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Abstraction has emerged as a key component in solving extensive-form games of incomplete information. However, loss-
less abstractions are typically too large to solve, so lossy abstraction is needed. All prior lossy abstraction algorithms for
extensive-form games either 1) had no bounds on solution quality or 2) depended on specific equilibrium computation ap-
proaches, limited forms of abstraction, and only decreased the number of information sets rather than nodes in the game tree.
We introduce a theoretical framework that can be used to give bounds on solution quality for any perfect-recall extensive-
form game. The framework uses a new notion for mapping abstract strategies to the original game, and it leverages a new
equilibrium refinement for analysis. Using this framework, we develop the first general lossy extensive-form game abstrac-
tion method with bounds. Experiments show that it finds a lossless abstraction when one is available and lossy abstractions
when smaller abstractions are desired. While our framework can be used for lossy abstraction, it is also a powerful tool for
lossless abstraction if we set the bound to zero.

Prior abstraction algorithms typically operate level by level in the game tree. We introduce the extensive-form game tree
isomorphism and action subset selection problems, both important problems for computing abstractions on a level-by-level
basis. We show that the former is graph isomorphism complete, and the latter NP-complete. We also prove that level-by-level
abstraction can be too myopic and thus fail to find even obvious lossless abstractions.

Categories and Subject Descriptors: I.2.11 [Distributed Artificial Intelligence]: Multiagent systems; J.4.a [Social and Be-
havioral Sciences]: Economics

General Terms: Algorithms, Economics, Theory
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1. INTRODUCTION
Game-theoretic equilibrium concepts provide a sound definition of how rational agents should act in
multiagent settings. To operationalize them, they have to be accompanied by techniques to compute
equilibria, an important topic that has received significant attention in the literature [Littman and
Stone 2003; Lipton et al. 2003; Gilpin and Sandholm 2007b; Jiang and Leyton-Brown 2011].

Typically, equilibrium-finding algorithms do not scale to very large games. This holds even for
two-player zero-sum games (that can be solved in polynomial time [Koller et al. 1996]) when the
games get large. Therefore, the following has emerged as the leading framework for solving large
extensive-form games [Sandholm 2010]. First, the game is abstracted to generate a smaller game.
Then the abstract game is solved for (near-)equilibrium. Then, the strategy from the abstract game
is mapped back to the original game. Initially, game abstractions were created by hand, using do-
main dependent knowledge [Shi and Littman 2002; Billings et al. 2003]. More recently, automated
abstraction has taken over [Gilpin and Sandholm 2006, 2007b; Zinkevich et al. 2007]. This has
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typically been used for information abstraction, whereas action abstraction is still largely done by
hand [Gilpin et al. 2008; Schnizlein et al. 2009]. Recently, automated action abstraction approaches
have also started to emerge [Hawkin et al. 2011, 2012; Brown and Sandholm 2014].

Ideally, abstraction would be performed in a lossless way, such that implementing an equilibrium
from the abstract game results in an equilibrium in the full game. Abstraction techniques for this
were introduced by Gilpin and Sandholm [2007b] for a subclass of games called game of ordered
signals. Unfortunately, lossless abstraction often leads to games that are still too large to solve.
Thus, we must turn to lossy abstraction. However, significant abstraction pathologies (nonmono-
tonicities) have been shown in games that cannot exist in single-agent settings: if an abstraction
is refined, the equilibrium strategy from that new abstraction can actually be worse in the original
game than the equilibrium strategy from a coarser abstraction [Waugh et al. 2009a]! Until recently,
all lossy abstraction techniques for general games of imperfect information were without any so-
lution quality bounds. Basilico and Gatti [2011] give bounds for the special game class Patrolling
Security Games. Johanson et al. [2013] provide computational methods for evaluating the quality of
a given abstraction via computing a best response in the full game after the fact. Lanctot et al. [2012]
present regret bounds for equilibria computed in imperfect recall abstractions, with their result also
extending to perfect-recall abstractions. Their result depends on the counterfactual regret minimiza-
tion (CFR) algorithm being used for equilibrium computation in the abstraction, and focuses on
abstraction via information coarsening, thus allowing neither action abstraction nor reduction of the
size of the game tree in terms of nodes. Sandholm and Singh [2012] provide lossy abstraction al-
gorithms with bounds for stochastic games. They leave as an open problem whether similar bounds
can be achieved for extensive-form games. A key complication keeping the analysis in their paper
from directly extending to extensive-form games is information sets. In stochastic games, once the
opponent strategies are fixed, the best response analysis can be approached on a node-by-node ba-
sis. With information sets this becomes much more complex, as strategies have to be evaluated not
only according to how they perform at a given node, but also how they perform according to the
distribution of nodes in the information set.

We develop analysis techniques that work on information sets as opposed to nodes, in order to
answer this question in the affirmative. We develop the first bounds on lossy abstraction in general
perfect-recall extensive-form games. These results are independent of the equilibrium computation
approach, and allow both information coarsening and removal of nodes and actions to make the
game tree smaller.

To achieve these more general results, we introduce several new analysis tools:

(1) Most importantly, much of our analysis operates on a per information set basis, which funda-
mentally changes how the analysis can be performed.

(2) To enable high expressiveness in the types of abstractions that can be computed, our mappings
between real and abstract games are not all surjective functions.

(3) We introduce a stricter notion of strategy mapping, called undivided lifted strategies.
(4) We introduce a new solution concept, self-trembling equilibrium, the concept of which is used

in our analysis to achieve bounds for general Nash equilibria.
(5) We introduce several new notions of error in abstractions that are used to characterize our

bounds.

As a special case, our results generalize the results of Sandholm and Singh [2012], since any
DAG-structured stochastic game can be converted to an extensive form game. We also tighten the
bound given in their paper. Since our results apply to general Nash equilibria, as well as subgame-
perfect equilibria, we also generalize the set of equilibrium concepts that the analysis applies to;
theirs was for subgame-perfect equilibrium.

Our framework is the first general theoretical framework for reasoning about quality of equi-
libria computed in abstract games. The only prior work [Gilpin and Sandholm 2007b] is for a very
restricted setting that closely resembles poker games, and only concerns lossless abstraction. In con-
trast, our results apply to all extensive-form games of perfect recall, and can be used to reason about



both lossless and lossy abstraction. Further, we show that, even in the restricted setting considered
in their paper, our framework can find lossless abstractions that theirs cannot.

We also present several new algorithmic characterizations and algorithms for building abstrac-
tions that minimize our bounds. We show several hardness results related to computing abstractions
on a level-by-level basis, and show how only considering level-by-level abstraction can lead to not
finding the smallest, or any, lossless abstractions. Motivated by these results, we develop the first
abstraction algorithm with bounded loss, which operates on all levels of the tree at once. We then
present experimental results, where we apply our algorithm to a relatively simple poker game. Fi-
nally, we discuss additional results, connections to other abstraction approaches, and directions for
future research.

2. FRAMEWORK
Consider two extensive form games, the original game M and the abstract game M ′. Both games
have the same set of n players, denoted by N .

