Hi:
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Ĭ∈P(fÎ)

δÎ,Ĭr(fÎ) + 2
∑
s∈Î

πσ(s)

πσ(Î)

(
ε0
Î,Ĭ

(s) + εR
Î,Ĭ

(s)
)

+ εD
Î,Ĭ

 (2)
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Now consider some information set I at height k. We use Equation 1 to write the value
of an information set, and apply the inductive assumption:

V σ
∗
(I) =

∑
a∈AI

σ∗(I, a)
∑
Î∈DaI

πσ−i(Î)

πσ−i(I)
V σ
∗
(Î)

≤
∑
a∈AI

σ∗(I, a)
∑
Î∈DaI

πσ−i(Î)

πσ−i(I)

V σ(Î) + max
a∈Xbi (Î)

∑
j∈Hi,j<k

∑
Ì∈Da,j

Î

πσ−i(Ì)

πσ−i(Î)
ψ(Ì)


≤ max
a∈AI

∑
Î∈DaI

πσ−i(Î)

πσ−i(I)
V σ(Î) + max

a∈Xbi (I)

∑
j∈Hi,j<k

∑
Ì∈Da,j

I

πσ−i(Ì)

πσ−i(I)
ψ(Ì)

The last inequality is obtained by taking the maximum over AI , splitting the terms, and

multiplying in πσ−i(Î)

πσ−i(I)
. Now we can apply Proposition 1 to bound the immediate regret:

≤ V σ(I) + max
Ĭ∈P(fI)

δI,Ĭr(I
′, a∗) + 2

∑
s∈I

πσ(s)

πσ(I)

(
ε0
I,Ĭ

(s) + εR
I,Ĭ

(s)
)

+ εD
I,Ĭ

+ max
a∈Xbi (I)

∑
j∈Hi,j<k

∑
Ì∈Da,j

I

πσ−i(Ì)

πσ−i(I)
ψ(Ì)

= V σ(I) + ψ(I) + max
a∈Xbi (I)

∑
j∈Hi,j<k

∑
Ì∈Da,j

I

πσ−i(Ì)

πσ−i(I)
ψ(Ì)

= V σ(I) + max
a∈Xbi (I)

∑
j∈Hi,j≤k

∑
Ì∈Da,j

I

πσ−i(Ì)

πσ−i(I)
ψ(Ì)

This gives a bound on the regret at any information set I . Taking the regret at the root
node gives the desired result.

C Proof of Theorem 2

Proof. Assume that we are given a strategy σ that is a Nash equilibrium in Γ ′, and a
strategy σ∗ = (σ−i, σ

∗
i ) where Player i best responds in Γ . For information sets I ′

where σ−i(I ′) > 0, σ(I ′) = 0, a Nash equilibrium does not put any constraints on
behavior. However, we know that Player i could have played a strategy satisfying the
self-trembling property. Assume any such strategy σST , where it is equal to σ every-
where except at such information sets, where a utility-maximizing strategy is played for
some arbitrary, fixed distribution over P(I ′). We can then apply Theorem 1 to get the



REFERENCES 21

following (where ψ(I) is defined as in Equation 2):

V σ
∗

i (r) ≤ V σ
ST

i (r) + max
a∈Xbi (r)

∑
j∈Hi

∑
Ì∈Da,j

r

πσ−i(Ì)

πσ−i(I)
ψ(Ì)

Where all regrets r(I ′, a∗) = 0 since σST is a Nash equilibrium. Now, we observe that
the utility is the same for σ and any σST at the root node, V σ

ST

i (r) = V σi (r):

V σ
∗

i (r) ≤ V σi (r) + max
a∈Xbi (r)

∑
j∈Hi

∑
Ì∈Da,j

r

πσ−i(Ì)

πσ−i(I)
ψ(Ì)

which is the result we wanted.

