
Expectation-Based Versus Potential-Aware Automated Abstraction in Imperfect
Information Games: An Experimental Comparison Using Poker

Andrew Gilpin and Tuomas Sandholm
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA, USA

Abstract

Automated abstraction algorithms for sequential imperfect
information games have recently emerged as a key compo-
nent in developing competitive game theory-based agents.
The existing literature has not investigated the relative per-
formance of different abstraction algorithms. Instead, agents
whose construction has used automated abstraction have only
been compared under confounding effects: different granu-
larities of abstraction and equilibrium-finding algorithms that
yield different accuracies when solving the abstracted game.
This paper provides the first systematic evaluation of abstrac-
tion algorithms. Two families of algorithms have been pro-
posed. The distinguishing feature is the measure used to
evaluate the strategic similarity between game states. One
algorithm uses the probability of winning as the similarity
measure. The other uses a potential-aware similarity measure
based on probability distributions over future states. We con-
duct experiments on Rhode Island Hold’em poker. We com-
pare the algorithms against each other, against optimal play,
and against each agent’s nemesis. We also compare them
based on the resulting game’s value. Interestingly, for very
coarse abstractions the expectation-based algorithm is better,
but for moderately coarse and fine abstractions the potential-
aware approach is superior. Furthermore, agents constructed
using the expectation-based approach are highly exploitable
beyond what their performance against the game’s optimal
strategy would suggest.

Introduction
Game-theoretic approaches to constructing agents for com-
petitive environments have emerged as a dominant method-
ology in many settings, such as poker. Determining how to
play game-theoretically optimally requires solving for the
equilibrium of the game. Unfortunately, despite dramatic
recent advances in the scalability of equilibrium-finding al-
gorithms (Hoda, Gilpin, & Peña 2007; Gilpin et al. 2007;
Zinkevich, Bowling, & Burch 2007; Zinkevich et al. 2007;
McMahan & Gordon 2007; Gilpin, Peña, & Sandholm
2008), it is still impossible to scale to the size of games that
are encountered in practice. For example, the game tree of
heads-up (i.e., two-player) limit Texas Hold’em poker has
1018 nodes and is far beyond that scalability threshold.

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

To handle such massive game trees, a recent practical ap-
proach has emerged: automated abstraction algorithms that
take the rules of the game as input and generate a game
that is much smaller and strategically similar (or, in some
cases equivalent (Gilpin & Sandholm 2007b)) to the origi-
nal game. For example, since 2003 there has been tremen-
dous progress on developing computer programs for play-
ing (both limit and no-limit) heads-up Texas Hold’em poker,
and all the leading programs are nowadays developed us-
ing automated abstraction followed by equilibrium finding
in the abstracted game (Zinkevich, Bowling, & Burch 2007;
Gilpin, Sandholm, & Sørensen 2007; 2008).

As we will review in this paper, the automated state-space
abstraction algorithms fall into two classes, expectation-
based (Gilpin & Sandholm 2007a; Zinkevich, Bowling, &
Burch 2007) and potential-aware (Gilpin, Sandholm, &
Sørensen 2007; 2008), depending on the similarity metric
used between states in the game. The existing literature has
not investigated the relative performance of these two ap-
proaches. Instead, agents whose construction has used au-
tomated abstraction have only been compared under con-
founding effects: different granularities of abstraction and
equilibrium-finding algorithms that yield different accura-
cies when solving the abstracted game. Therefore, it has
been unclear which abstraction method is better.

In this paper, we provide the first systematic evaluation of
the two classes of abstraction algorithms. Is one of them bet-
ter than the other? Does the answer depend on the granular-
ity of the abstraction that is acceptable in the output (in prac-
tice this is constrained by the scalability of the equilibrium-
finding algorithm that will take the abstracted game as in-
put)? Furthermore, does the answer depend on whether the
agent competes against another agent developed using ab-
straction, against equilibrium play, or against its nemesis?

Rhode Island Hold’em Poker
Poker is a game involving elements of chance, uncertainty,
and strategic interaction. Optimal strategies are not straight-
forward, involving techniques such as misrepresentation.
For these and other reasons, poker has been identified as an
important challenge problem for AI (Billings et al. 2002).

Rhode Island Hold’em poker was invented as a testbed
for computational game playing (Shi & Littman 2002). Its
game tree has 3.1 billion nodes, and it shares many of the in-

Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008)

1454



teresting complications present in Texas Hold’em. Although
it has been solved optimally (Gilpin & Sandholm 2007b), it
remains useful in its intended role as a testbed.

Rhode Island Hold’em is a two-person zero-sum game.
Thus, the equilibrium problem can be formulated as a lin-
ear program whose size is linear in the size of the game
tree (Romanovskii 1962; Koller & Megiddo 1992; von Sten-
gel 1996). Although solving these linear programs becomes
difficult in practice for large games, the scalability is ade-
quate for the abstracted games (even losslessly abstracted
ones) we discuss in this paper. Hence, in our experimental
evaluations, we test against the optimal strategies for the ab-
stracted games. The tractability of finding optimal strategies
under all granularities of abstraction is important because it
allows us to isolate the performance of the abstraction from
the performance of the equilibrium-finding algorithm (be-
cause the latter is exact here). This is the reason we use
Rhode Island Hold’em—which is just under the threshold
of what is solvable for equilibrium exactly—as the testbed,
instead of, say, Texas Hold’em.