We let S denote the set of nodes in the game tree of M , and let Z ⊂ S be the set of leaf nodes in
M . Vi(z) is the utility of player i for leaf node z ∈ Z. We let I denote the set of information sets,
and denote a specific information set by I . We denote by AI the set of actions at information set I .
For any node s ∈ I , we also define As = AI . We denote by σi a (behavioral) strategy for player i.
For each information set I where it is the player’s turn to move, it assigns a probability distribution
over the actions in the information set, where σi(I, a) is the probability of playing action a. We let
σi(s, a) = σ(I, a) for all s ∈ I . A strategy profile σ = (σ1, . . . , σn) has a behavioral strategy for
each player. We will often use σ(I, a) to mean σi(I, a), since the information set uniquely specifies
which player i is active.

As usual, randomness external to the players is captured by including an extra player called nature
as a player. We denote it by 0, so σ0(s, a) is the probability that nature chooses outcome a ∈ As
at a given node s where nature is active. We use the subscript 0 to emphasize that this probability
depends on nature only, not the strategy profile.

Let the probability of going from node s to node ŝ under strategy profile σ be σ[s → ŝ] =
Π〈s̄,ā〉∈Ps→ŝσ(s̄, ā) where Ps→ŝ is the set of pairs of nodes and actions on the path from s to ŝ. We
let the probability of reaching node s be σ(s) = σ[r → s], the probability of going from the root
node r to s. Let σ(I) =

∑
s∈I σ(s) be the probability of reaching any node in I .

Finally, for all behavioral strategies, the subscript −i refers to the same definition, but without
including player i.

The same elements are defined for M ′, except each one is denoted by a prime superscript. For
example, the node space for M ′ is denoted by S′. The value for player i at leaf node z′ ∈ Z ′

in M ′ is denoted Wi(z
′). We define the largest utility at any leaf node in the abstract game to be

W = maxi maxz∈ZWi(z), which will be useful later.
We assume that all payoffs are non-negative. This is without loss of generality since we can add

a constant to all payoffs and keep the game strategically equivalent.
We let the height k of a node s be the length of the path from the node to the leaf level. Thus,

the height of a leaf nodes is 0. We assume that all leaves are at the same depth in the tree, and
at each height only one player has active information sets. This is without loss of generality since
for any game that does not satisfy this, we can modify it by inserting singleton information sets
with only one action available to stretch out the game until the property is satisfied; this keeps
the game strategically equivalent. Let Hi be the set of heights where player i is active, and let Hli
be {k : k ∈ Hi, k ≤ l}. Let Sk and Ik be the sets of nodes and information sets at height k,
respectively.

For information set I and action a ∈ AI at level k ∈ Hi, we let DaI be the set of information sets
at the next level in Hi reachable from I when taking action a. Let tsa be the node transitioned to by
performing action a ∈ As at node s.



2.1. Abstraction functions
We define an information set abstraction function f : I → I ′ which maps from original information
sets to abstract information sets. Similarly, h : S → S ′ is a node abstraction function that maps from
original nodes to abstract nodes. Finally, g : A → A′ is an action abstraction function that maps
from original actions to abstract actions. All three functions are surjections, so that the game M ′
is no bigger than M , and ideally significantly smaller. We define f−1 : I ′ → I to be the inverse
of the information set abstraction function. For a given I ′, f−1(I ′) returns all information sets that
map to I ′. We define h−1 and g−1 similarly. We also define the function h−1

I : S ′ → S which for
given I, s′ ∈ f(I) returns h−1(s′)∩ I , the subset of nodes in I that map to s′. Similarly, we define,
h−1
Ps : S ′ → S which for a given s, s′ returns h−1(s′) ∩ Ps, where Ps is the set of all ancestors and

descendants of s.
We require that for any two actions that map to the same abstract, the two nodes respectively

reached by performing the actions at a given node map to the same abstract node. Formally, for all
s ∈ S, if g(a1) = g(a2) for a1, a2 ∈ As, then h(tsa1) = h(tsa2), where tsa is the node reached by
performing action a at state s, as defined above.

As with prior abstraction approaches, these abstraction functions allow us to map a larger game
onto a smaller game, through many-to-one mapping of nodes. We now present a novel approach
for mapping nodes one-to-many. This leads to a larger set of valid abstractions, thereby sometimes
allowing either smaller abstractions for a given bound, or the same size abstraction with a smaller
bound. We call this “multi-mapping”. An example where it is useful is given in Figure 1. In this
game, nature starts out choosing among four actions. Player one then has two information sets,
one for when either of the two leftmost nature actions were chosen, and one for when either of
the two rightmost nature actions were chosen. If player 1 goes left at any node, player 2 then has
two information sets. Player 2 can also only distinguish between nature’s actions in sets of two,
but different sets than player 1. In this game, we can losslessly treat player 2’s information sets
{2A, 2C} and {2B, 2D} as one big information set, since there is a mapping of actions at 2A to
actions at 2B such that the utilities for Player 2 are the same, and similarly for 2C and 2D. However,
we need to formalize the notion that 2A is similar to 2B without merging the nodes, as they are not
similar for Player 1. In mapping the smaller information set {2A, 2C} onto the abstract information
set {2A, 2C, 2B, 2D}, we wish to specify that 2A is represented by the two nodes 2A and 2B. 1

N

P1

2A

0,1 2,0

0,1

P1

2B

0,1 0,0

0,0

P1

2C

12,0 2,1

0,10

P1

2D

0,0 0,1

0,1

Fig. 1. Extensive form game, with nature playing first, picking among four outcomes uniformly at random. The next level,
with nodes denoted P1, belongs to player 1, and the last level of internal nodes named 2A-2D belong to player 2.

We will now incorporate “multi-mapping” into the abstraction framework. To our knowledge,
we are the first to allow for such abstraction. We define a mapping function φ : Sφ → 2S

′
which

maps from a subset Sφ ⊂ S of the original nodes to the powerset 2S
′

of the abstract nodes. For all
information sets I , we define the sets Iφ, I¬φ, the partition of I into two sets such that s ∈ Sφ for
s ∈ Iφ and s /∈ Sφ for s ∈ I¬φ.

1This does not create a smaller abstraction in terms of the tree size, but it decreases the number of information sets. This
is relevant to equilibrium-finding algorithms, such as CFR, whose complexity depends on the number of information sets
rather than the number of nodes in the game tree. A similar notion of abstraction was introduced by Lanctot et al. [2012].



Since in our abstraction framework we are allowing “multi-mapping” (one original node mapped
to multiple abstract nodes), we have to ensure that all those abstract nodes are similar (in terms of
their dependence on the other players). Specifically, we require the following constraints for each
information set I such that Iφ > 0.

(1) If an abstract node s′ ∈ f(I) is part of φ(s) for some s ∈ Iφ, then no other nodes in I can map
to s′.

(2) For all nodes s and pairs of nodes s′1, s
′
2 ∈ φ(s) at level k, each level l ∈ H−0, l > k, the edges

on the respective paths to s′1, s
′
2 must be in an information set together, and belong to the same

action, or both be in information sets with a single action.
(3) For all abstract nodes s′ ∈ φ(s), we require that the subtree rooted at s also maps onto the

subtree rooted at s′. For all such pairs of nodes, we define a surjective function φs,s′ , completely
analogous to the function h, defining this mapping.

(4) For all descendants ŝ of s and pairs of nodes s′1, s
′
2 ∈ φ(s), φs,s′1(ŝ) must be in the same

information set as φs,s′2(ŝ).

