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ABSTRACT
We present new approximation methods for computing game-
theoretic strategies for sequential games of imperfect infor-
mation. At a high level, we contribute two new ideas. First,
we introduce a new state-space abstraction algorithm. In
each round of the game, there is a limit to the number of
strategically different situations that an equilibrium-finding
algorithm can handle. Given this constraint, we use clus-
tering to discover similar positions, and we compute the
abstraction via an integer program that minimizes the ex-
pected error at each stage of the game. Second, we present
a method for computing the leaf payoffs for a truncated ver-
sion of the game by simulating the actions in the remaining
portion of the game. This allows the equilibrium-finding
algorithm to take into account the entire game tree while
having to explicitly solve only a truncated version. Ex-
periments show that each of our two new techniques im-
proves performance dramatically in Texas Hold’em poker.
The techniques lead to a drastic improvement over prior ap-
proaches for automatically generating agents, and our agent
plays competitively even against the best agents overall.

Categories and Subject Descriptors
I.2 [Computing Methodologies]: Artificial Intelligence

General Terms
Algorithms, Economics

Keywords
Computational game theory, equilibrium computation, ab-
straction, automated abstraction, poker
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1. INTRODUCTION
Poker is an enormously popular card game played around

the world. The 2006 World Series of Poker had over $82 mil-
lion in total prize money for the main event. Increasingly,
poker players compete in online casinos, and television sta-
tions regularly broadcast poker tournaments. Unlike games
of perfect information (such as chess and Go) in which play-
ers are perfectly informed about the state of the world, in
poker, players face uncertainty stemming from the oppo-
nents’ cards, and future actions by nature (i.e., future cards
from the deck). For these and other reasons, poker has been
identified as an important research area in AI [7].

In environments with more than one agent, the outcome
of one agent may depend on the actions of the other agents.
Consequently, in determining what action to take, an agent
must consider the possible actions of the other agents. Game
theory provides the mathematical definitions (aka. solution
concepts) for how rational agents should behave in such set-
tings. However, the computational problem of actually de-
termining such strategies remains difficult in many settings.
In this paper, we present new, better computational meth-
ods for applying game theory-based approaches to large real-
world games of imperfect information.

Almost since the field’s founding, game theory has been
used to analyze different aspects of poker [9, 49, 3, 31, 35, 2,
24, 25, 37, 22, 18, 12, 41, 42]. That early work was limited
to tiny games that could be solved by hand. In fact, most
of that work was focused on computing analytical solutions
for various stylized versions of poker. For example, one typ-
ical assumption in that line of work is for the cards to be
drawn uniformly at random from the unit interval, followed
by a simple betting protocol. Although this approach seems
likely to be of use only for extremely small games, recently
there has been renewed interest in extending some of these
models and determing analytical solutions from them with
the goal of applying them to certain situations in real poker
games [16, 15]. Simplified versions of poker have also been
developed for illustrative examples in education [39]. From
a cognitive modelling and analysis perspective, poker has
proved to be a fertile environment for research [17, 10, 11].

For sequential games of imperfect information, one could
try to find an equilibrium using the normal (matrix) form,
where every contingency plan of the agent is a pure strategy
for the agent. Unfortunately (even if equivalent strategies
are replaced by a single strategy [30]) this representation



is generally exponential in the size of the game tree [50].
The sequence form representation [40, 26, 50], which con-
siders sequences of play rather than contingency plans, is
often more compact. For two-player zero-sum games, there
is a polynomial-sized (in the size of the game tree) lin-
ear programming (LP) formulation based on the sequence
form such that strategies for players 1 and 2 correspond
to primal and dual variables. Thus, a minimax solution1

for reasonably-sized two-player zero-sum games can be com-
puted using this method [50, 26, 27].2

Using that approach, Koller and Pfeffer (1997) determined
solutions to poker games with up to 140,000 nodes. That ap-
proach scales to games with about a million nodes [20]. For
a medium-sized (3.1 billion nodes) variant of poker called
Rhode Island Hold’em, game theory-based solutions have
been developed using a lossy abstraction followed by linear
programming [44], and recently optimal strategies for this
game were determined using lossless automated abstraction
followed by linear programming [20].

