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When donating money to a (say, charitable) cause, it is possible to use the contemplated

donation as a bargaining chip to induce other parties interested in the charity to donate

more. Such negotiation is usually done in terms of matching offers, where one party

promises to pay a certain amount if others pay a certain amount. However, in their current

form, matching offers allow for only limited negotiation. For one, it is not immediately

clear how multiple parties can make matching offers at the same time without creating

circular dependencies. Also, it is not immediately clear how to make a donation conditional

on other donations to multiple charities when the donor has different levels of appreciation

for the different charities. In both these cases, the limited expressiveness of matching offers

causes economic loss: it may happen that an arrangement that all parties (donors as well

as charities) would have preferred cannot be expressed in terms of matching offers and

will therefore not occur.

In this paper, we introduce a bidding language for expressing very general types of

matching offers over multiple charities. We formulate the corresponding clearing problem

(deciding how much each bidder pays, and how much each charity receives), and show

that it cannot be approximated to any ratio in polynomial time unless P = NP, even in

very restricted settings. We give a mixed integer program formulation of the clearing

problem, and show that for concave bids, the program reduces to a linear program. We

then show that the clearing problem for a subclass of concave bids is at least as hard as

the decision variant of linear programming. We also consider the case where each charity

has a target amount, and bidders’ willingness-to-pay functions are concave. Here, we show

that the optimal surplus can be approximated to a ratio m, the number of charities, in

polynomial time (and no significantly better approximation is possible in polynomial time

unless P = NP); no polynomial-time approximation ratio is possible for maximizing the

total donated, unless P = NP. Subsequently, we show that the clearing problem is much

easier when bids are quasilinear—for maximizing surplus, the problem decomposes across

charities, and for maximizing the total donated, a greedy approach is optimal if the bids are

concave (although this latter problem is weakly NP-hard when the bids are not concave).

For the quasilinear setting, we study the mechanism design question. We show that an ex-

post efficient mechanism is impossible even with only one charity and a very restricted

class of bids. We also show that there can be benefits to linking the charities from a

mechanism design standpoint. Finally, we discuss an experiment in which we used this

methodology to collect money for victims of the 2004 Indian Ocean Tsunami.

© 2010 Published by Elsevier B.V.
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1. Introduction

When money is donated to a charitable (or other) cause (hereafter referred to as a charity), often the donating party

gives unconditionally: a fixed amount is transferred from the donor to the charity, and none of this transfer is contingent

on other events—in particular, it is not contingent on the amount given by other parties. Indeed, this is currently often the

only way to make a donation, especially for small donating parties such as private individuals. However, when multiple

parties support the same charity, each of them would prefer to see the others give more rather than less to this charity. In

such scenarios, it is sensible for a party to use its contemplated donation as a bargaining chip to induce the others to give

more. This is done by making the donation conditional on the others’ donations. The following example will illustrate this,

and show that the donating parties as well as the charitable cause may simultaneously benefit from the potential for such

negotiation.

Suppose we have two parties, 1 and 2, who are both supporters of charity A. To either of them, it would be worth

$0.75 if A received $1. It follows that neither of them will be willing to give unconditionally, because $0.75 < $1. However,

if the two parties draw up a contract that says that they will each give $0.5, both the parties have an incentive to accept

this contract (rather than have no contract at all): with the contract, the charity will receive $1 (rather than $0 without a

contract), which is worth $0.75 to each party, which is greater than the $0.5 that party will have to give. Effectively, each

party has made its donation conditional on the other party’s donation, leading to larger donations and greater happiness to

all parties involved.

One method that is often used to bring this about is to make a matching offer. Examples of matching offers are: “I will

give x dollars for every dollar donated”, or “I will give x dollars if the total collected from other parties exceeds y”. In

our example above, one of the parties can make the offer “I will donate $0.5 if the other party also donates at least that

much”, and then the other party will have an incentive to indeed donate $0.5, so that the total amount given to the charity

increases by $1. Thus this matching offer implements the contract suggested above. As a real-world example, the United

States government has authorized a donation of up to $1 billion to the Global Fund to fight AIDS, TB and Malaria, under

the condition that the American contribution does not exceed one third of the total—to encourage other countries to give

more [35].

However, there are several limitations to the simple approach of matching offers as just described.

1. It is not clear how two parties can make matching offers where each party’s offer is stated in terms of the amount that

the other pays. (For example, it is not clear what the outcome should be when both parties offer to match the other’s

donation.) Thus, matching offers can only be based on payments made by parties that are giving unconditionally (not

in terms of a matching offer)—or at least there can be no circular dependencies.1

2. Given the current infrastructure for making matching offers, it is impractical to make a matching offer depend on the

amounts given to multiple charities. For instance, a party may wish to specify that it will pay $100 given that charity A

receives a total of $1000, but that it will also count donations made to charity B , at half the rate. (Thus, a total payment

of $500 to charity A combined with a total payment of $1000 to charity B would be just enough for the party’s offer

to take effect.)

In contrast, in this paper we propose a new approach where each party can express its relative preferences for different

charities, and make its offer conditional on its own appreciation for the vector of donations made to the various charities.

Moreover, the amount the party offers to donate at different levels of appreciation is allowed to vary arbitrarily. Finally,

there is a clear interpretation of what it means when multiple parties are making conditional offers that are stated in terms

of each other. Given each combination of (conditional) offers, there is a (usually) unique solution which determines how

much each party pays, and how much each charity is paid. This can be useful in the context of multiple individuals who

wish to make matching offers, but the parties do not need to be individuals; for example, one can imagine applying this

approach at an international aid conference (for instance, for rebuilding Haiti after its devastating 2010 earthquake) where

the parties are donor nations deciding how much each of them will contribute.

However, as we will show, with multiple charities, finding this solution (the clearing problem) requires solving an opti-

mization problem that, in general, is hard. A large part of this paper is devoted to studying how hard this problem is under

different assumptions on the structure of the offers (or bids), and providing algorithms for solving it. Towards the end of

✩ A short, early conference version (EC-04) of this paper was based on work supported by the National Science Foundation under CAREER Award IRI-

9703122, Grant IIS-9800994, ITR IIS-0081246, and ITR IIS-0121678. Several sections were added in 2009/2010; this work was supported by NSF grants

IIS-0812113, IIS-0905390, and CAREER IIS-0953756, as well as a Research Fellowship from the Alfred P. Sloan Foundation. We are grateful for receiving

many useful comments on this work from, among others, the EC and AIJ reviewers as well as participants at the 2004 EC conference, the 2004 World

Congress of the Game Theory Society, and the 2005 Dagstuhl seminar on Computing and Markets. These comments, as well as the participation of the

Dagstuhl seminar participants in an experiment described in Section 10, have improved the paper significantly.

* Corresponding author.

E-mail addresses: conitzer@cs.duke.edu (V. Conitzer), sandholm@cs.cmu.edu (T. Sandholm).
1 Typically, larger organizations match offers of private individuals. For example, the American Red Cross Liberty Disaster Fund maintains a list of busi-

nesses that match their customers’ donations [17].
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the paper, we also study the mechanism design problem of motivating the bidders to bid truthfully. We also discuss a small

experiment.

In short, expressive markets for making charitable donations have the potential to increase welfare by facilitating the

voluntary reallocation of wealth. To reach this potential, we discuss primarily computational aspects, and secondarily

mechanism-design aspects of this problem. In Appendix A, we discuss the relationship between expressive charity donation

and combinatorial auctions and exchanges. It can safely be skipped, but may be of interest to the reader with a background

in combinatorial auctions and exchanges.

2. Definitions

Throughout this paper, we will refer to the offers that the donating parties make as bids, and to the donating parties as

bidders. In our bidding framework, a bid will specify, for each vector of total payments made to the charities, how much

that bidder is willing2 to contribute. (The bidder’s own contribution is also counted in the vector of total payments—so,

the vector of total payments to the charities represents the amount given by all donating parties, not just the ones other

than this bidder.) We note that each bidder specifies only one total amount that she is willing to give (for each vector of

total payments made to the charities), that is, she does not explicitly specify the charities to which her donation will go.3

The bidding language is expressive enough that no bidder should have to make more than one bid. The following definition

makes the general form of a bid in our framework precise.

Definition 1. In a setting with m charities c1, c2, . . . , cm , a bid by bidder b j is a function w j : R
m → R. The interpretation is

that if charity ci receives a total amount of πci , then bidder j is willing to donate (up to) w j(πc1 ,πc2 , . . . ,πcm ).

We note that w j does not necessarily decompose across charities, that is, we do not necessarily have that w j(πc1 ,πc2 , . . . ,

πcm ) = ∑m
i=1 wi

j(πci ) (for some component functions wi
j). There are several reasons why such a decomposability assump-

tion may be too restrictive. One is that the charities may be related: for example, two charities may pursue the same goal

or related goals. Another reason is that a bidder may only have a limited amount of money to give—or, more generally, a

bidder who has already given a large amount may become more reluctant to give another dollar. Later in this paper, we

will effectively mostly assume away the former reason; we will discuss the latter reason in more detail shortly.

We now define possible outcomes in our model, and which outcomes are valid given the bids that were made.

Definition 2. An outcome is a vector of payments made by the bidders (πb1 ,πb2 , . . . ,πbn ), and a vector of payments received

by the charities (πc1 ,πc2 , . . . ,πcm ).

Definition 3. A valid outcome is an outcome where

1.
∑n

j=1 πb j
�

∑m
i=1 πci (at least as much money is collected as is given away);

2. For all 1 � j � n, πb j
� w j(πc1 ,πc2 , . . . ,πcm ) (no bidder gives more than she is willing to).

Of course, in the end, only one of the valid outcomes can be chosen. We choose the valid outcome that maximizes the

objective that we have for the donation process.

Definition 4. An objective is a function from the set of all outcomes to R.4 After all the bids have been collected, a valid

outcome will be chosen that maximizes this objective.

One example of an objective is surplus, given by
∑n

j=1 πb j
− ∑m

i=1 πci . One easy way of thinking about the surplus is as

the profit of a company managing the expressive donation marketplace. However, it should be emphasized most strongly

that the surplus does not need to go the entity organizing the donation market. The surplus can also be returned to the

bidders, or to the charities. Indeed, the idea of a company profiting from charitable donations may be unpalatable, and the

organization would presumably be run more naturally as a nonprofit.

To illustrate this point more precisely, we can consider the following objective, which we will call surplus′:
∑n

j=1[w j(πc1 ,

πc2 , . . . ,πcm )−πb j
]. That is, for each bidder there is slack between how much she is willing to pay, and how much she actu-

ally pays. A large slack indicates a happy bidder: she would have been willing to pay even more to achieve these donations

2 The word “willing” here should not be interpreted as being necessarily directly related to the bidder’s true preferences. Rather, the bidder just indicates

how much she agrees to contribute in each case, and at this point we are not yet concerned with the bidder’s intentions behind entering into this

agreement.
3 In Appendix B, we discuss a variant where bidders make payments to charities directly and can express that they are not willing to give to certain

charities.
4 In general, the objective function may also depend on the bids, but the main objective functions under consideration in this paper—surplus or the total

amount donated—do not depend on the bids. The techniques presented in this paper will typically generalize to objectives that take the bids into account

directly.
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to the charities. (We will give a more precise utility-theoretic interpretation of this shortly.) So, we try to maximize the sum

of these slacks; this is the surplus′ objective. (We note that this objective depends on the bids.) The next proposition shows

that surplus and surplus′ are effectively equivalent. As a result, in most of the paper we will simply consider maximizing

surplus, with the understanding that such techniques apply just as well to maximizing surplus′.