The example presented above can be described in terms of our φ function: φ(2A) =
{2A, 2B}, φ(2B) = {2A, 2B}, φ(2C) = {2C, 2D}, φ(2D) = {2C, 2D}. Since the children of
these nodes are all leaf nodes, we need not define the subtree mapping functions φ2A,2B , φ2C,2B .

2.2. Mapping behavioral strategies from the abstract game back to the original game
When computing a strategy profile σ′ in M ′, we need some notion of how to interpret this profile
in M . Here we introduce two classes of mappings from abstract strategies to real strategies. First,
we present the natural extension of lifted strategies introduced by Sandholm and Singh [2012] to
extensive-form games. In this definition, a valid mapping σ↑σ

′
is any strategy profile such that for

each information set I and abstract action a′ ∈ Af(I), the probability σ′(f(I), a′) of selecting that
abstract action is divided any way across the actions g−1(a′) ∩ I .

Definition 2.1. (Strategy lifting) Given an abstract game M ′ and a strategy profile σ′, a lifted
strategy for M is a strategy profile σ↑σ

′
such that for all I , all a′ ∈ Af(I):

∑
a∈g−1(a′) σ

↑σ′(I, a) =

σ′(f(I), a′).

For our game-theoretic results, we require a stronger notion of similarity in the mapping. We
introduce undivided lifted strategies, a refinement of lifted strategies. In addition to the lifted strategy
constraint, we require that the probability distribution over nodes in an information set I ∈M such
that σ−0(I) > 0, when disregarding nature probabilities, conditioned on reaching the information
set, is the same as for the abstract information set, when summing over node mappings.

Definition 2.2. (Undivided strategy lifting) ) Given an abstract game M ′ and a strategy profile
σ′, an undivided lifted strategy for M is a lifted strategy profile σ such that for all I ∈M we have

(1) For s ∈ Iφ: σ−0(s)
σ−0(I) =

∑
s′∈φ(s)

σ−0(s′)
σ′−0(f(I)) , and

(2) For s′ ∈ f(I¬φ): σ′−0(s′)

σ′−0(f(I)) =
∑
s∈h−1

I (s′)
σ−0(s)
σ−0(I)

One natural family of action abstraction techniques is to select actions for the abstract game from
the actions in the original game (as opposed to creating new actions), or, in other words, to simply
remove actions from the original game to generate the abstract game. That is, the abstraction is cre-
ated by restricting play only to a subset of the actions, and potentially also restricting nature to only
choosing a subset of its outcomes. Then, the strategy mapping just consists of playing the strategy
computed in the restricted game and ignoring the remaining actions. All prior action abstraction al-
gorithms have operated within that family (e.g., [Gilpin et al. 2008; Schnizlein et al. 2009; Hawkin
et al. 2011, 2012; Sandholm and Singh 2012; Ganzfried and Sandholm 2013; Brown and Sandholm



2014]). Such lifting (as long as the information abstraction is done within the framework of our
paper described above) is a form of undivided strategy lifting.

2.3. Value functions for the original and abstract game
We define value functions both for individual nodes and for information sets.

Definition 2.3. The value for Player i of a given node s under strategy profile σ is

V σi (s) =
∑
z∈Zs

σ[s→ z]Vi(z)

We use the definition of counterfactual value of an information set, introduced by Zinkevich
et al. [2007], to reason about the value of an information set under a given strategy profile. The
counterfactual value of an information set I is the expected utility of the information set, assuming
that all players follow strategy profile σ, except that Player i plays to reach I .

Definition 2.4. The counterfactual value for Player i of a given information set I under strategy
profile σ is

V σi (I) =

{∑
s∈I

σ−i(s)
σ−i(I)

∑
z∈Zs σ[s→ z]Vi(z) if σ−i(I) > 0

0 if σ−i(I) = 0

Analogously, Wσ′

i : S ′i → R and Wσ′

i : I ′i → R are the respective functions for the abstract game.

For the information set Ir that contains just the root node r, we have that V σi (Ir) = V σi (r), which
is the value of playing the game with strategy profile σ. We assume that at the root node it is not
nature’s turn to move. This is without loss of generality since we can insert dummy player nodes
above it.

We show that for information set I at height k ∈ Hi, V σi (I) can be written as a sum over
descendant information sets at height k̂ ∈ Hi, where k̂ is the next level below k that belongs to
Player i.

PROPOSITION 2.5. Let I be an information set at height k ∈ Hi such that the there is some
k̂ ∈ Hi, k̂ < k. For such I , V σi (I) can be written as a weighted sum over descendant information
sets at height k̂, and similarly for Wσ′

i (I ′):

V σi (I) =
∑
a∈AI

σ(I, a)
∑
Î∈DaI

σ−i(Î)

σ−i(I)
V σi (Î)

Wσ′

i (I ′) =
∑

a′∈AI′

σ′(I ′, a′)
∑

Î′∈Da′
I′

σ′−i(Î
′)

σ′−i(I
′)
Wσ′

i (Î ′)

2.4. Equilibrium concepts
In this section we define the main equilibrium concepts we use. We start with two classic ones.

Definition 2.6 (Nash equilibrium). A Nash equilibrium in a game M with root node r is a strat-
egy profile σ such that for each agent i, given σ−i, σi is a utility maximizing strategy for i. In other
words, for all i, σ̄i, V σi (r) ≥ V σ−i,σ̄ii (r).

Definition 2.7 (ε-Nash equilibrium). An ε-Nash equilibrium in a game M with root node r is a
strategy profile σ such that for all i, σ̄i, V σi (r) + ε ≥ V σ−i,σ̄ii (r).



Next, we introduce a new equilibrium refinement, self-trembling equilibrium. It is a Nash equi-
librium where the player assumes that opponents make no mistakes, but she might herself make
mistakes, and thus her strategy must be optimal for all information sets that she could mistakenly
reach by her own fault.

Definition 2.8 (Self-trembling equilibrium). For a game M , a strategy profile σ is a self-
trembling equilibrium if it satisfies two conditions. First, it must be a Nash equilibrium. Second,
for any information set I belonging to Player i such that σ−i(I) > 0, σi must be a utility maximiz-
ing strategy assuming the information set is reached. That is, for all alternative strategies σ̄i:

V σi (I) ≥ V σ−i,σ̄ii (I)

We call this second condition the self-trembling property.

We introduce this Nash equilibrium refinement because it turns out to be a useful tool for reason-
ing inductively about quality of Nash equilibria. For perfect-recall games, self-trembling equilibria
are a strict superset of perfect Bayesian equilibria. A Perfect Bayesian equilibrium is a strategy pro-
file and a belief system such that the strategies are sequentially rational given the belief system, and
the belief system is consistent. A belief system is consistent if Bayes’ rule is used to compute the
belief for any information set where it is applicable. In a perfect recall game, the information sets
where Bayes’ rule is applicable are exactly the ones where σ−i(I) > 0. These are exactly the infor-
mation sets where self-trembling equilibria are sequentially rational. Perfect Bayesian equilibria are
a strict subset because there might not exist a belief system for which a self-trembling equilibrium is
rational on information sets where Bayes’ rule does not apply. In particular, for a given information
set where Bayes’ rule does not apply, there might be an action that is strictly worse than another
action for every node in the information set. Since Bayes’ rule does not apply, the self-trembling
property places no restrictions on the information set, and thus may play the strictly dominated
action with probability one. This is not sequentially rational for any belief system.