The problem of developing strong players for Texas Hold-
’em remains challenging. Recently there has been a surge
of research into new techniques for approaching this prob-
lem [28, 48, 7, 6, 5, 20, 19, 34, 1]. One approach has
been opponent modeling, in which a poker-playing program
attempts to identify and exploit weaknesses in the oppo-
nents [8, 13, 5, 23, 46, 47, 43]. The most successful Texas
Hold’em program from that line of research is Vexbot [5],
which combines opponent modeling with miximax search (a
variant of minimax search which allows the players to move
probabilistically according to some model to account for the
presence of imperfect information), and is available in the
commercial product Poker Academy Pro.

The first notable game theory-based player for Texas Hold-
’em used expert-designed manual abstractions and is com-
petitive with advanced human players [6]. A player based on
the techniques developed in that paper is available in Poker
Academy Pro as Sparbot. Recently, the game theory-based
player GS1 was presented, which featured automated ab-
straction and real-time equilibrium approximation [19, 21].
It was shown to be competitive with Sparbot and Vexbot.

We develop methods for automatically generating play-
ers for sequential games of imperfect information. Our goal
is robust players that play as strongly as possible against
strong opponents (rather than, say, maximally exploiting
weak opponents). Thus we adopt the game theory-based
approach. We present new, better techniques that allow
us to approach the problem from a game-theoretic point of
view, while mitigating the computational problems. We ap-
ply the methods to Texas Hold’em. Section 2 reviews the
rules of that game. Section 3 overviews our approach. The
main new ideas in this paper are

1. improved automated abstraction using clustering and
integer programming, and

2. computing the leaf payoffs for a truncated version of
the game by simulating the actions in the remaining

1Minimax solutions are robust in that there is no equilib-
rium selection problem: an agent’s minimax strategy guar-
antees at least the agent’s minimax value even if the oppo-
nent fails to play his minimax strategy. Throughout this
paper, we are referring to a minimax solution when we use
the term equilibrium.

2Recently this approach was extended to handle comput-
ing sequential equilibria [29] as well [33].

portion of the game. This allows the equilibrium-
finding algorithm to take into account the entire game
tree while having to explicitly solve only a truncated
version.

These are presented in detail in Sections 4 and 5, respec-
tively. Section 6 presents experiments.

2. RULES OF TEXAS HOLD’EM POKER
There are many variations of Texas Hold’em. As most

prior work on poker, we focus on the setting with two play-
ers, called heads-up. Another difference between variations
is the betting structure. Again, as most prior research, we
focus on limit poker, in which the betting amounts adhere to
a restricted format (see next paragraph). The AAAI Com-
puter Poker Competition held in July 2006 also used that
betting structure.3,4

The basic rules of two-player limit Texas Hold’em are as
follows.

• Before any cards are dealt, the first player, called the
small blind, contributes one chip to the pot; the second
player (big blind) contributes two chips.5

• Each player is dealt two hole cards from a randomly
shuffled standard deck of 52 cards.

• Next, the players participate in the first of four bet-
ting rounds, called the pre-flop. The small blind acts
first; she may either call the big blind (contribute one
chip), raise (three chips), or fold (zero chips). The
players then alternate either calling the current bet
(contributing two chips), raising the bet (four chips),
or folding (zero chips). In the event of a fold, the fold-
ing player forfeits the game and the other player wins
all of the chips in the pot. Once a player calls a bet, the
betting round finishes. The number of raises allowed
is limited to four in each round.

• The second round is called the flop. Three community
cards are dealt face-up, and a betting round takes place
with bets equal to two chips. The big blind player is
the first to act, and there are no blind bets placed in
this round.

• The third and fourth rounds are called the turn and
the river. In each round, a single card is dealt face-up,
and a betting round similar to the flop betting round
takes place, but with bets equal to four chips.

• The showdown occurs when the last betting round ends
with neither player folding. Each player uses the seven
cards available (their two hole cards along with the
five community cards) to form the best five-card poker
hand, where the hands are ranked in the usual order.
The player with the best hand wins the pot; in the
event of a tie, the players split the pot.

3Other popular variants include no-limit, in which play-
ers may bet any amount up to their current bankroll, and
pot-limit, in which players may bet any amount up to the
current size of the pot.

4Researchers have recently begun to develop game
theory-based poker-playing programs for no-limit Texas
Hold’em as well [34, 1].