Proposition 1. A vector πc1 , . . . ,πcm is part of a valid outcome maximizing surplus if and only if it is part of a valid outcome maxi-

mizing surplus′.

Proof. Suppose the outcome πb1 , . . . ,πbn ,πc1 , . . . ,πcm maximizes surplus among valid outcomes; let s = ∑n
j=1 πb j

−
∑m

i=1 πci be the surplus. Then, the outcome where we give the entire surplus to bidder 1, π ′
b1

= πb1 − s,π ′
b2

= πb2 , . . . ,π
′
bn

=
πbn ,πc1 , . . . ,πcm , is still valid, and its surplus′ is at least s. Thus, the optimal surplus′ is always at least the optimal surplus.5

Conversely, suppose the outcome π ′
b1

, . . . ,π ′
bn

,πc1 , . . . ,πcm maximizes surplus′ among valid outcomes; let s′ =
∑n

j=1[w j(πc1 ,πc2 , . . . ,πcm ) − π ′
b j

] be the surplus′. Then, the outcome where we reduce each bidder’s slack to zero,

πb1 = w1(πc1 ,πc2 , . . . ,πcm ), . . . ,πbn = wn(πc1 ,πc2 , . . . ,πcm ),πc1 , . . . ,πcm , is still valid, and its surplus is at least s′ . Thus,
the optimal surplus is always at least the optimal surplus′. It follows that the optimal surplus and the optimal surplus′ are
always equal. Moreover, they are obtained at the same vectors πc1 , . . . ,πcm , as shown above. �

While the surplus objective has appealing properties, we may consider others. For example, another objective is total

amount donated, given by
∑m

i=1 πci . This objective has the advantage that more money is donated to the charities overall;

it also has the downside that more may be given to a charity than it really needs. This distinction between maximizing

surplus and maximizing the total amount donated has an analogue in the combinatorial exchanges literature, where two

common objectives are to maximize surplus, and to maximize total trading volume (aka. liquidity)—though at least in that

context there are good arguments for preferring the surplus objective [34,16].

Finding a valid outcome that maximizes the objective is a nontrivial computational problem. We will refer to it as the

clearing problem. The formal definition follows.

Definition 5 (DONATION-CLEARING). We are given a set of n bids over charities c1, c2, . . . , cm . Additionally, we are given an

objective function. We are asked to find an objective-maximizing valid outcome.

How hard the DONATION-CLEARING problem is depends on the types of bids used and the language in which they are

expressed.

2.1. The special case of a single charity

To build intuition, it is helpful to consider an important special case that is interesting in its own right: the case in

which there is only one charity, c. In this context, each bidder b j specifies a function w j : R → R, indicating how much

the bidder is willing to give as a function of the total received by the charity. In this special case, the clearing problem is

particularly easy. We consider the function wtotal : R → R, defined by wtotal(πc) = ∑n
j=1 w j(πc). This function returns, as a

function of the amount received by the charity, the total that the bidders are willing to give. Given this function, it is easy

to see which amounts the charity can receive in valid outcomes: any amount πc such that wtotal(πc) � πc is part of a valid

outcome, because if we collect the full amount that each bidder is willing to pay, we will collect at least as much money

as is given away. (Of course, we can also collect less, as long as the total collected is at least πc .) Thus, if we graph the

wtotal function with the total received, πc , on the x-axis, and the total willingness to pay, wtotal(πc), on the y-axis, then we

find valid outcomes wherever the function wtotal is at or above the 45-degree line (the identity function); the outcome that

maximizes the total amount donated is the furthest-to-the-right such point, and the outcome that maximizes surplus is the

point that is furthest above the 45-degree line. This is illustrated in more detail in the Indian Ocean Tsunami experiment in

Section 10.

When there are multiple charities, the clearing problem becomes more complicated. In fact, for multiple charities, it

becomes less reasonable to ask bidders to specify arbitrary functions w j : R
m → R, and so we need to think about designing

a bidding language for the bidders. Before we do so, it is helpful to discuss whether it makes sense to interpret the bids as

statements about the bidders’ utilities, and how to do so.

2.2. Discussion of the merits of utility-theoretic interpretations

So far, we have not said anything about how we assume bids relate to the bidders’ utilities. At some level, it is not strictly

necessary to do so: the semantics of a bid in our framework are perfectly well defined even without any utility-theoretic

5 It is good to emphasize that at this point we are not considering fairness (though of course we could spread the surplus more equally) or strategic

issues. In fact, in mechanism design, there is a growing literature on the highly nontrivial problem of redistributing surplus payments to the bidders without

creating perverse incentives (e.g., [4,27,5,19,23,1,6,20]).
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interpretation. Namely, the payment willingness function simply specifies the maximum amount that a bidder can be asked

to pay, given a vector of donations. The bid represents a conditional commitment to donate money. Indeed, in order to

apply a system like the one described in this paper in practice, it is highly desirable to have such a simple description of

the semantics of bids—one that does not depend on abstract concepts such as utility, which are presumably foreign to many

of the people who might use the system.

Moreover, as we will see, even if we do interpret the bids in a utility-theoretic way, the basic design that we propose

(when interpreted straightforwardly, that is, as a first-price mechanism) is in any case not incentive compatible. (In mech-

anism design, a mechanism is incentive compatible if each bidder is always best off declaring her preferences truthfully.) To

make a comparison to auctions, our proposed design is more similar to a first-price auction, in which the winning bidder

simply pays her bid, than to a Vickrey auction [36], in which the winner pays the bid of the next-highest bidder (or to the

Vickrey auction’s generalization to VCG mechanisms [36,7,18]). VCG mechanisms are in fact incentive compatible, and be-

cause of this, the bids can arguably truly be interpreted as reflecting the bidders’ utilities. In contrast, in first-price auctions

(or many other mechanisms), bidders are incentivized to bid strategically. Hence, while their bids may be given in the same

form as under a VCG mechanism, it is, to say the least, a stretch to interpret these bids as truly representing the bidders’

utilities. Because of this, it is perhaps best to consider a first-price auction as just a particular game—one in which we do

not attach too much direct meaning to the bids, other than the guarantee to each bidder that she will not be made to pay

more than she bid. It is the same for our charity market.

In spite of the theoretical advantages of incentive compatibility, it is extremely rare to see an incentive compatible

mechanism such as VCG actually deployed in practice. This is in contrast to first-price mechanisms, which are quite common.

Presumably, one important reason for this is that it is much easier to explain a first-price mechanism to a novice. Other

practical drawbacks of incentive compatible mechanisms such as VCG have received much discussion [29,30,11,3]. Moreover,

as we will see in Section 9, in the specific context of charitable donations, there are fundamental limitations on what can

be achieved by incentive compatible mechanisms.

One may argue that, with a mechanism that is not incentive compatible, we need to be concerned about strategic

behavior by the bidders. In fact, by the revelation principle from the theory of mechanism design, focusing on incentive

compatible mechanisms is without loss of optimality in the context of strategic bidders that behave according to the laws of

game theory. This is absolutely a valid point, and indeed we do consider such strategic behavior in Section 9. Nevertheless,

in the specific context of donations to charities, it seems perhaps unlikely that a game-theoretic solution based on a simple

model of utilities will give us an accurate prediction of actual behavior in practice. This is first because it appears that

people’s reasons for giving to charity are complex and varied. Second, the image of a hard-nosed agent strategically pursuing

maximum advantage for herself seems somewhat out of place in the context of charitable donations. This is not a normative

statement—in principle, an agent’s utility function can model all sorts of preferences, including altruistic ones, and there is

no reason that she should not act in accordance with her preferences—but these types of considerations are nevertheless

likely to affect people’s behavior in practice. To illustrate these points, it is helpful to point at the real-world bids in the

experiment in Section 10. It seems difficult to explain such a diversity of bids with a simple strategic model.

In spite of all these arguments, we do believe that it is important to think about how bids may reflect the bidders’

underlying utility functions. Besides considerations of strategic bidding, one important reason for this is that we need a

bidding language in which the bidders can express their bids. A good bidding language makes it easy to express “natural”

bids, and in order to understand what natural bids are, it helps to think about how they may relate to the bidder’s utility.

2.3. A utility-theoretic interpretation

We now give a utility-theoretic interpretation of bids in our framework. We assume that bidder b j ’s utility u j depends

only on how much she gives (πb j
) and how much the charities receive (πc1 , . . . ,πcm ). We additionally assume that the

utility is nonincreasing in πb j
(when holding the πci fixed), and moreover that for any values of πc1 , . . . ,πcm , there exists

a value of πb j
such that u j(πb j

,πc1 , . . . ,πcm ) = 0. Given this, we can choose to interpret the bidder’s willingness to pay

as the largest amount that the bidder could pay and still end up with nonnegative utility, that is, w j(πc1 , . . . ,πcm ) =
max{πb j

|u j(πb j
,πc1 , . . . ,πcm ) � 0}.

Given this, the condition that a bidder should not pay more than w j(πc1 , . . . ,πcm ) is equivalent to saying that she

should receive utility at least 0. This can be interpreted as an individual rationality (aka. voluntary participation) constraint:

participating in the market should not make a bidder worse off than she would have been if the whole event had not

happened and no bidder had given anything.6

6 One might argue that a more appropriate definition of individual rationality would be that a bidder should not be better off acting separately in the

world, while the other bidders continue to participate in the mechanism. However, such a more stringent definition immediately results in impossibilities.

For example, consider a charity that requires a donation of 1 for a project (but has no use for additional money). If there is only a single bidder, who is

willing to pay 2 to see the charity get 1, then presumably this bidder should indeed give 1—in fact, the more stringent definition of individual rationality

would require this, because otherwise the bidder could just give the money to the charity directly, outside of the mechanism. But then, consider the

situation where there are two such bidders. If one of them does not participate, then the other bidder will end up giving the full amount, so that the

former bidder free-rides. But we cannot make both bidders at least as happy as they would be as free-riders—someone has to put up the money. Thus,

there is no individually rational outcome at all under this more stringent definition. Section 9 considers strategic phenomena in more detail.
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An interesting special case is that of quasilinear utility, where we can write u j(πb j
,πc1 , . . . ,πcm ) = w j(πc1 , . . . ,πcm )−πb j

.

In this case, utility can be expressed in monetary terms. This also gives us another justification for maximizing surplus (more

precisely, surplus′):

Proposition 2. If utilities are quasilinear, then an outcome maximizes surplus′ if and only if it maximizes the sum of the bidders’

utilities.

Proof. A bidder’s utility for an outcome is w j(πc1 , . . . ,πcm ) − πb j
, which is equal to that bidder’s slack—and the surplus′

objective is the sum of these slacks. �
While we will devote a reasonably large part of this paper to the case of quasilinear utilities, in our opinion, this

restriction is often not reasonable in the context of donations to charities. Intuitively, the argument is as follows. If utility

were truly quasilinear, then the reason that a donor gives only a bounded amount to a charity must be that the donor

feels that, eventually, the marginal benefit of more money going to the charity starts to significantly decrease. While this

may be reasonable for small charities with a limited mission (e.g., the local animal shelter only needs so much money to

do the most important things that it can), for large charities with a broader mission (e.g., fighting world hunger), it seems

that the marginal benefit of more money going to the charity stays very nearly constant over a very large range of amounts

of money donated. In our opinion, in this context it is more reasonable to argue that the marginal utility that the donor

has for keeping money to herself changes: she can easily spare a small amount of money, but to give a medium-sized

amount of money, she has to give up some luxury goods that she likes, and to give a large amount, she has to give up more

essential goods. This is the reason that she stops giving after some point. That is, her utility for money is strictly concave,

not linear.7 (It should be emphasized that we only really wish to argue that this is one possible reason for donors giving a

bounded amount, and therefore that our model should be able to accommodate it. In fact, our model also accommodates

other reasons for giving a bounded amount, such as the charity only needing a certain amount to do the most important

things.)