3. REWARD-APPROXIMATION AND INFORMATION-APPROXIMATION ERROR TERMS
We define approximation error terms, that give us a notion of the distance between the real game
and the abstract game. These will later be used to prove bounds on the solution quality of equilibria
computed using the abstract game.

First we define reward approximation error. Intuitively, we define the reward error at leaf nodes
to be the maximum difference between values of the real leaf and the abstract leaves that it maps to,
at player nodes to be the maximum error of the child nodes, and at nature nodes to be a weighted
sum of the error of the child nodes. Formally, the reward approximation error for the mapping from
M to M ′ for a given agent i, and node s is

εRs,i =


maxs′∈Φ(s) |Vi(s)−Wi(s

′)| if s is a leaf node
maxa∈As ε

R
tsa,i

if s is a player node∑
a∈As σ0(s, a)εRtsa,i if s is a nature node

Here Φ−1(s) =
⋃
ŝ∈Sφ,s′∈φ(ŝ) φŝ,s′(s)∪ h(s) is the set of all abstract nodes that s maps to through

either some φŝ,s′ function or h. For a given strategy profile, the error for node s for a non-leaf,
non-nature node could be defined as the weighted sum of the errors of the actions at the state. But
since we do not know which strategy will be played, we have to take the maximum. The reward
error for Player i of an information set I is the maximum error over the nodes in I , and the total
reward error is the maximum of this quantity over all players:

εRI,i = max
s∈I

εRs,i, εR = max
i
εRr,i



Similarly, we define the distribution error for an information set I and nodes s′ ∈ f(I¬φ) and
s ∈ Iφ to be:

εDI,s′ =

∣∣∣∣∣
∑
s∈h−1

I (s′) σ−i(s)

σ(I)
− σ′(s′)

σ′(f(I))

∣∣∣∣∣ , εDI,s =

∣∣∣∣∣
∑
s′∈φ(s) σ

′
−i(s

′)

σ′(f(I))
− σ(s)

σ(I)

∣∣∣∣∣
The distribution error for information set I and error over all information sets at height k is:

εDI =
∑

s′∈f(I)

εI,s′ +
∑
s∈Iφ

εDs , εDk = max
I∈Ik

εDI

For all distribution error notions, they depend on the strategy profile played, but we omit this in the
subscripts for ease of readability. For all proofs, it will be clear what the strategy profile is. We define
the nature distribution error of an information set I and nodes s′ ∈ f(I¬φ), s ∈ Iφ to respectively
be

ε0I,s′ =

∣∣∣∣∣
∑
s∈h−1

I (s′) σ0(s)

σ0(I)
− σ′0(s′)

σ′0(f(I))

∣∣∣∣∣ , ε0I,s =

∣∣∣∣∣
∑
s′∈φ(s) σ

′
0(s′)

σ′0(f(I))
− σ0(s)

σ0(I)

∣∣∣∣∣
This is the difference between nature’s probability of reaching s′ or s and nature’s probability of
reaching any node in h−1

I (s′) and in φ(s) respectively, all normalized by the probability of reaching
the given information sets. The nature error for information set I is

ε0I =
∑

s′∈f(I¬φ)

ε0I,s′ +
∑
s∈Iφ

ε0s

For a nature node s at height k ∈ H0 and s′ ∈ Φ(s), we define the nature action a′ ∈ As′ error
and node error to respectively be

ε0s,s′,a′ =

∣∣∣∣∣∣σ′(s′, a′)−
∑

a∈g−1(a′)∩As

σ0(s, a)

∣∣∣∣∣∣ , ε0s = max
s′∈Φ(s)

∑
a′∈As′

ε0s,s′,a′

The nature error at height k is

ε0k =

{
maxI∈Ik ε

0
I if k /∈ H0

maxs∈Sk ε
0
s if k ∈ H0

In contrast to distribution error, nature distribution error does not depend on the strategy profile.
For any undivided lifted strategy, the distribution error is bounded by the nature distribution error.

PROPOSITION 3.1. For any undivided lifted strategy σ and information set I , εDI ≤ ε0I .

PROOF. This follows immediately from the definition of an undivided lifted strategy.

We show that for a given node s and abstract node s′ that is a descendant of h(s), the probability
of reaching s′ from h(s) is at least as high as the probability of reaching any node in h−1(s′) from
s, disregarding error in nature:

PROPOSITION 3.2. For any node s, abstract node s′ that’s a descendant of h(s), and strategy
σ lifted from σ′, ∑

ŝ∈h−1(s′)

σ[s→ ŝ] ≤ σ′[h(s)→ s′] +
∑

l∈H0,k≥l>k′
ε0l

The same result holds for the set of nodes φ−1
ŝ,ŝ′(s

′) for all ŝ, ŝ′ such that φŝ,ŝ′ is defined.



4. LIFTED STRATEGIES FROM ABSTRACT EQUILIBRIA HAVE BOUNDED REGRET
We are now ready to move to the main part of the paper, which is a mathematical framework for
bounding the loss from abstraction in extensive-form games.

We first show that the utility obtained from implementing any lifted strategy in M is close to the
utility of the original strategy in M ′. We will use this to prove our main result.

PROPOSITION 4.1. For any player i, abstract strategy σ′, and lifted strategy σ↑σ
′
:

|V σ
↑σ′

i (r)−Wσ′

i (f(r))| ≤ εRi +
∑
j∈H0

ε0jW

We are now ready to show our main result, which is game theoretic. We show that any Nash
equilibrium computed in the abstract game, when implemented as an undivided lifted strategy in
the original game, has bounded regret.

THEOREM 4.2. For any Nash equilibrium σ′ in M ′, any undivided lifted strategy σ is a 2εR +∑
j∈Hi ε

0
jW +

∑
j∈H0

2ε0jW -Nash equilibrium in M .2

While this is our main result and the proof is a central contribution of the paper, the proof is
quite long, so we relegate it to the appendix due to limited space. Here, we give an overview of
the techniques that we use. The proof operates on a per-player basis, since the other players can be
considered constant for computing regret for a single player. We inductively show bounds for all
information sets belonging to the player, using the counterfactual value to reason about information
sets in a bottom-up fashion. Since our induction is on the player’s information sets, we introduce
several new analysis tools to handle the fact that each step in the induction reasons about rationality
across several branches of the game tree. First, we rely on the perfect recall property, which allows
us to use the counterfactual value of the information set, with the distribution over the nodes not
depending on the player. For information sets with probability zero of being reached, we use the self-
trembling property from Definition 2.8. Since this requirement relies only on the player himself for
any refinement over Nash equilibria, it allows us to reason about what the player could have received
at these information sets, which we need in order to bound his loss at information sets reached with
positive probability. We do not assume that a self-trembling equilibrium was computed, we only
use the fact that the player could have played a self-trembling strategy as a tool to bound his regret
for any Nash equilibrium. Finally, we need to handle the possibility of information sets from the
original game not having the same distribution over nodes as the abstract information set it maps to.
By mapping to undivided lifted strategies, we can remove any dependency on the mapped strategies
of the other players, and bound the difference in distribution over the nodes in the set entirely by
our nature distribution error definitions.

Example where the bound is tight. We now investigate the tightness of our bounds. First, we show
that the bound over payoff error is tight.