5The exact monetary value of a chip is irrelevant. Thus
we refer only to the quantity of chips.



3. OVERVIEW OF OUR PLAYER
As discussed in the previous section, Texas Hold’em con-

sists of four betting rounds. We separate the game into two
phases, which we describe in turn.

3.1 Phase 1
In the first phase, we solve an LP that models the strategic

interaction in the first three rounds of the game, where the
payoffs at the end of the third round are estimated based on
an expectation of the actions in the fourth round. Thus, this
model is based on actions in the entire game. (We describe
the details of this payoff computation in Section 5.) We
perform this first phase computation offline.

Because the LP corresponding to this three-round ver-
sion of Texas Hold’em is too large to solve, we must em-
ploy abstraction techniques to reduce the size of the LP.
Based on the available computational resources for solving
the LP, there is a limit to the number of strategically differ-
ent hands that can be considered in each round. Based on
the computational resources available to us, we determined
we could handle up to 15 strategically different hands in the
first round, 225 in the second round, and 900 in the third
round. Solving the LP took 6 days and 70 gigabytes of
RAM using the barrier method in CPLEX 10.0 (using one
1.65 GHz CPU on an IBM p570 computer). Of course, as
computing speed increases over time and enables larger LPs
to be solved, we can apply our algorithm to compute finer
abstractions. (The details of our abstraction algorithm are
given in Section 4.)

3.2 Phase 2
Although the first phase computation outputs strategies

for the first three rounds, we only actually use the strate-
gies it computes for the first two rounds. We don’t use the
third-round strategy for actual play because 1) it may be
inaccurate because the fourth round was modeled based on
expectations rather than game theory, as discussed above,
and 2) we can use a finer abstraction if we compute the
third-round strategy in real-time.

The strategies we use for the third and fourth rounds are
computed in real-time while the game is being played. We
do this so that the reasoning can be specific to the situation
at hand (i.e., cards on the table and betting history); the
mere number of such situations precludes precomputing the
answer to each one of them. Once the turn card appears
at the beginning of the third betting round, we compute an
equilibrium approximation for the remaining game. We do
this as follows. First, we update the players’ hand proba-
bilities using Bayes’ rule on the Phase 1 strategies and the
observed betting history. Second, we use our automated
abstraction algorithm (Section 4) to construct and solve a
smaller LP. Here we are considering 10 strategically differ-
ent hands in the third round, and 100 in the fourth round.
This is based on computational experiments we performed
to find the finest abstraction for which we could usually solve
(at least near-optimally) the corresponding LP in under one
minute.

3.3 Comparison to other game theory-based
Texas Hold’em players

Our player is closely related to two previous game theory-
based Texas Hold’em players.

The first, Sparbot [6], also uses two phases. Like our

player, Sparbot considers three rounds in the first phase.
Sparbot assumes no betting in the fourth round while our
player simulates fourth-round play as we will discuss in Sec-
tion 5. Another difference is that Sparbot considers three
rounds in the second phase, while we consider two. This
enables us to use a much finer abstraction when computing
strategies for the third and fourth rounds. This is especially
important since the size of the bets in the third and fourth
rounds is twice the bet level in the first two rounds.

Like our player, Sparbot also uses abstraction. However,
the abstraction used by Sparbot is expert-defined, whereas
ours is computed automatically by an algorithm. As com-
puting speed increases over time, our player will be able to
take advantage of that and use finer abstractions (by simply
adjusting, for each betting round, the parameter that defines
the number of classes that the abstraction algorithm should
form). In contrast, an expert-defined abstraction would have
to be manually recreated when computation speed enables
finer abstraction.

The second Texas Hold’em player that our player is closely
related to is GS1 [19]. The main difference is that GS1 is
based on the vanilla GameShrink algorithm [20], which has
drawbacks when used to create lossy abstractions, as we
will discuss in Section 4. Our player uses a new automated
abstraction algorithm which is better suited for computing
abstractions for equilibrium approximation. Also, GS1 only
considers the first two betting rounds (and assumes no bet-
ting in the third and fourth round) when computing strate-
gies for the first phase. In poker, this makes it particularly
vulnerable to slow-playing6 as well as making it unlikely to
employ such a sophisticated strategy itself.