3. A simplified bidding language

Specifying a general bid in our framework (as defined above) requires being able to specify an arbitrary real-valued

function over R
m . Even if we restricted the possible total payment made to each charity to the set {0,1,2, . . . , s}, this

would still require a bidder to specify (s + 1)m values, which is exponential in the number of charities. Thus, in the context

of multiple charities, we need a bidding language that will allow the bidders to at least specify some bids more concisely.

We will introduce a bidding language that only represents a subset of all possible bids, which can be described concisely.8

On the one hand, we believe that this language allows bidders to represent bids that are natural and useful. On the other

hand, we do not intend for this to be the final word on bidding languages in this domain: certainly, other languages can

be created that allow the bidders to express different bids that may still be natural and useful. Nevertheless, we consider it

likely that the results obtained for our language will either generalize directly to such languages, or at least provide a useful

starting point.

To introduce our bidding language, we will first describe the bidding function as a composition of two functions; then we

will outline our assumptions on each of these functions. First, there is a valuation function v j : R
m → R, specifying how much

bidder j “appreciates” a given vector of total donations to the charities. Then, there is a donation willingness or willingness-

to-pay function w j : R → R, which specifies how much bidder j is willing to pay given her valuation v j(πc1 ,πc2 , . . . ,πcm )

for the vector of donations to the charities. Note that we are overloading notation here: before, the domain of w j functions

consisted of vectors of total amounts donated to the charities, but here, the domain is that of nonnegative real numbers,

representing the bidder’s total valuation (which is itself a function of the total amounts donated to the charities). We

overload notation because the range of the function is the same in both cases: nonnegative real numbers, representing how

much the bidder is willing to pay. The primary use of w j in the rest of this paper is as a mapping from valuations to

willingness to pay. We emphasize that this function does not need to be linear, so that valuations should not be thought of

as necessarily expressible in dollar amounts. (Indeed, we argued above that when an individual is donating to a large charity,

the reason that the individual donates only a bounded amount is typically not decreasing marginal value of the money given

to the charity, but rather that the marginal value of a dollar to the bidder herself becomes larger as her budget becomes

smaller.) So, relating the two different uses of w j , we have w j(v j(πc1 ,πc2 , . . . ,πcm )) = w j(πc1 ,πc2 , . . . ,πcm ), and we let

the bidder describe her functions v j and w j separately; she will submit these functions as her bid.

Our first restriction is that the valuation that a bidder derives from money donated to one charity is independent of the

amount donated to another charity. Thus, v j(πc1 ,πc2 , . . . ,πcm ) = ∑m
i=1 v

i
j(πci ). (We observe that this does not imply that

7 This argument does presuppose that the donor has very pure motivations, that is, the donor’s reason for giving is purely that she wants to see the

charity receive money. This is in contrast to, for example, a donor who feels that there is a social expectation from her friends, or an ethical obligation on

her own part, to give a particular amount.
8 Of course, our bidding language can be trivially extended to allow for fully expressive bids, by also allowing bids from a fully expressive bidding

language, in addition to the bids in our bidding language.
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the entire bid decomposes similarly, because of the possible nonlinearity of w j .) This restriction seems reasonable in many

cases, though it may be called into question in cases where multiple charities are working on similar or related projects (for

example, disaster relief). If multiple charities are working on the same project, then we can simply consider them a single

charity (in fact, this is what we did in the tsunami event described in Section 10).

Furthermore, for concreteness, we require that each vi
j be piecewise linear. An interesting special case that we will study

is when each vi
j is a line: vi

j(πci ) = aijπci . This special case is justified in settings where the scale of the donations by the

bidders is small relative to the amounts the charities receive from other sources, so that the marginal value of a dollar to

the charity is not (significantly) affected by the amount given by the bidders.

The only restriction that we place on the bidders’ payment willingness functions w j is that they be piecewise linear.

One interesting special case is a threshold bid, where w j is a step function: the bidder is willing to give t dollars if her

valuation exceeds s, and otherwise 0. Another interesting special case is when such a bid is partially acceptable: the bidder

is willing to give t dollars if her valuation exceeds s; but if her valuation is v < s, she is still willing to give vt
s

dollars.

We are interested in such simple bids on the one hand for technical reasons, for example, showing hardness results even

for step functions; on the other hand, they do appear to come up in practice—for example, five of the eighteen bids in the

experiment in Section 10 were threshold bids.

One might wonder why, if we are given the bidders’ valuation functions, we do not simply maximize the sum of the

valuations, rather than surplus or total donated. There are several reasons. First, it would be possible for a bidder to inflate

her valuation by changing its units (and correspondingly changing her willingness to pay to adjust for the change in units),

thereby making her bid more important for valuation maximization purposes even though the bid has effectively remained

the same. Second, a bidder could simply give a payment willingness function that is 0 everywhere, and have her valuation

be taken into account in deciding on the outcome, in spite of her not contributing anything. We also recall that Proposition 2

states that maximizing surplus′ maximizes the sum of the bidders’ utilities if utilities are quasilinear.

We now give an example that illustrates what bids may look like in this framework, as well as what outcomes may

result under the different objectives.

Example 1. Let us consider an example with two bidders and two charities. The first bidder bids:

• v11(πc1 ) = (3/4)πc1 for πc1 < 1, v11(πc1 ) = 3/4 for πc1 � 1 (valuation function for the first charity);

• v21(πc2 ) = (1/2)πc2 for πc2 < 1, v21(πc2 ) = 1/2 for πc2 � 1 (valuation function for the second charity);

• w1(v1) = v1 (payment willingness function).

The second bidder bids:

• v12(πc1 ) = 0 for πc1 < 1, v12(πc1 ) = 1/2 for πc1 � 1 (valuation function for the first charity);

• v22(πc2 ) = (1/4)πc2 for πc2 < 1, v22(πc2 ) = 1/4+ (1/8)(πc2 − 1) for πc2 � 1 (valuation function for the second charity);

• w2(v2) = v2 for v2 < 1/2, w2(v2) = 1/2+ (1/2)(v2 − 1/2) for v2 � 1/2 (payment willingness function).

The valid outcome that maximizes surplus is πb1 = 3/4,πb2 = 1/2,πc1 = 1,πc2 = 0, for a surplus of 1/4. The valid

outcome that maximizes the total donated is πb1 = 13/12,πb2 = 7/12,πc1 = 1,πc2 = 2/3. We note that, intuitively, under

the surplus objective, we carefully evaluate whether additional donations to the charities are worthwhile,9 whereas under

the objective of maximizing the total donated, we continue to give to the charities in a way that maximizes the additional

willingness to donate, until the bidders’ willingness to pay is entirely exhausted.

4. Hardness of clearing the market

In this section, we will show that the clearing problem is completely inapproximable, even when every bidder’s valuation

function is linear (with slope 0 or 1 in each charity’s payments), each bidder cares either about at most two charities

or about all charities equally, and each bidder’s payment willingness function is a step function. We will reduce from

MAX2SAT (given a formula in conjunctive normal form (where each clause has two literals) and a target number of satisfied

clauses T , does there exist an assignment of truth values to the variables that makes at least T clauses true?), which is

NP-complete [14].

Theorem 1. There exists a reduction from MAX2SAT instances to DONATION-CLEARING instances such that

1. If the MAX2SAT instance has no solution, then the only valid outcome is the zero outcome (no bidder pays anything and no charity

receives anything).

9 For clarity, we emphasize that this evaluation is done taking the bids at face value, that is, we do not consider here whether the bidders have perhaps

misreported their preferences and try to assess whether additional donations are worthwhile with respect to the true preferences.
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2. Otherwise, there exists a solution with positive surplus.

Additionally, the DONATION-CLEARING instances that we reduce to have the following properties:

1. Every vi
j is a line; that is, the valuation that any bidder derives from any charity is linear.

2. All the vi
j have slope either 0 or 1.

3. Every bidder either has at most 2 charities that affect her valuation (with slope 1), or all charities affect her valuation (with slope

1).

4. Every bid is a threshold bid; that is, every bidder’s payment willingness function w j is a step function.

Proof. In this proof, we will represent bids as follows: ({(c1,a1), (c2,a2), . . .}, s, t) indicates that vkj(πck ) = akπck (this func-

tion is 0 for charities ck not mentioned in the bid), and w j(v j) = t for v j � s, w j(v j) = 0 otherwise. We say a bid b is

accepted if its threshold sb is reached, in which case we will have πb = tb .

We reduce an arbitrary MAX2SAT instance, given by a set of clauses K = {k1,k2, . . .} = {{l1
k1

, l2
k1

}, {l1
k2

, l2
k2

}, . . .} (where l1
k
, l2

k

are the literals in clause k) over a set of variables V together with a target number of satisfied clauses T , to the following

DONATION-CLEARING instance. Let the set of charities be as follows. For every literal l ∈ L, there is a charity cl . Then, let

the set of bids be as follows. For every variable v , there is a bid bv = ({(c+v ,1), (c−v ,1)},2,1 − 1
4|V | ). (+v and −v are

the positive and negative literals corresponding to v .) For every literal l, there is a bid bl = ({(cl,1)},2,1). For every clause

k = {l1
k
, l2

k
} ∈ K , there is a bid bk = ({(cl1

k
,1), (cl2

k
,1)},2, 1

8|V ||K | ). Finally, there is a single bid that values all charities equally:

b0 = ({(c1,1), (c2,1), . . . , (cm,1)},2|V | + T
8|V ||K | ,

1
4

+ 1
16|V ||K | ). We now show that the two instances are equivalent.

First, suppose there exists a solution to the MAX2SAT instance. If in this solution, l is true, then let πcl = 2 + T
8|V |2|K | ;

otherwise πcl = 0. Also, the only bids that are not accepted (meaning the threshold is not met) are the bl where l is false,

and the bk such that both of l1
k
, l2

k
are false. First we show that no bidder whose bid is accepted pays more than she is

willing to. For each bv , either c+v or c−v receives at least 2, so this bidder’s threshold has been met. For each bl , either

l is false and the bid is not accepted, or l is true, cl receives at least 2, and the threshold has been met. For each bk ,

either both of l1
k
, l2

k
are false and the bid is not accepted, or at least one of them (say li

k
) is true (that is, k is satisfied)

and cli
k
receives at least 2, and the threshold has been met. Finally, because the total amount received by the charities is

2|V | + T
8|V ||K | , b0’s threshold has also been met. The total amount that can be collected from the accepted bids is at least

|V |(1− 1
4|V | ) + |V | + T 1

8|V ||K | + 1
4

+ 1
16|V ||K | ) = 2|V | + T

8|V ||K | + 1
16|V ||K | > 2|V | + T

8|V ||K | , so there is positive surplus. So there

exists a solution with positive surplus to the DONATION-CLEARING instance.

Now suppose there exists a valid nonzero outcome in the DONATION-CLEARING instance. First we show that it is not pos-

sible (for any v ∈ V ) that both b+v and b−v are accepted. For, this would require that πc+v +πc−v � 4. The bids bv ,b+v ,b−v

cannot contribute more than 3, so we need at least another 1 from other bids. It is easily seen that for any other v ′ ,
accepting any subset of {bv ′ ,b+v ′ ,b−v ′ } would require that at least as much is given to c+v ′ and c−v ′ as can be col-

lected from these bids, so these bids cannot help close the gap. Finally, all the other bids combined can contribute at most

|K | 1
8|V ||K | + 1

4
+ 1

16|V ||K | < 1. Hence, at most one of b+v and b−v is accepted. It follows that we can interpret a valid outcome

in the DONATION-CLEARING instance as a partial assignment of truth values to variables: v is set to true if b+v is accepted,

and to false if b−v is accepted. All that is left to show is that this partial assignment must satisfy at least T clauses.