PROPOSITION 4.3. There exist games such that requiring any amount of abstraction leads to
every Nash equilibrium of the abstraction having regret 2εR for some player when implemented in
the original game with any undivided strategy.

For the nature error terms, we show that the bound is tight up to a constant factor of 6.

PROPOSITION 4.4. There exist games such that requiring any amount of abstraction leads to
some Nash equilibrium of the abstraction having regret 1

6 (
∑
j∈Hi ε

0
jW +

∑
j∈H0

2ε0jW ) for some
player when implemented in the original game with any lifted strategy.

2With the same proof, except without using the self-trembling property for subgame-inducing nodes, we can show that any
subgame-perfect equilibrium in the abstract game maps to an approximate subgame-perfect equilibrium in the original game.
This requires that subgame-inducding nodes in the real game map to subgame-inducing nodes in the abstract game. This is
easily achieved by disallowing multi-mapping on subgame-inducing nodes.



In both the above tightness examples, we relied on either mapping only undivided lifted strategies
(in the first case), or showing the bound is tight for only some equilibria (in the latter case). However,
computing the best lifted strategy can, in general, amount to computing an equilibrium in the full
game, as it does in the first case. Likewise, avoiding certain equilibria in the abstract game would
require somehow adding more information to the abstraction computation, thus linking it more
intimately to the original game. This was considered by Johanson et al. [2013], but their evaluation
requires computing best responses in the original game.

5. ABSTRACTION ALGORITHMS
In this section we develop several algorithms for computing abstractions in extensive form games,
such that Nash equilibria computed in these abstractions satisfy the bound derived in Theorem 4.2
when mapped to an undivided lifted strategy in the original game.

5.1. Level-by-level abstraction
Prior game abstraction algorithms typically proceed level by level in the game tree—possibly mov-
ing both up and down—e.g. [Gilpin and Sandholm 2006, 2007a,b; Gilpin et al. 2007, 2008; Zinke-
vich et al. 2007; Sandholm and Singh 2012; Johanson et al. 2013; Ganzfried and Sandholm 2014].
We give a general framework for a large class of level-by-level abstraction algorithms, and investi-
gate the required subroutines. We then present an impossibility result for level-by-level abstraction.

First we give a general framework for computing abstractions level by level. The algorithm oper-
ates on a game M , and a set of nodes S at some level k, where S would usually be an information
set. It proceeds to build the set AIso, a set of action pairs that are eligible for merging, along with
the cost c of merging them. This is done by iterating over all action pairs a1, a2 available at the
nodes, and calling the subroutine APPROXIMATELYISOMORPHIC, which computes whether the ac-
tions can be merged and at what cost, for each node s ∈ S. Once the set AIso has been constructed,
the algorithm calls a subroutine COMPUTEPROTOTYPES, which selects the subset of actions that
are kept (we call these prototypes), with the remaining branches mapped onto the prototypes.3

ALGORITHM 1: A framework for level-by-level abstraction with bounded loss in extensive-form games.
Input: A game M , a set of nodes S at some level k such that they have the same action set available
Output: An abstract game M ′

AIso ← ∅
for each action pair a1, a2 ∈ AS do

for each node s ∈ S do Test APPROXIMATELYISOMORPHIC(tsa1
, tsa2

)
Let c be the cost of merging a1, a2 over all s ∈ S
if isomorphic for all s ∈ I then add ((a1, a2), c) to AIso

Call COMPUTEPROTOTYPES(AIso) to compute a set of prototypes that the remaining actions map onto.

The two subroutines APPROXIMATELYISOMORPHIC and COMPUTEPROTOTYPES perform the
brunt of the work in this algorithm. We will now, in turn, examine what the subroutines entail.

5.1.1. Extensive-form game tree isomorphism. In order to determine whether two given actions
can be merged at some information set (APPROXIMATELYISOMORPHIC function above), it must
be determined what the cost of merging the subtrees are at each node in the information set. A
special, and simple, case is when the subtrees are subgames, and there is only a single node in the
information set. Consider such two subgames rooted at nodes s1, s2. Since we are assuming that
abstraction is conducted level by level, the algorithmic problem amounts to finding the cheapest
onto mapping of s1 onto s2. To reason about this problem, we introduce the extensive-form game

3The theory from earlier in this paper also applies to the setting where the abstract game has new actions, if the new action
is constructed from an action in the original game (and that subtree under that action) by simply changing payoffs in that
subtree. However, as in all prior abstraction algorithms, in this algorithms section we focus on abstraction that selects action
prototypes from the actions in the original game.



tree isomorphism problem. For the purposes of this section, we will consider the node mapping
function h an onto function, rather than a surjection, since abstraction is not performed as part of
this subroutine.

First we introduce a simple notion of isomorphism. It does not capture everything we need for
the APPROXIMATELYISOMORPHIC subroutine, but we will later show that even this simple notion
is hard to compute. For two game trees to be isomorphic, this definition requires two parts. First,
the trees must be isomorphic in the traditional sense. Second, for any node pairs from the same
information set, their mapped nodes have to be in the same information set, and for any node pairs
in different information sets, their mapped nodes must be in different information sets.

Definition 5.1. (Extensive form game tree topology isomorphism) A topology isomorphism (TI)
between extensive form games M,M ′ is an onto mapping h such that

(1) For nodes s1, s2 ∈ M belonging to the same information set I , h(s1) and h(s2) belong to the
same information set in M ′.

(2) For nodes s1 ∈ I1 and s2 ∈ I2, where I1 6= I2, h(s1) and h(s2) belong to different information
sets in M ′.

(3) For nodes s and sc, where sc is a child of s, h(sc) is a child of h(s).

For any tree isomorphism on two extensive-form game trees (that is, ignoring information sets), any
node at level k in M will map to a node h(k) at level k in M ′. For leaf nodes, they are the only
nodes with out degree one, so leaf nodes must map to leaf nodes. Likewise, the root node r has
some distance d to each leaf node, since we assumed uniform depth, so h(r) must map to the root
node in M ′. Now consider some node s at height k, at depth d. h(s) must be at height k in order
to be isomorphic, and the shortest path to the root node must be of length d. Thus, our requirement
that a TI must respect player’s turn taking is achieved already by it being a tree isomorphism.

We now present a refinement of TI, which we call extensive form game tree strategic isomor-
phism (SI), that captures the chance and utility structure of the game. This refinement is what we
need to compute for the APPROXIMATELYISOMORPHIC subroutine. For subtrees where this iso-
morphism does not exist, we want to compute the mapping that minimizes the distance to strategic
isomorphism.

Definition 5.2. (Extensive form game tree strategic isomorphism) An extensive form game tree
strategic isomorphism (SI) is a TI that satisfies the following further constraints.

(1) For all nodes s at some height k ∈ H0, for each a ∈ As, σ(s, a) = σ(h(s), g(a)).
(2) For all leaf nodes z ∈ Z and players i ∈ N , Vi(z) = Vi(h(z)).

We now show that both TI and SI are graph isomorphism-complete.

THEOREM 5.3. Deciding whether two game trees are extensive-form game tree topologically
isomorphic or extensive-form game tree strategically isomorphic is graph isomorphism-complete.