4. AUTOMATED ABSTRACTION USING
CLUSTERING AND INTEGER
PROGRAMMING

Recently, the GameShrink algorithm for automatically
computing abstractions in sequential games of imperfect in-
formation was presented [20], and a Texas Hold’em player,
GS1, based on GameShrink was shown to be competitive
with Sparbot and Vexbot [19]. However, we observe that
GameShrink suffers from three major drawbacks.7

• The first, and most serious, is that the abstraction
that GameShrink computes can be highly inaccurate
because the grouping of states is in a sense greedy.
For example, if GameShrink determines that hand A
is similar to hand B, and then determines that hand B
is similar to hand C, it will group A and C together,
despite the fact that A and C may not be very simi-
lar. The quality of the abstraction can be even worse
when a longer sequence of such comparisons leads to
grouping together extremely different hands. Stated
differently, the greedy aspect of the algorithm leads to

6Slow-playing is a technique in poker in which a player
with a strong hand acts as if they have a weak hand early
in the game in order to extract more bets from the other
player later in the game [45].

7When GameShrink is used in the lossless (exact rather
than approximation) mode, these criticisms do not apply:
it finds an equilibrium-preserving abstraction. However, if
one were to apply the lossless mode to Texas Hold’em, the
LP corresponding to each phase would be way too large to
solve.



lopsided classes where large classes are likely to attract
even more states into the class.

• The second drawback to GameShrink is that there is no
way to directly specify how many classes the abstrac-
tion algorithm should yield (overall or at any specific
betting round). Rather, there is a parameter (for each
round) that specifies a threshold of how different states
can be and still be considered the same. If one knows
how large an LP can be solved, one cannot create an
LP of that size by specifying the number of classes in
the abstraction directly; rather one must use trial-and-
error (or some variant of binary search applied to the
setting of multiple parameters) to pick the similarity
thresholds (one for each betting round) in a way that
yields an LP of the desired size.

• The third drawback to GameShrink is its scalability. In
particular, the time needed to compute an abstraction
for a three-round truncated version of Texas Hold’em
was over a month. Furthermore, it would have to be
executed in the inner loop of the parameter guessing
algorithm of the previous paragraph (i.e., once for each
setting of the parameters).

In this section we describe a new abstraction algorithm
that eliminates these problems.

GameShrink operates on a data structure called the fil-
tered signal tree [20]. This structure captures all of the in-
formation that the players receive from moves of nature,
and is also used to represent the actual abstraction. We
introduce a similar structure for our algorithm, which we
will call the abstraction tree. For Texas Hold’em, the basic
abstraction tree is initialized as follows. The root node con-
tains

`
52
2

´
= 1326 children, one for each possible pair of hole

cards that a player may be dealt. Each of these children
has

`
50
3

´
children, each corresponding to the possible flops

that can appear after the two hole cards in the parent node
have already been dealt. Similarly, the nodes at the next
two levels have 47 and 46 children corresponding to the pos-
sible turn and river cards, respectively. Figure 1 provides an
illustration. This structure is by no means limited to poker,
but here for simplicity we only describe it in terms of Texas
Hold’em poker since that is the primary application of this
paper.

(52
2

)

(50
3

)

Pre-flop

Flop

Turn

River

47

46

Figure 1: The initial abstraction tree of Texas
Hold’em.

As described in the previous section, we limit the number
of strategically different hands we can consider in the first
round to 15. Thus, we need to group each of the

`
52
2

´
= 1326

different hands into 15 classes. We treat this as a clustering
problem. To perform the clustering, we must first define
a metric to determine the similarity of two hands. Letting
(w, l, d) be the number of possible wins, losses, and draws
(based on the roll-out of the remaining cards), we compute

the hand’s value as w − l + d/2, and we take the distance
between two hands to be the absolute difference between
their values. This gives us the necessary ingredients to apply
the k-means clustering algorithm [32], which we specialize
here to our problem:

Algorithm 1. k-means clustering for poker hands
1. Create k centroid points in the interval between the

minimum and maximum hand values.

2. Assign each hand to the nearest centroid.

3. Adjust each centroid to be the mean of their assigned
hand values.

4. Repeat steps 2 and 3 until convergence.

This algorithm is guaranteed to converge, but it may find
a local optimum. Therefore, in our implementation we run
it several times with different starting points to try to find
a global optimum. For a given clustering, we can compute
the error (according to the value measure) that we would
expect to have when using the abstraction.