First we show that if a clause bid bk is accepted, then either bl1
k
or bl2

k
is accepted (and thus either l1

k
or l2

k
is set to true,

hence k is satisfied). If bk is accepted, at least one of cl1
k
and cl2

k
must be receiving at least 1; without loss of generality,

say it is cl1
k
, and say l1

k
corresponds to variable v1

k
(that is, it is +v1

k
or −v1

k
). If cl1

k
does not receive at least 2, it follows

that bl1
k
is not accepted, and as a result the bids bv1

k
,b+v1

k
,b−v1

k
contribute (at least) 1 less than is paid to c+v1

k
and c−v1

k
.

(This follows from the following reasoning. If c−l1
k
, where −l1

k
is the negation of l1

k
, receives at least 2, then the total paid

to these charities is at least 3 but these bids contribute at most 2; otherwise, if c+v1
k
and c−v1

k
together receive at least 2,

then at most 1 can be collected from these bids; otherwise, nothing can be collected from these bids at all.) But this is the

same situation that we analyzed before, and we know it is impossible because the other bids cannot close a gap of 1. All

that remains to show is that at least T clause bids are accepted, because if so then it follows that our partial assignment

satisfies at least T clauses.

We first show that b0 is accepted. Suppose it is not; then one of the bv must be accepted. (The solution is nonzero by

assumption; if only some of the bk are accepted, the total payment from these bids is at most |K | 1
8|V ||K | < 1, which is not

enough for any bid to be accepted; and if one of the bl is accepted, then the threshold for the corresponding bv is also

reached.) For this v , bv1
k
,b+v1

k
,b−v1

k
contribute (at least) 1

4|V | less than the total payments to c+v and c−v (because these

total payments must be at least 2, and at most one of b+v1
k
and b−v1

k
can be accepted, so the total collected from these

three bids is at most 2 − 1
4|V | ). Again, the other bv and bl cannot (by themselves) help to close this gap; and the bk can

contribute at most |K | 1
8|V ||K | < 1

4|V | . It follows that b0 must be accepted.
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Now, in order for b0 to be accepted, a total of 2|V | + T
8|V ||K | must be donated. Because it is not possible (for any v ∈ V )

that both b+v and b−v are accepted, it follows that the total payment by the bv and the bl can be at most 2|V | − 1
4
. Adding

b0’s payment of 1
4

+ 1
16|V ||K | to this, we still need

T− 1
2

8|V ||K | from the bk . But each one of them contributes at most 1
8|V ||K | , so

at least T of them must be accepted. �
Corollary 1. Unless P = NP, there is no polynomial-time algorithm for approximating DONATION-CLEARING (with either the surplus

or the total amount donated as the objective) within any positive ratio. This holds even if the DONATION-CLEARING problem instances

satisfy all the properties given in Theorem 1.

Proof. Suppose we had such a polynomial-time algorithm, and applied it to the DONATION-CLEARING instances that were

reduced from MAX2SAT instances in Theorem 1. It would return a nonzero solution when the MAX2SAT instance has a

solution (that achieves the target number of satisfied clauses), and a zero solution otherwise. So we could decide whether

arbitrary MAX2SAT instances have solutions this way, and it would follow that P = NP. �
This should not be interpreted to mean that our approach to the problem of donating to charities is infeasible. First, as

we will show, there are very expressive families of bids for which the problem is solvable in polynomial time. (We have also

already discussed the case where there is only one charity.) Second, NP-hardness is often overcome in practice (especially

when the stakes are high). For instance, even though the problem of clearing combinatorial auctions is NP-hard [28] (even

to approximate [31,37]), it is typically solved to optimality in practice [32].

5. Mixed integer programming formulation

In this section, we give a mixed integer programming (MIP) formulation for the general problem. We also discuss a

special case in which this formulation reduces to a linear programming (LP) formulation. In this case, the problem is

solvable in polynomial time, because linear programs can be solved in polynomial time [21].

The variables of the MIP that determine the final outcome are the payments made to the charities, denoted by πci ,

and the payments collected from the bidders, πb j
. The objectives we discussed earlier are both linear: surplus is given by

∑n
j=1 πb j

− ∑m
i=1 πci , and total amount donated is given by

∑m
i=1 πci .

The constraint that the outcome should not result in a deficit is given simply by:
∑n

j=1 πb j
�

∑m
i=1 πci .

For every bidder, for every charity, we define an additional valuation variable vi
j indicating the valuation that this bidder

derives from the payment to this charity. The bidder’s total valuation is given by another variable v j , with the constraint

that v j = ∑m
i=1 v

i
j .

Each vi
j is given as a function of πci by the (piecewise linear) function provided by the bidder. In order to represent

this function in the MIP formulation, we will merely place upper bounding constraints on vi
j , so that it cannot exceed the

given function. The MIP solver can then push the vi
j variable all the way up to the constraint, in order to collect as much

payment from this bidder as possible. In the case where the vi
j are concave, this is easy: if (s

i, j

l
, t

i, j

l
) and (s

i, j

l+1
, t

i, j

l+1
) are

the endpoints of a finite linear segment in the function, we add the constraint that vi
j � t

i, j
l

+ πci
−s

i, j
l

s
i, j
l+1

−s
i, j
l

(t
i, j
l+1

− t
i, j
l

). If the

final (infinite) segment starts at (s
i, j
k

, t
i, j
k

) and has slope d, we add the constraint that vi
j � t

i, j
k

+ d(πci − s
i, j
k

). Using the fact

that the function is concave, for each value of πci , the tightest upper bound on vi
j is the one corresponding to the segment

corresponding to that value of πci , and therefore these constraints are sufficient to get the correct value of vi
j .

When the function is not concave, we require (for the first time) some binary variables. First, we define another point on

the function: (s
i, j
k+1

, t
i, j
k+1

) = (s
i, j
k

+ M, t
i, j
k

+ dM), where d is the slope of the infinite segment and M is any upper bound on

the πc j
. This has the effect that we will never be on the infinite segment again. Now, let x

i, j
l

∈ {0,1} be an indicator variable

that should be 1 if πci corresponds to the lth segment of the function, and 0 otherwise. To ensure this, first add a constraint
∑k

l=0 x
i, j
l

= 1. Now, we aim to represent πci as a weighted average of its two neighboring s
i, j
l

. For 0 � l � k + 1, let λ
i, j
l

be

the weight on s
i, j
l

. We add the constraint
∑k+1

l=0 λ
i, j
l

= 1. Also, for 0 � l � k+ 1, we add the constraint λ
i, j
l

� xl−1 + xl (where

x−1 and xk+1 are defined to be zero), so that indeed only the two neighboring s
i, j
l

have nonzero weight. Now we add the

constraint πci = ∑k+1
l=0 s

i, j

l
λ
i, j

l
, so that the λ

i, j

l
must be set correctly. Then, we can set vi

j =
∑k+1

l=0 t
i, j

l
λ
i, j

l
. (This is a standard

MIP technique [25].)

Finally, each πb j
is bounded by a function of v j : the (piecewise linear) function w j provided by the bidder. Representing

this function is entirely analogous to how we represented vi
j as a function of πci . (Again, we will need binary variables only

if the function is not concave.)
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Because we only use binary variables when either a valuation function vi
j or a payment willingness function w j is not

concave, it follows that if all of these are concave, our MIP formulation is simply a linear program—which can be solved in

polynomial time. Thus:

Theorem 2. If all functions vi
j and w j are concave (and piecewise linear), the DONATION-CLEARING problem can be solved in polyno-

mial time using linear programming.

6. Why one cannot do much better than linear programming

One may wonder whether, for the special case of the DONATION-CLEARING problem presented in Theorem 2 that can be

solved in polynomial time with linear programming, there exist special-purpose algorithms that are much faster than linear

programming algorithms. In this section, we show that this is not the case. We give a reduction from (the decision variant

of) the general linear programming problem to (the decision variant of) a special case of the DONATION-CLEARING problem

(which can be solved in polynomial time using linear programming by Theorem 2). (The decision variant of a maximization

problem asks the binary question: “Can the objective value exceed o?”) Thus, any special-purpose algorithm for solving the

decision variant of this special case of the DONATION-CLEARING problem could be used to solve a decision question about

an arbitrary linear program about as fast. (And thus, we could solve the optimization version of the linear program with

binary search.)

We first observe that for linear programming, a decision question about the objective can simply be phrased as another

constraint in the LP (requiring the objective to exceed the given value); then, the original decision question coincides with

asking whether the resulting linear program (system of linear inequalities) has a feasible solution.

Theorem 3. The question of whether an LP (given by a set of linear constraints10) has a feasible solution can be modeled as a

DONATION-CLEARING instance with maximizing the total donated as the objective, with 2v charities and v + c bids (where v is

the number of variables in the LP, and c is the number of constraints). In this instance, each bid b j has only linear vi
j functions, and

is a partially acceptable threshold bid (w j(v j) = t j for v j � s j , otherwise w j(v j) = v jt j
s j

). The v bids corresponding to the variables

mention only two charities each; the c bids corresponding to the constraints mention only two times the number of variables in the

corresponding constraint.

Proof. For every variable xi in the LP, let there be two charities, c+xi and c−xi . Let H be some number such that if there is

a feasible solution to the LP, there is one in which every variable has absolute value at most H .

In this proof, we will represent bids as follows: ({(c1,a1), (c2,a2), . . .}, s, t) indicates that vkj(πck ) = akπck (this function

is 0 for ck not mentioned in the bid), and w j(v j) = t for v j � s, w j(v j) = v jt

s
otherwise.

For every variable xi in the LP, let there be a bid bxi = ({(c+xi ,1), (c−xi ,1)},2H,2H − c
v
). For every constraint

∑
i r

j
i xi � s j

in the linear program, let there be a bid b j = ({(c−xi , r
j
i )}i:r j

i
>0

∪ {(c+xi ,−r
j
i )}i:r j

i
<0

, (
∑

i |r ji |)H − s j,1). Let the target total

amount donated be 2vH .

Suppose there is a feasible solution (x∗
1, x

∗
2, . . . , x

∗
v) to the LP. Without loss of generality, we can suppose that |x∗

i | � H

for all i. Then, in the DONATION-CLEARING instance, for every i, let πc+xi
= H + x∗

i , and let πc−xi
= H − x∗

i (for a total

payment of 2H to these two charities). This allows us to collect the maximum payment from the bids bxi—a total payment

of 2vH − c. Additionally, the valuation of bidder b j is now
∑

i:r j
i
>0

r
j
i (H − x∗

i )+∑
i:r j

i
<0

−r
j
i (H + x∗

i ) = (
∑

i |r ji |)H −∑
i r

j
i x

∗
i �

(
∑

i |r ji |)H − s j (where the last inequality stems from the fact that constraint j must be satisfied in the LP solution), so it

follows that we can collect the maximum payment from all the bids b j , for a total payment of c. It follows that we can

collect the required 2vH payment from the bidders, and there exists a solution to the DONATION-CLEARING instance with

a total amount donated of at least 2vH .