A graph isomorphism complete problem is a problem such that there exists a polynomial time reduc-
tion both to and from the graph isomorphism problem [Booth and Colbourn 1979]. Game isomor-
phism has been studied to a limited extent in the literature. The more general question of whether
two games are isomorphic across game types has been studied by Gabarró et al. [2007]. Peleg et al.
[1999] and Sudhölter et al. [2000] study extensive form game tree isomorphism in the context of
strategic equivalence, but do not consider the computational problem. To our knowledge, ours is the
first paper to introduce the question of computing extensive-form game tree isomorphisms.

5.1.2. Choosing the set of prototypes. After computing the loss incurred by merging the different
action pairs available at the set of nodes under consideration, the subroutine COMPUTEPROTO-
TYPES computes a subset of the action pairs whose subtrees are kept as the abstract game, with
the remaining subtrees mapped onto these. We now show that, even when the values of merging



all action pairs have been computed, the problem of choosing the optimal subset of actions is NP-
complete.

Definition 5.4. (Action subset selection problem) The input is a set of actions A, a cost ca1,a2
for merging each action pair a1, a2 ∈ A, some value k that specifies the number of actions to be
selected, and a cost c. The action subset selection problem asks if there exists a set of k actions and
a mapping of the remaining actions onto this set, such that the cost is less than or equal to c.

THEOREM 5.5. The action subset selection problem is NP-complete.4

The problem of computing an extensive form game abstraction that minimizes the bound given in
Theorem 4.2 is easily seen to be NP-complete as well—even with just one player, and thus it holds
for zero-sum games also. The action subset selection problem itself reduces to a two-level game
tree by making a chance node as the root, with all children being in the same information set of size
|A|, with |A| actions available, where each node is used to ensure the correct cost of merging for a
single action pair, with all other merges being free at the node.

5.1.3. A sequence of single abstraction transformations to the optimal abstraction might not exist.
We now show a fundamental issue with level-by-level abstraction. It can leave valid (even lossless)
abstractions undiscovered: reasoning across merges at different levels and in different subtrees si-
multaneously is required in order to stay within the set of valid abstractions throughout the traversal
of the game tree. To show this, we show a slightly broader result: determining whether a merge is
within the desired error bound can require reasoning about merges in subtrees different from the
ones considered for merging.

THEOREM 5.6. Any abstraction technique that computes the abstraction by merging subtrees
must satisfy at least one of the following properties.

(1) It does not always find the smallest abstraction in the space of valid abstractions for a given
bound.

(2) When merging two nodes at a level, it must ensure that future merges at other levels in the
tree, outside of the two subtrees below those two nodes, will enable returning to an abstraction
within the bound.

This applies even if the game is a game of ordered signals [Gilpin and Sandholm 2007b], zero-sum,
and only information abstraction is performed.

PROOF. Consider a two-player poker game where the card deck consists of two kings and two
jacks. Each player is dealt a private card and then a single public card is dealt. We consider two
variants based on what the payoffs at the leaves are. In the first variant, Player 1 always wins. The
second variant is a slight modification, where if Player 2 pairs a private J2 with a public K2 she
wins, and otherwise Player 1 wins. Both variants are zero-sum games of ordered signals. Figure 2
shows the possible sequences of cards dealt. The two variants are obtained by setting δ equal to 1
or −1 in Figure 2, respectively. If Player 1 always wins (δ = 1), the whole game can be abstracted
into a single string of cards dealt, as none of them matter. If Player 2 wins (δ = −1), the two public
kings cannot be abstracted into a single king when Player 1 holds J1 and Player 2 holds J2 based
on the following reasoning. Consider K1 and K2 dealt to Player 1 at the root. Player 2 has two
information sets that consist of him holding a J2 and the public card being a king. Each of those
two information sets has two nodes corresponding to Player 1 holding the other jack or the other
king. The two information sets differ based on whether the public king is K1 or K2. If K1 and
K2 at the root are abstracted into a single tree, then one of these two information sets loses a node,
since the sequence K1, J2,K2 would map onto K2, J2,K1, or vice versa. This leads to Player 2

4Sandholm and Singh [2012] show that in stochastic games it is NP-complete to compute an abstraction where one of the
players does not automatically receive the worst possible payoff. However, some bound-minimizing solutions do not solve
the problem that is reduced from. Thus that result does not imply that minimizing the bound is NP-complete.
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Fig. 2. A signal tree for a simple poker game. Nodes labeled P1 or P2 denote the card being dealt privately to player 1 or
2, respectively. Nodes labeled A denote a public card. A leaf node labeled 1 indicates Player 1 winning.

being able to deduce exactly which card Player 1 has for the information set that is now a singleton.
For the other information set, the probability on the node where Player 1 has a private king would
be higher than the probability on the node where Player 1 has a private jack. Thus, if a lossless
abstraction is desired, the choice of whether to abstract K1 and K2 at the root hinges on whether δ
is set to 1 or not.

One consequence is that the GameShrink lossless abstraction algorithm [Gilpin and Sandholm
2007b] does not work correctly for all games of ordered signals.

5.2. Generating an abstraction by considering all levels at once
Motivated by the problems described in Section 5.1, we develop an algorithm for computing ab-
stractions with bounded loss that operates on all levels at once. The only assumption we make about
structure of the game, is that we only allow nature nodes to merge if they have the same number of
actions, and only allow different branches to merge if they have the same probability of occurring.

Using integer-programming (IP), we develop two similar models for computing abstractions. One
takes as input the maximum number of game tree nodes allowed and computes an abstraction that
minimizes the bound given in Theorem 4.2. The other takes as input a desired error bound and
computes the smallest abstraction subject to satisfying the bound.

5.2.1. Variables. For each node si, we introduce a variable pi ∈ {0, 1} denoting whether si is a
prototype. For each level k ∈ H and ordered pair of nodes at height k, si, sj ∈ Sk, we introduce a
variable δi,j ∈ {0, 1} denoting whether si is mapped onto sj . For each unordered pair of information
sets Ii, Ij at height k, we introduce a variable Ii,j ∈ {0, 1} denoting whether the two information
sets map to the same abstract information set.

5.2.2. Objective functions. In the case where we are given a bound to satisfy and wish to compute
the smallest abstraction, we maximize the sum over all abstraction variables δi,j , thereby minimizing
the number of nodes in the game tree:

max
δi,j ,pi,Ii,j

∑
i,j

δi,j (1)

In the case where we are given a maximum tree size and want to minimize the bound, we minimize
the sum over leaf nodes mapped onto each other, weighted by the absolute difference in utility at
the leaves:

min
δi,j ,pi,Ii,j

∑
z∈Z

∑
ẑ∈Z

max
i∈N
|Vi(z)− Vi(ẑ)|δi,j (2)

5.2.3. Constraints. To ensure that nodes are either prototypes or mapped onto a single prototype,
we introduce the following three constraints. The first and second constraints below are introduced



for all nodes si, and the third for all pairs of nodes si, sj at the same height.∑
j∈Sk

δi,j ≤ 1,∀si ∈ S, pi +
∑
j∈Sk

δi,j ≥ 1,∀si ∈ S, δj,i − pi ≤ 0,∀k ∈ H, si, sj ∈ Sk

(3)

The first constraint ensures that each node is mapped onto at most one other node. The second and
third constraints ensure that the variables pi accurately reflect whether si is a prototype. The second
constraint requires that pi = 1 unless si is mapped to some other node. The third constraint sets
pi = 0 if si is mapped onto any other node sj . Together, the last two constraints ensure that nodes
are only mapped onto prototypes, and that prototype nodes are not mapped onto anything.