Pre-flop

Flop

Turn

15

225

900

Figure 2: Abstraction tree for our player’s Phase 1
equilibrium approximation.

For the later stages of the game, we again want to deter-
mine what the best abstraction classes are. Here we face
the additional problem of determining how many children
each parent in the abstraction tree can have. As Figure 2
illustrates, we use a limit of 225 total child edges that we
can use at this level.8 How should the right to have 225
children (abstraction classes that have not yet been gener-
ated at this stage) be divided among the 15 parents? We
model and solve this problem as a 0-1 integer program [36]
as follows. Our objective is to minimize the expected error
in the abstraction. Thus, for each of the 15 parent nodes,
we run the k-means algorithm presented above for values of
k between 1 and 30.9 We denote the expected error when
node i has k children by ci,k. We denote by pi the proba-
bility of getting dealt a hand that is in abstraction class i
(i.e., in parent i); this is simply the number of hands in i
divided by

`
52
2

´
. Based on these computations, the following

0-1 integer program finds the abstraction that minimizes the
overall expected error for the second level:

min
15P

i=1

pi

30P
k=1

ci,kxi,k

s.t.
15P

i=1

30P
k=1

kxi,k ≤ 225

30P
k=1

xi,k = 1 ∀i

xi,k ∈ {0, 1}
8This limit was again determined based on the size of the

LP that was solvable.
9The maximum number of children of a particular node

in an optimal abstraction will depend on several factors. For
this problem, we observed that 30 was an upper bound on
this number.



The decision variable xi,k is set to 1 if and only if node i
has k children. The first constraint ensures that the limit on
the overall number of children is not exceeded. The second
constraint ensures that a decision is made for each node.
This problem is a generalized knapsack problem, and al-
though NP-complete, can be solved efficiently using off-the-
shelf integer programming solvers (e.g., CPLEX solves this
problem in less than one second at the root node of the
branch-and-bound search tree).

We repeat this procedure for the third betting round (with
the second-round abstraction classes as the parents, and a
limit of 900 on the maximum number of children). This
completes the abstraction that is used in Phase 1.10

For Phase 2, we compute a third and fourth-round ab-
straction using the same approach. We do this separately
for each of the

`
52
4

´
possible flop and turn combinations.11

5. ESTIMATING PAYOFFS OF A
TRUNCATED GAME

The second main new idea of this paper is estimating the
leaf payoffs for a truncated version of a game by simulating
the actions in the remaining portion of the game. This al-
lows the equilibrium-finding algorithm to take into account
the entire game tree while having to explicitly solve only a
truncated version. This section covers the idea in the con-
text of Texas Hold’em.

In both Sparbot and GS1, the payoffs that are computed
for the leaf nodes at the end of the truncated game (Phase
1) are based on the betting history leading to that node
and the expected value of winning that hand assuming that
no more betting takes place in later rounds (i.e. the pay-
offs are averaged over the possible fourth-round cards drawn
uniformly at random, and assuming that neither player bets
in the final round). This completely ignores the fact that
later betting actions affect the expected payoff of a node in
the game tree.

Instead of ignoring the fourth-round betting, we in effect
incorporate it into the truncated game tree by simulating the
betting actions for the fourth round (using reasonable fixed
randomized strategies for the fourth round), and then using
these payoffs as the payoffs in the truncated game. This is
intended to mitigate the negative effects of performing an
equilibrium analysis on a truncated game.

At the beginning of the fourth round, each player has two

10As discussed, our technique optimizes the abstraction
round by round, i.e., level by level in the abstraction tree.
A better abstraction (even for the same similarity metric)
could conceivably be obtained by optimizing all rounds in
one holistic optimization. However, that seems infeasible.
First, the optimization problem would be nonlinear because
the probabilities at a given level depend on the abstraction
at previous levels of the tree. Second, the number of decision
variables in the problem would be exponential in the size of
the initial abstraction tree (which itself is large), even if the
number of abstraction classes for each level is fixed.