Now suppose there is a solution to the DONATION-CLEARING instance with a total amount donated of at least 2vH . Then

the maximum payment must be collected from each bidder. From the fact that the maximum payment must be collected

from each bidder bxi , it follows that for each i, πc+xi
+πc−xi

� 2H . Because the maximum total payment that can be collected

is 2vH , it follows that for each i, πc+xi
+ πc−xi

= 2H exactly. Let x∗
i = πc+xi

− H = H − πc−xi
. Then, from the fact that the

maximum payment must be collected from each bid b j , it follows that (
∑

i |r ji |)H − s j �
∑

i:r j
i
>0

r
j
i πc−xi

+∑
i:r j

i
<0

−r
j
i πc+xi

=
∑

i:r j
i
>0

r
j
i (H − x∗

i ) + ∑
i:r j

i
<0

−r
j
i (H + x∗

i ) = (
∑

i |r ji |)H − ∑
i r

j
i x

∗
i . Equivalently,

∑
i r

j
i x

∗
i � s j . It follows that the x∗

i constitute

a feasible solution to the LP. �
10 These constraints must include bounds on the variables (including nonnegativity bounds), if any.
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7. Target amounts and concave payment willingness functions

In this section, we study a special case of the DONATION-CLEARING problem where the following two conditions hold.

First, every charity ci has a target amount τci that it is seeking to collect. If less money than this is collected, it is useless

to the charity; if any additional money beyond the target amount is collected, then this additional money is also useless.

(For example, the charity may be completely devoted to the project of drilling a water well for a particular community,

which will cost a fixed amount.) The target amounts are common knowledge, and as a result, bidder b j derives a fixed

amount of valuation υb j ,ci from charity ci if and only if the charity has achieved its target amount. That is, vi
j(πci ) = υb j ,ci

if πci � τci , and vi
j(πci ) = 0 otherwise. Additionally, we assume that the payment willingness functions w j are concave.

Under these conditions, we will show that, when the objective is to maximize surplus, the DONATION-CLEARING problem

can be approximated in polynomial time to a ratio of m, the number of charities—still not a very positive result. However,

we will also show that no significantly better result is possible unless P = NP. For maximizing the total amount donated, we

will show that no positive approximation at all is possible unless P = NP.

Consider the following Greedy algorithm for DONATION-CLEARING in this context. We start with the outcome where no

charity receives any money; we will iteratively decide to give some charities their target amount. At any point, if we take a

charity that currently receives nothing, giving that charity its target amount will increase some donors’ willingness to pay,

resulting in a net effect on surplus. We repeatedly find the charity that results in the greatest increase in surplus, and give

it its target amount—until every remaining charity results in a net decrease in surplus, at which point we stop.

Theorem 4. In the context where every charity ci has a target amount τci , and bidders’ payment willingness functions are concave, the

Greedy algorithm for DONATION-CLEARING results in an m-approximation to the maximum possible surplus. On the other hand, there

are instances where Greedy obtains a surplus that is arbitrarily close to 1/(m − 1) of the maximum possible surplus.

Proof. We will show that the approximation ratio m is already obtained after the Greedy algorithm has selected its first

charity to donate money to; because the surplus obtained by this algorithm never decreases as more charities are selected,

this proves the result. Consider a surplus-maximizing solution, with surplus OPT. In such an optimal solution, there is some

subset C ′ of the charities that each receive their target amount (and the others receive nothing). Arbitrarily order the subset

C ′ . If we imagine giving these charities their target amount in sequence, then each charity has a marginal effect on surplus

(which depends on the order). The largest of these marginal effects on surplus is at least OPT/m; say that the corresponding

charity is ci∗ . Then, at the beginning of the Greedy algorithm, choosing ci∗ must also result in a marginal effect on surplus of

at least OPT/m. This is because the marginal effect on surplus can only get smaller as more charities have already received

their target amounts, because bidders’ payment willingness functions are concave. It follows that the first charity chosen by

the Greedy algorithm has a marginal effect on surplus of at least OPT/m.

To show that the ratio can be as bad as m − 1, consider the following situation. Each of the charities c1, . . . , cm−1 has a

target amount of 1− ε . Charity cm has a target amount of m− 1− ε′ where ε′ is slightly larger than ε . There are n =m− 1

bidders. Bidder b j obtains a valuation of 1 if c j receives its target amount, and also a valuation of 1 if cm receives its target

amount. Bidder b j ’s payment willingness function is as follows: w j(v j) = v j for v j � 1, and w j(v j) = 1 for v j � 1. The

Greedy algorithm will choose to give cm its target amount first, as this results in a surplus of ε ′ . After this, the algorithm

ends because no bidder is willing to pay any more. However, a better solution is to give c1, . . . , cm−1 their target amounts,

which results in a surplus of (m − 1)ε . As ε′ converges downward to ε , we get the desired result. �
Of course, the above approximation ratio is a worst-case result, and it seems that this greedy algorithm is likely to fare

much better in practice. Nevertheless, in the worst case, we cannot hope for a significantly better result unless P = NP, as

the following result makes clear.

Theorem 5. In the context where every charity ci has a target amount τci , and bidders’ payment willingness functions are concave, it

is not possible to approximate the optimal surplus to a ratio m1−ε in polynomial time, unless P = NP. This is true even if each bidder’s

willingness-to pay function is linear up to a point and flat after that (when the bidder’s budget has been exhausted)—that is, the bid is

a partially acceptable threshold bid.

Proof. We will prove this by reduction from INDEPENDENT-SET, in which we are given a graph and are asked to find

a maximum-size set of vertices with no edge between any pair of them. It is known that INDEPENDENT-SET cannot be

approximated to a ratio |V |1−ε in polynomial time, unless P = NP [37].

For every vertex v in the graph of the independent set instance, construct a charity cv . Let νv be the number of edges

that have v as one of their endpoints. Then, let τcv = νv − δ (for some small δ) be the target amount for the charity cv . For

every edge e, construct a bidder be . If e = (v, w), then be receives a valuation of 1 if one of cv and cw receives its target

amount (and 2 if they both do). For each bidder b j , the payment willingness function is as follows: w j(v j) = v j for v j � 1,

and w j(v j) = 1 for v j � 1. Hence, a bidder is willing to give 1 if at least one of its two charities receives its target amount,

and 0 otherwise.



1262 V. Conitzer, T. Sandholm / Artificial Intelligence 175 (2011) 1251–1271

We first claim that if δ is sufficiently small, then in any feasible solution, the charities that receive their target amount

must correspond to an independent set in the graph. This is because if V ′ is the set of vertices v so that cv receives its

target amount, and there is an edge between two of the vertices in V ′ , then the number of bidders that are willing to pay

an amount of 1 is at most (
∑

v∈V ′ νv) − 1. However, the amount that these charities require is (
∑

v∈V ′ νv ) − |V ′|δ, which is

larger for sufficiently small δ—contradicting the supposed feasibility of the solution.

On the other hand, if V ′ is an independent set, then the number of bidders that are willing to pay an amount of 1 is∑
v∈V ′ νv ; the amount that these charities require is (

∑
v∈V ′ νv) − |V ′|δ, resulting in a surplus of |V ′|δ.

Thus, independent sets correspond exactly to feasible solutions, and the surplus obtained in such a solution is propor-

tional to the size of the independent set, proving the result. �
So far in this section, we have not yet discussed the objective of maximizing the total amount donated. For this, we

cannot even obtain an m-approximation in the worst case, as the following result shows.

Theorem 6. In the context where every charity ci has a target amount τci , and bidders’ payment willingness functions are concave, it

is not possible to approximate the maximum amount that can be donated to any ratio f (m,n) > 0 in polynomial time, unless P = NP.

This is true even if each bidder’s willingness-to pay function is linear up to a point and flat after that (when the bidder’s budget has

been exhausted)—that is, the bid is a partially acceptable threshold bid.

Proof. From the proof of Theorem 5, we know that in the same context, it is NP-hard to decide whether a surplus of at least

K can be achieved. We now show how to reduce an arbitrary instance of this decision variant of the surplus maximization

problem to an instance of the problem of maximizing the total donated. To do so, we take any such instance, and leave

the existing bidders and charities untouched; we add a single charity c′ whose target amount is τc′ = H for some H > K .

We also add a single new bidder b′ , who only cares about charity c′; this bidder receives a valuation of H − K if charity

c′ achieves its target amount, and is willing to give his valuation, that is, his payment willingness function is the identity

function (which can be capped at H − K if desired). None of the other (original) bidders care about charity c′ .
Now, if the original instance has a solution with surplus at least K , then in the modified instance, we can let the original

bidders pay the same amounts, and let the original charities receive the same amounts. Then, we can give the surplus of at

least K to charity c′ , and let the new bidder b′ donate the remaining H − K , so that the charity achieves its target amount.

This leads to a total donated of at least H .

Conversely, if there is a solution for the modified instance in which c′ achieves its target amount of H , then, because

b′ can pay only H − K , the remaining K must come from the original bidders. However, the original bidders obtain all

their valuation from the original charities, so it must be the case that this K was simply left over. Hence, if we look at the

restriction of the solution to the original bidders and the original charities, this corresponds to a solution with a surplus of

at least K .

It follows that c′ can receive its target amount H if and only if the original instance has a solution with a surplus of K .

By making H sufficiently large, we can make the ratio (in terms of total donated) between any solution in which c′ does

not receive its target amount and any solution where it does arbitrarily small. Hence, an algorithm that gives any positive

approximation ratio based only on n and m can be used to detect whether a surplus of at least K is possible in the original

instance—but this is NP-hard. �
8. Quasilinear bids

Another class of bids of interest is the class of quasilinear bids. In a quasilinear bid, the bidder’s payment willingness

function is linear in valuation: that is, w j = v j .
11 In many cases, quasilinearity is an unreasonable assumption: for example,

usually bidders have a limited budget for donations, so that the payment willingness will stop increasing in valuation after

some point (or at least increase slower in the case of a “softer” budget constraint). Nevertheless, quasilinearity may be a

reasonable assumption in the case where the bidders are large organizations with large budgets, and the charities are a few

small projects requiring relatively little money. In this setting, once a certain small amount has been donated to a charity, a

bidder will derive no more valuation from more money being donated to that charity. Thus, the bidders will never reach a

high enough valuation for their budget constraint (hard or soft) to kick in, and thus a linear approximation of their payment

willingness function is reasonable. Another reason for studying the quasilinear setting is that it is the easiest setting for

mechanism design, which we will discuss in Section 9. In this section, we will see that the clearing problem is much easier

in the case of quasilinear bids.

First, we address the case where we try to maximize surplus. The key observation here is that when bids are quasilinear

and the objective is surplus, the clearing problem decomposes across charities. That is, we can simply optimize for every

charity separately; to optimize for one of the charities we only need to know each bidder’s valuation function corresponding

to that charity. The intuition is as follows: without the quasilinearity assumption, a donation to one charity impacts the

other charities via the payment willingness function, but this effect disappears when the payment willingness function

11 Because the units of valuation are arbitrary, we may as well let them correspond exactly to units of money—so we do not need a constant multiplier.
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is linear—at least for the case of surplus maximization. (We will see shortly that this does not hold for the objective of

maximizing the total donated, because, intuitively, for that objective we may wish to transfer surplus generated by one

charity to another charity to increase total payments.)

Lemma 1. Suppose all the bids are quasilinear, and surplus is the objective. Then we can clear the market optimally by clearing the

market for each charity individually. That is, for each bidder b j , let πb j
= ∑

ci
πbi

j
. Then, for each charity ci , maximize (

∑
b j

πbi
j
)−πci ,

under the constraint that for every bidder b j , πbi
j
� vi

j(πci ).

Proof. The resulting solution is certainly valid: first of all, at least as much money is collected as is given away, because∑
b j

πb j
−∑

ci
πci = ∑

b j

∑
ci

πbi
j
−∑

ci
πci = ∑

ci
((

∑
b j

πbi
j
)−πci ), and the terms of this outer summation are the objectives

of the problem instances for the individual charities, each of which can be set at least to 0 (by setting all the variables

to 0), so it follows that the expression is nonnegative. Second, no bidder b j pays more than she is willing to, because

v j −πb j
= ∑

ci
vi
j(πci ) − ∑

ci
πbi

j
= ∑

ci
(vi

j(πci ) −πbi
j
), and the terms of this summation are nonnegative by the constraints

we imposed on the individual optimization instances.