If a node si is mapped onto another node sj , one of the constraints specified in Section 2.1 re-
quires that the children at si map onto the children at sj . This is ensured by the following constraint,
where Ci is the set of all child node indices of si.

δi,j −
∑
cj∈Cj

sci,cj ≤ 0,∀si ∈ S \ Z, ci ∈ Ci, (4)

If δi,j = 1, this constraint requires that sci is mapped onto some child node of sj by requiring that
at least one of them is set to one. Similarly, if si is mapped onto sj , we require that the parent node
of si, denoted by spi , is mapped onto the parent node of sj , denoted by spj . This gives the following
constraint, where the parent mapping variable δpi,pj is required to be set to one if δi,j = 1.

δi,j − δpi,pj ≤ 0,∀k ∈ H, si, sj ∈ Sk (5)

For each node pair si, sj at some height k, let Ii, Ij be their respective information sets and Ii,j
the variable denoting whether the information sets are merged. If the nodes are merged, we require
that their information sets are also merged, which is achieved by the following constraint.

δi,j − Ii,j ≤ 0,∀k ∈ H, si, sj ∈ Sk (6)

Information set merges are transitive, so if two information sets are both merged with the same third
information set, we require that they are themselves merged:

Ii,j + Ii,l − Ij,l ≤ 1,∀k ∈ H, Ii, Ij , Il ∈ Ik (7)

Using the variable Ii,j for two information sets Ii, Ij , we can ensure that each prototype node in the
abstract merged information set has a node from each information set mapping onto it. Without loss
of generality, assume sl ∈ Ii, we add the following constraint.

pl + Ii,j −
∑
sm∈Ij

δm,l ≤ 1,∀Ii, Ij , sl ∈ Ii (8)

This requires that if sl is a prototype, pl = 1, and if Ii,j = 1, at least one node from Ij maps onto
sl.

As mentioned above, we only allow nature outcomes to map onto each other if their probability
is the same. Further, if for some nature node sj mapped onto a nature node si we have that m > 1
child nodes of sj map onto the same child node of si, then we must ensure that m − 1 child nodes
at si map onto ci, in order to keep the nature distribution error at zero. This is achieved by the
following two constraints.

δci,cj = 0,∀si, sj , ci ∈ Ci, cj ∈ Cj , σ(si, ci) 6= σ(sj , cj) (9)∑
cj∈Cj

δcj ,ci =
∑
ck∈Ci

δck,ci + 1,∀si, sj ∈ S \ Z, ci ∈ Ci (10)

The first constraint just disallows mapping children of nature nodes that do not have equal prob-
ability of occurring. The second constraint ensures that the probability of a prototype child being



chosen at the nature node, which is equal to the sum of the probabilities of outcomes at the node
that are mapped to it, is equal to the sum of probabilities over outcomes mapped to it from sj .

For the case where a specific bound is given as input and we wish to compute the minimum size
abstraction, we add the following constraint.∑

zi,zj∈Z
max
i∈N
|Vi(zi)− Vi(ẑj)|δi,j ≤ εR (11)

This constraint sums over all leaf node pair mappings, and weights them by the difference in utility
at the pair. We require that this sum be less than εR, the given bound. For the case where a maximum
tree size K is given as input and we wish to minimize the bound, we add the following constraint.

max
δi,j ,pi,Ii,j

∑
i,j

δi,j ≥ |S| −K (12)

This constraint requires that at least |S| −K merges are performed, so the abstraction has at most
K nodes.

The number of variables in the model is O(|Z|2). The largest constraint sets are those in Equa-
tion 7 and those over all variable pairs at each level. The former is O(maxk∈H I3

k) and the latter is
O(|Z|2).

5.2.4. Experiment. We applied our IP model to a simple poker game. Our game has a deck of five
cards: two jacks, a queen, and two kings. Two players play the game, and after each round of cards
is dealt, up to two rounds of betting occur. A full description of the game is given in the appendices.

One advantage of poker games for testing our approach is that the chance outcomes can be de-
coupled from the player actions using the signal tree. The signal tree is defined conceptually by
removing all player actions from the game tree, and only considering the tree of possible nature
moves (aka signals). Clearly, for this decoupling to be possible, the nature moves can be condi-
tioned only on which prior nature events have occurred, not on player actions. Any abstraction
computed on the signal tree can easily be converted to an abstraction of the full game. Gilpin and
Sandholm [2007b] introduced the signal tree in the specific setting of games of ordered signals, a
game class closely resembling poker. More generally, in any game where the player’s action options
are independent of nature’s moves, abstraction can be performed on the signal tree.

In our poker game, the unabstracted signal tree has 86 nodes; the game tree has 4806 nodes. The
IP has 4,427 binary variables (one for each pair of nodes at each level of the signal tree, plus the
additional bookkeeping ones) and 38,813 constraints. To solve the IP, we used CPLEX version 12.5.

For the model where a bound is given as input and the objective is to minimize tree size, we
ran experiments with a bound ranging from 0 to 20 chips. Figure 3 Left shows a plot of the game
sizes as a function of the bound. As can be seen, tree size is a step function of the given bound.
Four different abstraction sizes were found. The coarsest abstraction has four signal tree nodes, and
thus represents a single sequence of outcomes where the players act essentially without seeing any
cards. The coarsest lossless abstraction has size 30. It is not until we allow a loss bound of 5 that
the algorithm finds a lossy abstraction (of size 14). For the model where a maximum tree size is
given as input and the objective is to minimize the regret bound, we ran experiments for signal
tree size bounds from 4 to 54. Figure 3 Right shows exploitability as a function of allowed signal
tree size. Three plots are shown, the exploitability of each of the two players, and the exploitability
bound given by Theorem 4.2. By and large, the three plots decrease with signal tree size, with a
non-monotonicity at size 6, where Player 1’s exploitability goes up compared to that at size 4. This
is an instance of abstraction pathology, which exists in games: refining an abstraction can cause the
equilibrium strategies to have higher exploitability in the original game [Waugh et al. 2009a].

The different abstractions (signal trees) that the IP generated are presented in the appendix. Inter-
estingly, sometimes the IP generated an abstraction that is asymmetric between the players.



Fig. 3. Left: Number of nodes in the signal tree (left y-axis) and in the game tree (right y-axis) as a function of the
allowed loss in the IP model when minimizing tree size. Right: Exploitability as a function of the allowed signal tree size.
Exploitability for both players is shown, along with our theoretical bound.

6. DISCUSSION
We presented the first framework for giving theoretical guarantees on solution quality in lossy ab-
straction in extensive-form games. We defined notions of payoff and nature error between the ab-
straction and the original game, and developed analysis tools that enable one to give an upper bound
on regret and exploitability of equilibria computed in the abstract game, when mapped to the orig-
inal game. To do this, we introduced a notion of strategy mappings, undivided lifted strategies. We
also introduced an equilibrium refinement, self-trembling equilibrium, that we used to analyze the
quality of general Nash equilibria from abstract games.

Using this framework, we developed the first lossy extensive-form game abstraction algorithm
with bounds on solution quality. We did this by designing an IP that computes either the minimal
size abstraction given a bound on solution quality, or a solution with minimum bound given a cap
on tree size. Experiments on a relatively simple poker game showed that our method finds a lossless
abstraction when one is available and lossy abstractions when smaller abstractions are desired.