11Most of the computation time of the abstraction algo-
rithm is spent running the k-means clustering algorithm.
Our straightforward implementation of the latter could be
improved by using sophisticated data structures such as a
kd-tree [38] or performing bootstrap averaging to find the
initial clusters [14]. This would also allow one to run the
k-means clustering more times and thus have an even bet-
ter chance of finding the global optimum of any individual
k-means clustering problem.

Figure 3: First player’s empirical action probabili-
ties as a function of hand strength at the beginning
of the fourth betting round.

Figure 4: Second player’s empirical action probabil-
ities as a function of hand strength for the fourth
betting round after the first player has bet.

Figure 5: First player’s empirical action probabil-
ities as a function of hand strength for the fourth
betting round after the first player has bet and the
second player has raised.

hole cards and there are five community cards on the table.
Letting (w, l, d) be the number of possible wins, losses, and
draws for a player in that situation, we compute the hand’s
value using the formula w − l + d/2 (this is the same for-
mula used by our clustering algorithm). For hands in the
fourth round, this gives a value in the interval [−990, 990].
Using the history from 343,513 games of Sparbot in self-play



(of which 187,850 went to the fourth round), we determined
the probability of performing each possible action at each
player’s turn to act as a function of the hand value.12,13 To
illustrate this, Figures 3–5 show these smoothed probabili-
ties for three particular points to act.

Of course, since these probabilities are only conditioned
on the hand value (and ignore the betting history in the
first three rounds), they do not exactly capture the strategy
used by Sparbot in the fourth round. However, conditioning
the probabilities on the betting history as well would have
required a vast number of additional trials, as well as much
more space to store the result. Conditioning the actions on
hand value alone is a practical way of striking that trade-off.

6. EXPERIMENTAL RESULTS
We conducted a host of experiments against the leading

prior Texas Hold’em programs, GS1, SparBot, and VexBot.
We used the series competition format of the first AAAI
Computer Poker Competition (held in July 2006).14 In our
experiments, our player competed with each of the other
players in 50 1,000-hand series, where the players’ memories
are reset before each series (this resetting only affects Vexbot
since the other players do not perform any opponent model-
ing). The purpose of resetting the memories after each series
is to give a learning bot a fair amount of time to develop
an exploitative strategy, but not a completely unrealistic
amount. 1,000 hands per series is more than reasonable
since most games between humans last for at most a few
hundred hands [23]. The AAAI competition also used 1,000
hands per series.

The results are presented in Table 1. Based on the win-
ning records, our agent, generated using the techniques de-
scribed above, outperforms the leading prior poker-playing
programs. For GS1 (the leading prior automatically gener-
ated agent for the game), this result is statistically signif-
icant according to the sign test, with p-value 3.06 × 10−4.
In terms of overall chips won, our program beats the prior
game theory-based players, GS1 and Sparbot, but loses to
Vexbot by a small margin. The margin of victory over GS1
is statistically significant as the estimated variance of small
bets won or lost per hand is ±0.0268 small bets (i.e., two
chips) per hand for 50,000 hands [4]. However, the compar-
isons with Sparbot and Vexbot are in effect statistical ties.15

12While GS1 has been shown to be slightly stronger than
Sparbot [19], we used Sparbot’s fourth-round strategy be-
cause Sparbot plays instantaneously rather than doing real-
time deliberation, so we were able to collect statistics faster.

13To mitigate the fact that 187,850 training examples do
not densely cover all possible hand values, we bucketed hand
values by rounding them to the nearest multiple of 25, and
then smoothed by replacing each bucket’s value by the av-
erage of it and both of its neighbors.

14One difference between our experiments and the format
of the AAAI poker competition is that the AAAI competi-
tion performed duplicate matches, in which the deck shuffles
are stored for each match, and replayed with the players’
roles reversed. Using this approach, if one player receives
particularly lucky cards during a match, this will be offset
by the duplicate match in which the other player receives
the lucky cards. Unfortunately, we have not yet been able to
run such experiments due to the fact that the other players
are only available in the Poker Academy software package,
which does not support duplicate matches.