All that remains to show is that the solution is optimal. Because in an optimal solution, we will collect as much payment

from the bidders as possible given the πci , all that we need to show is that the πci are set optimally by this approach. Let

π∗
ci

be the amount paid to charity πci in some optimal solution. If we change this amount to π ′
ci

and leave everything else

unchanged, this will only affect the payment that we can collect from the bidders because of this particular charity, and the

difference in surplus will be
∑

b j
vi
j(π

′
ci
) − vi

j(π
∗
ci
) − π ′

ci
+ π∗

ci
. This expression is, of course, 0 if π ′

ci
= π∗

ci
. But now notice

that this expression is maximized as a function of π ′
ci

by the decomposed solution for this charity (the terms without π ′
ci

in them do not matter, and of course in the decomposed solution we always set πbi
j
= vi

j(πci )). It follows that if we change

πci to the decomposed solution, the change in surplus will be at least 0 (and the solution will still be valid). Thus, we can

change the πci one by one to the decomposed solution without ever losing any surplus. �
Theorem 7.When all the bids are quasilinear and surplus is the objective, DONATION-CLEARING can be solved in polynomial time.

Proof. By Lemma 1, we can solve the problem separately for each charity. For charity ci , this amounts to maximizing

(
∑

b j
vi
j(πci ))−πci as a function of πci . Because all its terms are piecewise linear functions, this whole function is piecewise

linear, and must be maximized at one of the points where it is nondifferentiable. It follows that we need only check all the

points at which one of the terms is nondifferentiable. �
As we have discussed earlier in the paper, the computationally trivial special case of a single charity is interesting not

only as a subroutine for the case of quasilinear bids when surplus is the objective, but also in and of itself—some of the

most practical applications of all of this may involve just a single charity. For example, we note that the tsunami event that

we describe in Section 10 was a single-charity event.

Unfortunately, the decomposition lemma does not hold for the objective of maximizing the total donated.

Proposition 3. When the objective is maximizing the total donated, even when bids are quasilinear, the solution obtained by decom-

posing the problem across charities is in general not optimal (even with concave bids).

Proof. Consider a single bidder b1 placing the following quasilinear bid over two charities c1 and c2: v11(πc1 ) = 2πc1 for

0 � πc1 � 1, v11(πc1 ) = 2+ πc1
−1

4
otherwise; v21(πc2 ) = πc2

2
. The decomposed solution is πc1 = 7

3
, πc2 = 0, for a total donated

of 7
3
. But the solution πc1 = 1, πc2 = 2 is also valid, for a total donation of 3 > 7

3
. �

As an aside, the proof of Proposition 3 illustrates that the objective of maximizing the total donated can result in

unexpected outcomes: there is only a single bidder in the proof of Proposition 3, and presumably if this bidder had been

able to donate to the charities outside of our system, she would have chosen to give 1 to the first charity and 0 to the

second. (This is exactly what would have happened under the surplus′ objective.) This type of situation may in principle

be prevented by changing the individual rationality criterion, saying that instead of guaranteeing that the bidder would not

have been better off if nobody had donated at all, we guarantee that the bidder would not have been better off acting

separately in the world. (However, such a more stringent individual rationality criterion leads to difficulties, as we discussed

when first mentioning individual rationality.)

In fact, when the objective is to maximize the total donated, DONATION-CLEARING remains (weakly) NP-hard in general

(when we do not assume bids are concave).

Theorem 8. DONATION-CLEARING is (weakly) NP-hard when the objective is to maximize the total donated, even when every bid

concerns only one charity (and has a step-function valuation function for this charity), and is quasilinear.
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Proof. We reduce an arbitrary KNAPSACK instance (given by m pairs of integers (ki, vi)1�i�m , a cost limit K , and a target

value V ), to the following DONATION-CLEARING instance. Let there be m + 1 charities, c0, c1, . . . , cm . Let there be one

quasilinear bidder b0 bidding v00(πc0 ) = 0 for 0 � πc0 < 1, v00(πc0 ) = K +1 otherwise. Additionally, for each j with 1 � j �m,

let there be a quasilinear bidder b j bidding v
j
j(πc j

) = 0 for 0 � πc j
< ki , v

j
j(πc j

) = εv j otherwise (where ε
∑

1� j�m v j < 1).

Let the target total amount donated be K + 1+ εV . We now show the two instances are equivalent.

First, suppose there exists a solution to the KNAPSACK instance, that is, a function f : {1, . . . ,m} → {0,1} so that∑m
i=1 f (i)ki � K and

∑m
i=1 f (i)vi � V . Then, let πc0 = 1 + εV + K − ∑m

i=1 f (i)ki , and for i > 0, πci = f (i)ki , for a total

donated of K + 1 + εV . Because 1 + εV + K − ∑m
i=1 f (i)ki � 1, b0’s valuation is K + 1. For j > 0, b j ’s valuation is f ( j)εv j ,

for a total valuation of
∑m

j=1 f ( j)εv j � εV for these m bidders. It follows that the total valuation is at least the total amount

donated, and so this corresponds to a valid outcome. So there exists a solution to the DONATION-CLEARING instance.

Now suppose there exists a solution to the DONATION-CLEARING instance. Let f : {1, . . . ,m} → {0,1} be given by f (i) = 0

if πci < ki , and f (i) = 1 otherwise. Because the total donated is at least K + 1 + εV , and the amount that can be collected

from the bidders is at most K +1+∑m
j=1 f ( j)εv j , it follows that

∑m
j=1 f ( j)v j � V . Also, because the total amount donated

to charities 1 through m can be at most K + ε
∑

1� j�m v j < K + 1, it follows that
∑m

j=1 f ( j)k j < K + 1. Because the k j are

integers, this means
∑m

j=1 f ( j)k j � K . So there exists a solution to the KNAPSACK instance. �
However, when the bids are also concave, a simple greedy clearing algorithm is optimal. This algorithm works as follows:

• Start with πci = 0 for all charities.

• Let γci = d
∑

b j
vi
j
(πci

)

dπci
(at nondifferentiable points, these derivatives should be taken from the right).

• Let c∗
i ∈ argmaxci γci .• Increase πc∗

i
until either γc∗

i
is no longer the highest (in which case, recompute c∗

i and start increasing the correspond-

ing payment), or
∑

b j
v j = ∑

ci
πci and γc∗

i
< 1.

• Finally, let πb j
= v j .

Theorem 9. Given a DONATION-CLEARING instance with maximizing the total donated as the objective where all bids are quasilinear

and concave, the above greedy algorithm returns an optimal solution.

Proof. The outcome is valid because everyone pays exactly what she is willing to, and because there is no budget deficit:∑
b j

πb j
= ∑

b j
v j = ∑

ci
πci . To show optimality, let π∗

ci
be the amount paid to charity ci in some optimal solution, and let

π ′
ci

be the amount paid to charity ci in the solution given by the greedy algorithm. We first observe that it is not possible

that for every i, π∗
ci

� π ′
ci

with at least one of these inequalities being strict. This is because at the solution found by the

greedy algorithm, γc∗
i
is less than 1; hence, using concavity, if π∗

ci
> π ′

ci
, then

∫ π∗
ci

π ′
ci

γci dπci < π∗
ci

− π ′
ci
. In other words, the

additional payment that needs to be made to the charity is less than the additional payment that can be collected from

the bidders because of the additional payment to this charity. Because the surplus at the greedy algorithm’s solution is 0,

it follows that if for every i, π∗
ci

� π ′
ci

with at least one of these inequalities being strict, then the surplus at the optimal

solution would be negative, and hence the solution would not be valid. Thus, either for all i, π∗
ci

� π ′
ci

(but in this case

the greedy solution has at least as large a total donated as the optimal solution, and we are done); or there exist i, j

such that π∗
ci

> π ′
ci

but π∗
c j

< π ′
c j
. It cannot be the case that γci (π

′
ci
) > γc j

(π∗
c j

), for then the greedy algorithm would have

increased πci beyond π ′
ci

before increasing πc j
beyond π∗

c j
. So, γci (π

′
ci
) � γc j

(π∗
c j

). Because π∗
ci

> π ′
ci
, and using concavity,

if we decrease π∗
ci

and simultaneously increase π∗
c j

by the same amount, we will not decrease the total payment we can

collect from the bidders—while keeping the payment to be made to the charities the same. It follows this cannot make the

solution worse or invalid. We can keep doing this until there is no longer a pair i, j such that π∗
ci

> π ′
ci

but π∗
c j

< πc j
, and

by the previous we know that then, for all i, π∗
ci

� π ′
ci
—and hence the greedy solution is optimal. �

(A similar greedy algorithm works when the objective is surplus and the bids are quasilinear and concave; the only

difference is that we stop increasing the payments as soon as γc∗
i
� 1. Of course the result in Theorem 7 is stronger in the

sense that it does not require concavity.)

9. Strategic bidding and incentive compatibility

Up to this point, we have not discussed the bidders’ incentives for bidding any particular way. Specifically, the bids may

not truthfully reflect the bidders’ preferences over charities, because a bidder may bid strategically, misrepresenting her

preferences in order to obtain a result that is better for herself. This would mean the market mechanism is not strategy-

proof. (We will show some concrete examples of this shortly.) This is not too surprising, because if we use the methodology

described in the paper so far straightforwardly, the resulting mechanism is, in a sense, a first-price mechanism, where the
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mechanism will collect as much payment from a bidder as her bid allows.12 Such mechanisms (for example, first-price

auctions, where winners pay the value of their bids) are typically not strategy-proof: if a bidder reports her true valuation

for an outcome, then if this outcome occurs, the payment the bidder will have to make will offset her gains from the

outcome completely. Of course, we could try to change the rules of the game—which outcome (payment vector to charities)

do we select for each bid vector, and how much does each bidder pay—in order to make bidding truthfully beneficial, and

to make the outcome better with regard to the bidders’ true preferences. This is the subject of mechanism design. In this

section, we will briefly discuss the options that mechanism design provides for the expressive charity donation problem.

9.1. Strategic bids under the first-price mechanism

We first point out some reasons for bidders to misreport their preferences under the first-price mechanism described

in the paper up to this point. First of all, even when there is only one charity, it can make sense to underbid one’s true

valuation for the charity. For example, suppose a bidder would like a charity to receive a certain amount x, but does not

care if the charity receives more than that. Additionally, suppose that the other bids guarantee that the charity will receive

at least x no matter what bid the bidder submits (and the bidder knows this). Then the bidder is best off not bidding at all

(or submitting a valuation for the charity of 0), to avoid having to make any payment, while still benefiting from the other

bidders’ contributions. (This is known as the free rider problem [22].)