While our framework can be used for lossy abstraction, it is also a powerful tool for lossless
abstraction if we set the bound to zero. This is, to our knowledge, the first framework to provide tools
for characterizing lossless abstractions in general extensive-form games of perfect recall. Likewise,
our IP model is the first algorithm to compute abstractions with such guarantees. It is also the first
algorithm to automatically detect the canonical representation of poker games while guaranteeing
losslessness, without resorting to any domain-specific tricks. Until now, there has been no theory
for algorithmically detecting such symmetries in a general sense that goes beyond poker. Further,
as we described in Section 5.1.3, the only similar work with theoretical guarantees [Gilpin and
Sandholm 2007b] has the problem that it might not be able to reach the lossless abstractions due
to discontinuity between the regions of lossless abstractions in the space of all abstractions. This is
in spite of their work analyzing a much more restricted game setting, that very closely resembles
poker, whereas our theoretical work makes no assumptions about the game beyond perfect recall.

As mentioned in Section 1, our quality results for lossy abstraction generalize similar results for
the special case of stochastic games (expanded to a DAG) [Sandholm and Singh 2012]. They get a
cubic dependence on the depth of the game tree in their bounds. In our work, if we consider the sum
over error terms in the bound in Theorem 4.2, we have 2εR+

∑
j∈Hi ε

0
jW+

∑
j∈H0

2ε0jW . The two
expressions

∑
j∈Hi ε

0
jW and

∑
j∈H0

2ε0jW have the biggest dependence on depth in our bound. In
converting the stochastic game, W gets a linear dependence on the depth, and the summations are
linear in the depth. The error term ε0j has no dependence on depth for either term, since each state
of the stochastic game induces a subgame in the extensive-form representation. Our bound, when
applied to a stochastic game DAG thus has only a quadratic dependence on depth, while theirs was
cubic.



We introduced the extensive form game tree isomorphism and action subset selection problems,
both important for computing abstractions on a level-by-level basis. We proved that the former is
graph isomorphism complete, and the latter NP-complete. We showed that level-by-level abstraction
can be too myopic and thus fail to find even obvious lossless abstractions. At the same time, it can
be challenging to scale up the IP that considers all levels at once, depending on the game.

The hardness results do not mean that abstraction is not helpful. For one, the worst-case hardness
results do not imply hardness in practice. Furthermore, many games can be decomposed in terms of
information structure. Our algorithm can be used to compute abstractions on the decomposed parts,
leading to a smaller game size in the full game. One example of such decomposition is conducting
abstraction on the signal tree instead of the full game tree. In fact, essentially all information ab-
straction algorithms for poker proceed level by level in tree data structures that are like the signal
tree, except that each tree consists of signals to only one player. Such algorithms have proven to
be key for being able to address large games even if the abstraction algorithm solves NP-complete
subproblems when dealing with each level in turn [Gilpin and Sandholm 2007a], even in two-player
zero-sum games which are solvable in worst-case polynomial time.

There are many possible future directions for developing abstraction algorithms within our frame-
work that provides bounds, for example, algorithms that proceed level by level but do not necessarily
find an optimal abstraction (and may not even optimize within a level), or algorithms that consider
multiple levels at once, but potentially not all levels and potentially not optimally.

While our algorithms work for any game of perfect recall, the set of abstractions they can compute
is only a subset of all possible abstractions. Recent progress on abstraction for the specific applica-
tion of solving poker games has been focused on the use of imperfect-recall abstractions [Waugh
et al. 2009b; Johanson et al. 2013]. They happen to work well for poker, but are poorly understood.
Other practical abstraction algorithms that fall outside our framework are ones that merge differ-
ent information sets at different branches in the tree without requiring that nodes in the subtrees
map to each other, nor that they are in the same information set for the other players. It is easy to
construct examples where such abstraction has arbitrarily high loss, but it seems to work well in
practice—at least for poker. It would be interesting to explore whether our bounding framework
could be extended to these kinds of abstractions.
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GABARRÓ, J., GARCÍA, A., AND SERNA, M. 2007. On the complexity of game isomorphism. In
Mathematical Foundations of Computer Science 2007.

GANZFRIED, S. AND SANDHOLM, T. 2013. Action translation in extensive-form games with large
action spaces: Axioms, paradoxes, and the pseudo-harmonic mapping. In International Joint
Conference on Artificial Intelligence (IJCAI).

GANZFRIED, S. AND SANDHOLM, T. 2014. Potential-aware imperfect-recall abstraction with earth
mover’s distance in imperfect-information games. In AAAI Conference on Artificial Intelligence
(AAAI).

GILPIN, A. AND SANDHOLM, T. 2006. A competitive Texas Hold’em poker player via automated
abstraction and real-time equilibrium computation. In National Conference on Artificial Intelli-
gence (AAAI).



GILPIN, A. AND SANDHOLM, T. 2007a. Better automated abstraction techniques for imperfect
information games, with application to Texas Hold’em poker. In International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS).

GILPIN, A. AND SANDHOLM, T. 2007b. Lossless abstraction of imperfect information games.
Journal of the ACM 54, 5. Early version ‘Finding equilibria in large sequential games of imperfect
information’ appeared in ACM Conference on Electronic Commerce (EC), 2006.

GILPIN, A., SANDHOLM, T., AND SØRENSEN, T. B. 2007. Potential-aware automated abstrac-
tion of sequential games, and holistic equilibrium analysis of Texas Hold’em poker. In AAAI
Conference on Artificial Intelligence (AAAI).

GILPIN, A., SANDHOLM, T., AND SØRENSEN, T. B. 2008. A heads-up no-limit Texas Hold’em
poker player: Discretized betting models and automatically generated equilibrium-finding pro-
grams. In International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS).

HAWKIN, J., HOLTE, R., AND SZAFRON, D. 2011. Automated action abstraction of imperfect
information extensive-form games. In AAAI Conference on Artificial Intelligence (AAAI).

HAWKIN, J., HOLTE, R., AND SZAFRON, D. 2012. Using sliding windows to generate action
abstractions in extensive-form games. In AAAI Conference on Artificial Intelligence (AAAI).

JIANG, A. AND LEYTON-BROWN, K. 2011. Polynomial-time computation of exact correlated
equilibrium in compact games. In ACM Conference on Electronic Commerce (EC).

JOHANSON, M., BURCH, N., VALENZANO, R., AND BOWLING, M. 2013. Evaluating state-space
abstractions in extensive-form games. In International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS).

KOLLER, D., MEGIDDO, N., AND VON STENGEL, B. 1996. Efficient computation of equilibria
for extensive two-person games. Games and Economic Behavior 14, 2.

LANCTOT, M., GIBSON, R., BURCH, N., ZINKEVICH, M., AND BOWLING, M. 2012. No-regret
learning in extensive-form games with imperfect recall. In International Conference on Machine
Learning (ICML).

LIPTON, R., MARKAKIS, E., AND MEHTA, A. 2003. Playing large games using simple strategies.
In ACM Conference on Electronic Commerce (ACM-EC).

LITTMAN, M. AND STONE, P. 2003. A polynomial-time Nash equilibrium algorithm for repeated
games. In ACM Conference on Electronic Commerce (ACM-EC).
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