15Evaluating an agent’s performance in a partially observ-

Interestingly, our player has a better winning percentage
against Vexbot than it does against Sparbot; yet based on the
win rate of average chips won and lost per hand, it performs
better against Sparbot. This is possibly due to the fact that
Vexbot is able to exploit a weakness in our player that en-
ables it to win a large amount of chips on a few hands, but
those particular hands do not come up often enough to affect
the match winning percentages. Another possibility is that
our player is playing much more conservatively than Vexbot,
which enables it to obtain a better winning percentage, but
it is not playing aggressively enough on certain hands to
capture a higher chip win rate. Exploring these possibilities
could potentially lead to further improvements in our player.

In addition to evaluating the performance of our player
against existing players, out of scientific interest we also
wanted to measure the individual effect of the two main
techniques we contributed in this paper, namely our im-
proved automated abstraction algorithm and our technique
of estimating payoffs in a truncated game. The fourth row
in Table 1 reports results from the comparison between our
player, and our player using the old version of the Game-
Shrink algorithm (as used in GS1) and without estimating
the payoffs of the truncated game (but instead using a uni-
form roll-out as in Sparbot and GS1). The introduction
of these two new techniques is a clear winner, with a p-
value for the winning percentage of 2.27 × 10−12 and even
a statistically significant win rate in terms of the number of
chips won. The last two rows of Table 1 report the perfor-
mance boost that each of the two new techniques yields in-
dividually. The improved automated abstraction algorithm
produces a greater performance gain than the technique of
estimating payoffs in the truncated game, but each of the
two techniques yields a dramatic statistically significant im-
provement in performance.

7. CONCLUSIONS AND FUTURE
RESEARCH

We presented new approximation methods for computing
game-theoretic strategies for sequential games of imperfect
information. We introduced two main new ideas.

• First, we introduced a new state-space abstraction al-
gorithm. In each round of the game, there is a limit
to the number of strategically different situations that
an equilibrium-finding (e.g., LP) algorithm can han-
dle. Given this constraint, we use clustering to discover
similar positions, and we compute the abstraction via
an integer program that minimizes the expected error
at each stage of the game.

• Second, we presented a method for computing the leaf
payoffs for a truncated version of the game by sim-
ulating the actions in the remaining portion of the
game (e.g., based on statistics about actual play of
fixed strong player(s) that may use mixed strategies).
This allows the equilibrium-finding algorithm to take

able and stochastic environment is difficult due to the ele-
ment of randomness. This difficulty is severe when evalu-
ating poker-playing programs due to the tight relationship
between luck and performance. Recent research has led to
improved statistical techniques for comparing the relative
performance of agents in uncertain domains [51]. We would
like to incorporate these techniques in our future research
(once the baseline player needed in using those techniques
becomes publicly available and perhaps standardized).



Opponent Series won Sign test p-value Win rate of our player
by our player (small bets per hand)

GS1 38 of 50 3.06× 10−4 +0.0312
Sparbot 28 of 50 4.80× 10−1 +0.0043
Vexbot 32 of 50 6.49× 10−2 −0.0062

Our player without improved abstraction 48 of 50 2.27× 10−12 +0.0287
and without estimated payoffs
Our player without improved abstraction 35 of 50 6.60× 10−3 +0.0273
Our player without estimated payoffs 44 of 50 3.24× 10−8 +0.0072

Table 1: Experimental results of our program against the leading prior programs, as well as in self-play with
various features removed.

into account the entire game tree while having to ex-
plicitly solve only a truncated version.

Experiments showed that our Texas Hold’em poker-play-
ing agent—that was generated using these techniques—dras-
tically outperforms the best prior automatically generated
agent, and is competitive with the leading prior agents over-
all. Based on the performance criterion of series wins and
losses, our player is the strongest. We also showed that each
of the two new ideas improves the performance of our player
dramatically.

It is tempting to explore a tighter integration of the main
two ideas of this paper. In particular, an interesting ques-
tion to explore is whether it would be possible to use es-
timated leaf values in a truncated game (based on a sta-
tistical model) as the similarity metric for the abstraction.
This would likely yield a better abstraction for the earlier
rounds, but it would greatly increase the dependence of the
player on the statistical model (specifically, on a particular
opponent if the statistical model is built using a particular
opponent). One intriguing idea is to perform the abstrac-
tion and statistical modeling in an iterative manner where
the abstraction is refined based on a statistical model of the
player in self-play, and where the statistical model is up-
dated using observations of the player that uses the new
abstraction. We leave this avenue as future research.
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