With multiple charities, another kind of manipulation can occur, where a bidder attempts to steer others’ payments

towards her preferred charity. For example, suppose that there are two charities, and three bidders. The first bidder bids

v11(πc1 ) = 1 if πc1 � 1, v11(πc1 ) = 0 otherwise; v21(πc2 ) = 1 if πc2 � 1, v21(πc2 ) = 0 otherwise; and w1(v1) = v1 if v1 � 1,

w1(v1) = 1 + 1
100

(v1 − 1) otherwise. Hence, if there were no other bidders, the first bidder would be willing to pay 1 to

charity 1, or to charity 2, but not to both. The second bidder bids v12(πc1 ) = 1 if πc1 � 1, v12(πc1 ) = 0 otherwise; v22(πc2 ) = 0

(always); w2(v2) = 1
4
v2 if v2 � 1, w2(v2) = 1

4
+ 1

100
(v2 − 1) otherwise. Hence, if there were no bidders other than bidders

1 and 2, then, regardless of whether the objective is surplus or total donated, charity 1 would receive at least 1, and charity

2 would receive less than 1. Now, the third bidder’s true preferences are accurately represented (under the utility-theoretic

interpretation given earlier in the paper) by the bid v13(πc1 ) = 1 if πc1 � 1, v13(πc1 ) = 0 otherwise; v23(πc2 ) = 3 if πc2 � 1,

v23(πc2 ) = 0 otherwise; and w3(v3) = 1
3
v3 if v3 � 1, w3(v3) = 1

3
+ 1

100
(v3 −1) otherwise. Now, it is straightforward to check

that, if the third bidder bids truthfully, then regardless of whether the objective is surplus or total donated, charity 1 will

still receive at least 1, and charity 2 will still receive less than 1. The same is true if bidder 3 does not place a bid at all (as

in the case of free-rider manipulation); hence bidder 3’s valuation/utility will be 1 in this case. But now, if bidder 3 reports

v13(πc1 ) = 0 everywhere; v23(πc2 ) = 3 if πc2 � 1, v23(πc2 ) = 0 otherwise (this part of the bid is truthful); and w3(v3) = 1
3
v3

if v3 � 1, w3(v3) = 1
3

otherwise; then charity 2 will receive at least 1, and bidder 3 will have to pay at most 1
3
. Because

up to this amount of payment, one unit of money corresponds to three units of valuation/utility to bidder 3, it follows that

this bidder’s utility is now at least 3− 1 = 2 > 1. We observe that in this case, the strategic bidder is not only affecting how

much the bidders pay, but also how much the charities receive.

9.2. Mechanism design in the quasilinear setting

There are at least four (interrelated) reasons why the mechanism design approach is likely to be most successful in

the setting of quasilinear preferences. First, historically, mechanism design has been most successful when the quasilinear

assumption could be made. Second, because of this success, some very general mechanisms have been discovered for the

quasilinear setting (for instance, the VCG mechanisms [36,7,18], or the dAGVA mechanisms [13,2]). Third, as we saw in Sec-

tion 8, the clearing problem is much easier in the quasilinear setting, and thus we are less likely to run into computational

trouble for the mechanism design problem. Fourth, as we will show shortly, the quasilinearity assumption in some cases

allows for decomposing the mechanism design problem over the charities (as it did for the simple clearing problem).

Moreover, in the quasilinear setting, it makes sense to pursue social welfare (the sum of the bidders’ utilities) as the

objective, because here 1) units of valuation correspond directly to units of money, so that we do not have any problem of

the bidders arbitrarily scaling their valuations; and 2) it is no longer possible to give a payment willingness function of 0

while still affecting the donations through a valuation function. It is also helpful to recall Proposition 2 here, which states

that with quasilinear utilities, an outcome maximizes surplus′ if and only if it maximizes the sum of the bidders’ utilities.

Before presenting the decomposition result, we introduce some concepts from game theory and mechanism design.

A type represents particular preferences that a bidder can have and can report (thus, a type report is a bid). Incentive

compatibility (IC) means that bidders are best off reporting their preferences truthfully; either regardless of the others’

reported types (in dominant strategies), or in expectation over them assuming truthful reporting by the other bidders (in

Bayes–Nash equilibrium). Individual rationality (IR) means bidders are at least as well off participating in the mechanism as

not participating; either regardless of the others’ reported types (ex post), or in expectation over them assuming truthful

reporting by the other bidders (ex interim). A mechanism is budget balanced if there is no flow of money into or out of

12 The surplus′ objective is an exception.
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the system—in general (ex post), or in expectation (ex ante). A mechanism is efficient if it (always) produces an efficient

allocation—that is, an allocation that maximizes the sum of the bidders’ utilities.

Proposition 4. Suppose all bidders’ preferences are quasilinear. Furthermore, suppose that there exists a single-charity mechanism M

that, for a certain subclass P of (quasilinear) preferences, under a given solution concept S (implementation in dominant strategies

or Bayes–Nash equilibrium) and a given notion of individual rationality R (ex post, ex interim, or none), satisfies a certain notion of

budget balance (ex post, ex ante, or none), and is ex-post efficient. Then there exists such a mechanism for any number of charities.

Proof. The mechanism is simply the following: for each charity, run the single-charity mechanism on the bidders’ prefer-

ences for that charity, and let the bidders make the corresponding payments to that charity. (So, each bidder’s total payment

will be the sum of her payments to the individual charities.) It is straightforward to check that the desired properties of

this combined mechanism follow from the fact that the single-charity mechanism satisfies them. �
9.3. Impossibility of efficiency in the mechanism design context

In this subsection, we show that even in a very restricted setting, and with minimal requirements on IC and IR con-

straints, it is impossible to create a mechanism that is efficient.

Theorem10. There is nomechanism that is ex-post budget balanced, ex-post efficient, and ex-interim individually rational with Bayes–

Nash equilibrium as the solution concept (even with only one charity, only two quasilinear bidders with identical type distributions

(uniform over two types, with either both valuation functions being step functions or both valuation functions being concave piecewise

linear functions)).

Proof. Suppose the two bidders both have the following distribution over types. With probability 1
2
, the bidder does not

care for the charity at all (v is zero everywhere); otherwise, the bidder derives valuation 5
4

from the charity getting at

least 1, and valuation 0 otherwise. (Alternatively, for the second type, the bidder can get min{ 5
4
, 5πc

4
}—a concave piecewise

linear function.) Call the first type the low type (L), the second one the high type (H).

Suppose, for the sake of contradiction, that a mechanism with the desired properties does exist. By the revelation prin-

ciple, we can assume that revealing preferences truthfully is a Bayes–Nash equilibrium in this mechanism. Because the

mechanism is ex-post efficient, the charity should receive exactly 1 when either bidder has the high type, and 0 otherwise.

Let π1(θ1, θ2) be bidder 1’s (expected) payment when she reports θ1 and the other bidder reports θ2. By ex-interim IR,

π1(L, H) + π1(L, L) � 0. Because bidder 1 cannot have an incentive to report falsely when her true type is high, we have
5
4

− π1(L, H) − π1(L, L) � 5
4

− π1(H, H) + 5
4

− π1(H, L), or equivalently π1(H, H) + π1(H, L) � 5
4

+ π1(L, L) + π1(L, H) � 5
4
.

Because the example is completely symmetric between bidders, we can similarly conclude for bidder 2’s payments that

π2(H, H) + π2(L, H) � 5
4
. Of course, in order to pay the charity the necessary amount of 1 whenever one of the bidders

has her high type, we need to have π1(H, H) + π1(H, L) + π2(H, H) +π2(L, H) +π1(L, H) +π2(H, L) = 3, and thus we can

conclude that π1(L, H)+π2(H, L) � 3− 10
4

= 1
2
. Because the charity receives 0 when both report low, π1(L, L)+π2(L, L) = 0

and thus we can conclude that π1(L, H) + π1(L, L) + π2(H, L) + π2(L, L) � 1
2
. But by the individual rationality constraints,

π1(L, H) + π1(L, L) � 0 and π2(H, L) + π2(L, L) � 0. So we have reached the desired contradiction.13 �
The case of step functions in this theorem corresponds exactly to the case of a single, fixed-size, nonrival, nonexcludable

public good (the “public good” being that the charity receives the required amount)—for which such an impossibility result

is already known [22].14 Many similar results are known, probably the most famous of which is the Myerson–Satterthwaite

impossibility result, which proves the impossibility of efficient bilateral trade under the same requirements [24].

Proposition 4 indicates that there is no reason to decide on donations to multiple charities under a single mechanism

(rather than a separate one for each charity), when an efficient mechanism with the desired properties exists for the single-

charity case. However, because under the requirements of Theorem 10, no such mechanism exists, there may in fact be a

benefit to bringing the charities under the same umbrella. The next proposition shows that this can indeed be the case.

13 As an alternative proof technique (a proof by computer), we let our automated mechanism design software [8,9] create an optimal mechanism for the

(step-function) instance described in the proof, under the required constraints on the mechanism and with social welfare (counting the payments made)

as the objective. The resulting mechanism did not burn any money (did not pay unnecessarily much to the charity), but did not always give money to

the charity when it was beneficial to do so. (It randomized uniformly between giving 1 and giving 0 when player 1’s type was low, and player 2’s high.)

Since an ex-post budget balanced, ex-post efficient mechanism would have had a higher expected objective value, and the automated mechanism design

software always finds a mechanism that maximizes the expected objective value under the constraints it is given, we can conclude that no ex-post budget

balanced, ex-post efficient mechanism exists under the given constraints.
14 Indeed, the framework in this paper can be used for nonrival, nonexcludable public goods more generally: any cause that benefits from money, and from

which all agents derive utility, can be thought of as a charity. For example, the project of buying a coffee machine for the department can be thought of as

a charity. The example of drilling a water well mentioned earlier perhaps serves to illustrate that there is no sharp distinction between these interpretations

of the framework.
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Proposition 5. There exist settings with two charities where there exists no ex-post budget balanced, ex-post efficient, and ex-interim

individually rational mechanism with Bayes–Nash equilibrium as the solution concept for either charity alone; but there exists an ex-

post budget balanced, ex-post efficient, and ex-post individually rational mechanism with dominant strategies as the solution concept

for both charities together. (This holds even when the conditions are the same as in Theorem 10, apart from the fact that there are now

two charities.)

Proof. Suppose that each bidder has two types, with probability 1
2

each: for the first type, her preferences for the first

charity correspond to the high type in the proof of Theorem 10, and her preferences for the second charity correspond

to the low type in the proof of Theorem 10. For the second type, her preferences for the first charity correspond to the

low type, and her preferences for the second charity correspond to the high type. Now, if we wish to create a mechanism

for either charity individually, we are in exactly the same setting as in the proof of Theorem 10, where we know that it

is impossible to get all of ex-post budget balance, ex-post efficiency, and ex-interim individual rationality in Bayes–Nash

equilibrium. On the other hand, consider the following mechanism for the joint problem. If both bidders report preferring

the same charity, each bidder pays 1
2
, and the preferred charity receives 1 (the other 0). Otherwise, each bidder pays 1,

and each charity receives 1. It is straightforward to check that the mechanism is ex-post budget balanced, ex-post efficient,

and ex-post individually rational. To see that truthtelling is a dominant strategy, we need to check two cases. First, if

one bidder reports a high valuation for the charity that the other bidder does not prefer, this latter bidder is better off

reporting truthfully: reporting falsely will give her utility − 1
2

(nothing will be donated to her preferred charity), which is

less than reporting truthfully because ex-post IR holds. Second, if one bidder reports a high valuation for the charity that

the other bidder prefers, this latter bidder is better off reporting truthfully as well: her preferred charity will receive the

same amount regardless of her report, but her required payment is only 1
2

if she reports truthfully, as opposed to 1 if she

reports falsely. �
Of course, Proposition 5 merely gives a very particular example where having a single mechanism for multiple charities

can help. This still leaves us far from having a general theory of how to design mechanisms for multiple charities, but it

does show that we cannot simply decompose the problem across charities (at least not without some further assumptions).

10. An experiment with real bidders and money

We decided to test the basic framework of this paper at the Dagstuhl Workshop on Computing and Markets (2005).