D Proof of Theorem 3

Proof. Consider the two-dimensional k-center clustering decision problem with the Lq
distance metric. It is defined as follows: given a set P = {(x1, y1), . . . , (xn, yn)} of
n points in the plane, and an integer k, does there exist a partition of P into k clusters
C = {c1, . . . , ck} such that the maximum distance ‖p − p′‖q ≤ c between any pair of
points p, p′ in the same cluster is minimized. This problem is NP-hard to approximate
within a factor of 2 for q =∞, amongst others. [7].

Given such a problem, we construct a perfect-recall game as follows. For each point
p ∈ P , we construct an information set Ip. We insert two nodes sxp , s

y
p in each infor-

mation set Ip, representing the dimensions x, y respectively. All these nodes descend
directly from the root node r, where Player 1 acts. At each information set we have two
actions, ac, av . For any point p, we add leaf nodes at the branch ac with payoff M, 2M
at the nodes sxp , s

y
p respectively. If we pick a sufficiently large M , this ensures that for

any two points p, p′, their nodes sxp , s
x
p′ will map to each other, and similarly for y. This

also ensures that the scaling variable has to be set to 1 for all information set mappings.
For the branches av , we add leaf nodes with utility equal to the x, y coordinate of p at
the sxp , s

y
p nodes respectively.

There is a one-to-one mapping between clusterings of the points P and partitions of
the information sets {Ip : p ∈ P}. The quality of a clustering is

max
z∈{x,y}

max
j=1,...,k

max
p,p′∈cj

|p(z)− p′(z)|

. Since Player 1 acts at r, the abstraction quality bound is equal to the maximum differ-
ence over any two leaf nodes mapped to each other, as ε0 = εD = 0. This is the same
as the quality measure of the clustering. Thus, an optimal k size clustering is equivalent
to an optimal k information set abstraction.

Given some CRSWF abstraction, verifying the solution is easy to do: in one top-
down traversal of the game tree, compute the node distributions at each information
set. For each full-game information set, this gives the distribution-approximation er-
ror. For each information set pair mapped to each other, the transition- and reward-
approximation error can now be computed by a single traversal of the two. Thus the
problem is in NP.
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E Proof of Proposition 2

Proof. The first condition follows from the other three. Condition 2, identity of indis-
cernibles, does not hold for information sets. However, any pair of information sets with
distance zero can be merged losslessly in preprocessing, thus rendering the condition
true (having distance zero is transitive, so the minimal preprocessing solution is unique).
Condition 3, symmetry, holds by definition, since our distance metric is defined as the
error incurred from merging two information sets, which considers the error from both
directions of the mapping.

Finally, we show that Condition 4, the triangle inequality holds. Consider any three
information sets I1, I2, I3 ∈ Im. We need to show that d(I1, I3) ≤ d(I1, I2)+d(I2, I3).
Let φI1,I2 , φI2,I3 be the mappings for I1, I2 and I2, I3 respectively. We construct a
mapping φI1,I3 = φI2,I3 ◦ φI1,I2 and show that it satisfies the triangle inequality. For
the leaf payoff error, since δI1,I2 = δI2,I3 = 1, at any leaf z ∈ ZI1 we get:

ui(z) ≤ ui(φI1,I2(z))+εI1,I2(z) ≤ ui(φI2,I3(φI1,I2(z)))+εI2,I3(φI1,I2(z))+εI1,I2(z)

For the nature leaf probability error we can apply the same reasoning:

πσ0 (z[I1], z)

≤ πσ0 (φI1,I2(z[I1]), φI1,I2(z)) + ε0I1,I2

≤ πσ0 (φI2,I3(φI1,I2(z[I1])), φI2,I3(φI1,I2(z))) + ε0I2,I3(φI1,I2(z)) + ε0I1,I2(z)

Again, we derive the distribution error using a similar approach:

π0(z[I1])

π0(I1)

≤ π0(φI1,I2(z[I1]))

π0(I2)
+ εDI1,I2(z[I1])

≤ π0(φI2,I3(φI1,I2(z[I1])))

π0(I3)
+ εDI2,I3(φI2,I3(z[I1])) + εDI1,I2(z[I1])

This completes the proof.