During the presentation of this work at that workshop, we announced that we would conduct a charity drive using the

bidding language described in this paper. For simplicity, the event was restricted to a single charity, namely the victims of

the December 2004 tsunami that devastated coastal areas in Indonesia, Sri Lanka, India, and Thailand. The objective to be

maximized in the event was the total amount donated. Participants were given until 6pm on the day after the presentation

to submit their bids. Of the workshop’s � 46 participants,15 18 submitted valid bids before the deadline (including the two

authors of this paper). The bids are shown in Fig. 1.

The bids were collected in sequence, and every bidder was able to see all the previous bids. Very quickly, a “target”

total amount of US $500 emerged as a focal point, so that many bidders made their donations conditional on at least $500

being collected. (In fact, one bidder strategically made his donation conditional on exactly $500 being collected: he did not

want the effort to reach $500 to fail on his account, but was not interested in donating if the target amount would also be

reached without him.) Once this target amount was in fact reached, the remaining bidders set their sights higher, resulting

in a final amount of $700.

Four of the bids were unconditional donations (the same amount given at every total amount collected). Five of the bids

were simple threshold bids (0 given below a certain amount collected, some constant amount c at or above it). One bid was

the sum of an unconditional donation and a simple threshold bid. The remaining eight bids (including the authors’ own

bids and one bid that was a copy of one of the authors’ bids) were more complex.

Sixteen bids were submitted in US dollars, one in Euros, and one in Canadian dollars. (All bids were converted to US

dollars.) Fig. 2 shows the total amount bidders were willing to give conditional on each total amount donated (this function

is the sum of their individual bid functions); the event cleared at the largest feasible point, that is, the largest point at

which the curve intersects the identity function (45 degree line), $700.

From this small experiment, it is clear that at least some bidders prefer to place complex, expressive, conditional bids.

Presumably, using this methodology benefited even the bidders who did not make their donation conditional, because their

unconditional bids still induced the bidders who did make their bids conditional to give more.

Later, we tried to run a similar event to collect donations for victims of Hurricane Katrina. Unlike the tsunami event,

this event was open to everyone and potential participants were approached unsystematically; it was not associated with a

workshop or anything of the sort. Unfortunately, the response to this event was rather minimal. While it is not immediately

clear which of the various differences between the tsunami and hurricane events were responsible for the difference in

success, this perhaps lends some support to the idea that it helps when there are social connections among the bidders in

15 The number 46 was obtained by counting the number of faces in the group picture.
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Fig. 1. The bids submitted in the tsunami charity event. Each function represents a bidder’s willingness to give as a function of the total donated.

Fig. 2. The total willingness to give as a function of the total amount donated (this function is equal to the sum of the bids), and the identity function (the

45 degree line). Since the objective was to maximize the total donated, the event cleared at the largest point at which the curve intersects the identity

function, $700. There is a small spike at $500 due to the bidder who strategically made his donation conditional on exactly $500 being reached.

the event. In the next section, we discuss some subsequent research by others that extends our framework with a social-

networking component.

11. Subsequent research

Since the conference version of this paper, there have been several highly related works. Most closely related is recent

work by Ghosh and Mahdian [15]. In their paper, they take the original version of this paper as a starting point, but then

argue that the assumption that each bidder cares only about the total amount donated to each charity is not realistic.

They extend the model so that a bidder can also condition her donation on who is making donations. For example, in

a social network setting, it may make sense for a bidder to condition her own donation on the donations of her friends
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only. On the other hand, Ghosh and Mahdian restrict themselves to a single-charity setting, in part because of the hardness

results for multiple charities given in our paper. They show that a unique maximal payment vector exists, and give both

a linear program and an iterative procedure for finding it. They then proceed with an equilibrium analysis and show the

existence of a complete-information Nash equilibrium that results in the maximum total payment (this does not imply that

the mechanism is incentive compatible). A Web-based system based on their model has been implemented at Yahoo! (but

it currently requires an internal login).

The Ghosh and Mahdian paper, in turn, is closely related to another paper by us on markets for general settings with

externalities [10]. This paper preceded the Ghosh and Mahdian paper, though they were not aware of it when they wrote

their paper. In it, we consider general settings where each agent controls a number of variables, and these variables affect

the agent’s own utility as well as the utilities of others. For example, the variables can represent how much each bidder

donates to each charity. Alternatively, they can represent, for example, levels of pollutants emitted by the agents. The

goal is to agree on an outcome that is good for all. We study how computationally hard it is to find optimal solutions

in this framework, for various definitions of optimality and various restrictions of the setting. The Ghosh and Mahdian

setting corresponds to one of the studied versions, where each agent controls one variable (how much the agent donates),

externalities are negative (setting the variable selfishly corresponds to a low donation, which negatively affects the other

agents), and the objective is to maximize concessions (equivalently, to maximize donations). In this context, we prove the

same result about the existence of a unique maximal solution, and give the same iterative algorithm that converges to this

solution. We do not study any equilibrium aspects in that paper, though.

12. Conclusion

We introduced a bidding language for expressing very general types of matching offers over multiple charities. We for-

mulated the corresponding clearing problem (deciding how much each bidder pays, and how much each charity receives),

and showed that it is NP-hard to approximate to any ratio even in very restricted settings. We gave a mixed integer program

formulation of the clearing problem, and showed that for concave bids (where valuation functions and payment willingness

functions are concave), the program reduces to a linear program and can hence be solved in polynomial time. We then

showed that the clearing problem for a subclass of concave bids is at least as hard as the decision variant of linear pro-

gramming, suggesting that we cannot do much better than a linear programming implementation for such bids. We also

considered the case where each charity has a target amount, and bidders’ willingness-to-pay functions are concave. Here,

we showed that the optimal surplus can be approximated to a ratio m, the number of charities, in polynomial time (and no

significantly better approximation is possible in polynomial time unless P = NP); no polynomial-time approximation ratio

is possible for maximizing the total donated, unless P = NP. Subsequently, we showed that the clearing problem is much

easier when bids are quasilinear (where payment willingness functions are linear)—for maximizing surplus, the problem

decomposes across charities, and for maximizing the total donated, a greedy approach is optimal if the bids are concave

(although this latter problem is weakly NP-hard when the bids are not concave). For the quasilinear setting, we studied

the mechanism design question of incentivizing the bidders to report their preferences truthfully. We showed that an ex-

post efficient mechanism is impossible even with only one charity and a very restricted class of bids. We also showed that

even though the clearing problem decomposes over charities in the quasilinear setting, there can be benefits to linking the

charities from a mechanism design standpoint. Finally, we discussed an experiment in which we used this methodology to

collect money for victims of the 2004 Indian Ocean Tsunami.

There are many directions for future research. One direction is to create a framework that simultaneously generalizes

both our framework and the Ghosh and Mahdian framework, so that donations can be conditional on who donates how

much to which charities. Another direction is to build a publicly available Web-based implementation of one of these

markets. One can also study the scalability of our MIP/LP approach. It may be helpful to identify other classes of bids for

which the clearing problem is tractable. Much work remains to be done on the mechanism design problem. Finally, are

there good iterative markets for charitable donations?16

Appendix A. Comparison to combinatorial auctions and exchanges

In a combinatorial auction, there are m items for sale, and bidders can place bids on bundles of one or more items. The

auctioneer subsequently labels each bid as winning or losing, under the constraint that no item can be in more than one

winning bid, to maximize the sum of the values of the winning bids. (This is known as the clearing problem or the winner

determination problem.) Variants include combinatorial reverse auctions, where the auctioneer is seeking to procure a set of

items; and combinatorial exchanges, where bidders can both buy and sell items (even within the same bid). Other extensions

include allowing for side constraints, as well as the specification of attributes of the items in bids. Combinatorial auctions

and exchanges are a popular research topic; for an overview, see a recent book summarizing the state of the art [12].

The problems of clearing expressive charity donation markets and clearing combinatorial auctions or exchanges are

very different in formulation. Nevertheless, there are interesting parallels. One of the main reasons for the interest in

16 Compare, for example, iterative combinatorial auctions [26,33].
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combinatorial auctions and exchanges is that they allow for expressive bidding. A bidder can express exactly how much

each possible allocation is worth to her, and thus the globally optimal allocation can be chosen by the auctioneer. Compare

this to a bidder having to bid on two different items in two different (single-item) auctions, without any way of expressing

that (for instance) one item is worthless if the other item is not won. In this scenario, the bidder may win the first item but

not the second (because there was another high bid on the second item that she did not anticipate), leading to economic

inefficiency.

Expressive bidding is also one of the main benefits of an expressive charity donation market. Here, bidders can express

exactly how much they are willing to donate for every vector of amounts donated to charities. This may allow bidders to

negotiate a complex arrangement of who gives how much to which charity, which is beneficial to all parties involved; no

such arrangement may have been possible if the bidders had been restricted to using simple matching offers on individual

charities. Again, expressive bidding is necessary to achieve economic efficiency.17

Another parallel is the computational complexity of the clearing problem. In order to achieve the full economic efficiency

allowed by the market’s expressiveness (or even come close to it), hard computational problems must be solved in combi-

natorial auctions and exchanges, as well as in an expressive charity donation market (as is demonstrated in the main body

of the paper).

Appendix B. Avoiding indirect payments

In an initial implementation, the approach of having donations made out to a central entity (the center), and having

the center forward these payments to the charities, may not be desirable. Rather, it may be preferable to have a partially

decentralized solution, where the bidders write out checks to the charities directly according to a solution based on the

bids that is computed by the center. In this scenario, the center merely has to verify that bidders are giving the prescribed

amounts. Advantages of this include that the center can keep its legal status minimal, as well as that we do not require the

bidders to trust the center to transfer their donations to the charities (or require some complicated verification protocol). It

is also a step towards a fully decentralized solution, if this is desirable.

To bring this about, we can still use the approach described in the main body of the paper. After we clear the market in

the manner described there, we know the amount that each bidder is supposed to give, and the amount that each charity

is supposed to receive. Then, it is straightforward to give some specification of who should give how much to which charity,

that is consistent with that solution. Any greedy algorithm that increases the cash flow from any bidder who has not yet

paid enough, to any charity that has not yet received enough, until either the bidder has paid enough or the charity has

received enough, will provide such a specification. (All of this is assuming that
∑

b j
πb j

= ∑
ci

πci . In the case where there

is nonzero surplus, that is,
∑

b j
πb j

>
∑

ci
πci , we can distribute this surplus across the bidders by not requiring them to

pay the full amount, or across the charities by giving them more than the solution specifies.)

Nevertheless, with this approach, a bidder may have to write out a check to a charity that she does not care for at all.

This is likely to lead to complaints and noncompliance with the solution. We can address this issue by letting each bidder

specify explicitly (before the clearing of the market) which charities she would be willing to make a check out to. These

additional constraints, of course, may change the optimal solution. In general, checking whether a given centralized solution

(with zero surplus) can be accomplished through decentralized payments when there are such constraints can be modeled

as a MAX-FLOW problem. In the MAX-FLOW instance, there is an edge from the source node s to each bidder b j , with a

capacity of πb j
(as specified in the centralized solution); an edge from each bidder b j to each charity ci that the bidder is

willing to donate money to, with a capacity of ∞; and an edge from each charity ci to the target node t with capacity πci (as

specified in the centralized solution).

We can also integrate the direct-payment model into the MIP introduced earlier. To do so, we add variables πci ,b j

indicating how much b j pays to ci , with the constraints that for each ci , πci = ∑
b j

πci ,b j
; and for each b j , πb j

= ∑
ci

πci ,b j
.

Additionally, there is a constraint πci ,b j
= 0 whenever bidder b j is unwilling to pay charity ci . The rest of the MIP can be

formulated in terms of the πci and πb j
, as before.

We note that the main part of this paper corresponds to the special case where there are no constraints on which

bidders can donate to which charities, so all of the hardness results from the main part of the paper still apply to the

direct-payment model.
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