Automated Abstraction

As mentioned above, two-person zero-sum sequential im-
perfect information games are solvable in polynomial-time
in the size of the game tree. However, even with recent ad-
vances in equilibrium-finding algorithms for solving such
games (Hoda, Gilpin, & Peña 2007; Gilpin et al. 2007;
Zinkevich, Bowling, & Burch 2007; Zinkevich et al. 2007;
McMahan & Gordon 2007; Gilpin, Peña, & Sandholm
2008), finding smaller, strategically similar representations
of games remains an important component technology in
the construction of game theory-based agents. The pur-
pose of an automated abstraction algorithm is to perform this
“shrinking” operation and output a much smaller but strate-
gically similar game.

In Rhode Island Hold’em, there are 52 distinct hands in
the first round, 52 · 51 = 2652 distinct hands in the second
round, and 52·51·50 = 132600 hands in the third round. The
output of an automated abstraction algorithm is a mapping
from these distinct hands to one of a number of buckets. The
number of buckets available at each of the three rounds is
parameterized by K1, K2, and K3. In our experiments we
will vary the values of these parameters in order to observe
the relative performances of the abstraction algorithms as we
vary the granularity of the abstraction.

In our experiments, we fix the number of first-round buck-
ets to be K1 = 13. This value allows for an optimal bucket-
ing at that level; it can be obtained by simply applying suit
isomorphisms. Since each player only has one card and there
are 13 different ranks, we can find the optimal 13 buckets
by simply grouping the hands according to rank and ignor-
ing the suit. Determining buckets for the second and third
rounds is thus the main part of the abstraction algorithms,
which we will discuss in the next two subsections. While
the algorithms are not specific to any game, for convenience,
we describe them in terms of how they apply to Rhode Island
Hold’em.

Expectation-based Abstraction
Currently the most sophisticated expectation-based ap-
proach to automated abstraction (Gilpin & Sandholm 2007a)
uses a combination of k-means clustering (to estimate the
error of different buckets) and integer programming (to al-
locate the buckets). When we study expectation-based ab-
straction, we will focus our attention on that algorithm,
which we will now describe.

For the second round, the abstraction algorithm must de-
termine how many child buckets each of the K1 first-round
buckets has, subject to the constraint of having at most K2

total children. Before determining how many children each
first-round bucket has, the algorithm estimates the error for
each first-round bucket having various numbers of second-
round children. It does this using k-means clustering, where
the value of a hand is its winning probability (each tie counts
as half a win).

Once these errors have been computed for all first-round
buckets and for all possible values of k, the algorithm faces
the allocation problem of choosing how many children each
first-round bucket is allotted. (Once the number of chil-
dren it can have is determined, the actual children it has
will be determined by the solution to the k-means cluster-
ing problems, which the clustering algorithm has stored.)
The algorithm solves this problem using a 0-1 integer pro-
gram (Gilpin & Sandholm 2007a).

An analogous procedure, including the k-means cluster-
ing computations for calculating the errors and a 0-1 integer
program for allocating the buckets, is repeated for the third
betting round (with the K2 second-round buckets as the par-
ents, and a limit of K3 on the maximum number of children).

Potential-aware Abstraction
The automated abstraction algorithm presented in the pre-
vious subsection was based on a myopic expected-value
(specifically, probability of winning) computation. Unfor-
tunately, that approach ignores certain strategically relevant
aspects of the game. In particular, it completely ignores the
potential of hands. For example, in Rhode Island Hold’em
poker, one high-potential hand is one in which the player
has two cards of a certain suit (three are required to make
a flush); at the present stage the hand is not very strong,
but could become so if the required card showed up later in
the game. Potential-aware automated abstraction (Gilpin,
Sandholm, & Sørensen 2007) addresses this issue. The basic
outline of the algorithm is the same as the expectation-based
abstraction algorithm described above. The primary differ-
ence is in the metric used in comparing the strategic similar-
ity of two games states. Instead of using winning probabil-
ity as the similarity measure, the potential-aware abstraction
algorithm associates with each hand a histogram over pos-
sible future states. The metric used to compare histograms
is the L2-distance metric. Under this approach, another de-
sign dimension of the algorithm is in the construction of the
possible future states as we will discuss below.

Potential-aware Automated Abstraction for Round 2
Recall that the algorithm is going to use k-means cluster-
ing of histograms to estimate the errors of various buckets.
Before it can do the clustering, it must determine the future

1455



possible states for the histograms. The algorithm does this
for each first-round bucket by performing a bottom-up pass.
For each first-round bucket i, it examines the third-round
hands that contain as their first card one of the cards in first-
round bucket i. Associated with each of these third-round
hands is a triple (w, l, d) corresponding to the number of
wins, losses, and draws a player expects when holding that
hand (based on a uniform roll-out of the opponent’s card).
The algorithm then performs a k-means clustering on these
histograms (over win, lose, and draw counts).

The centroids that this clustering operation outputs are
used as the future possible states for the second-round hands
(after the second-round clustering, these temporary states
are discarded). In particular, each second-round hand is as-
sociated with a histogram over these states. Next, as was
done in the expectation-based algorithm above, the algo-
rithm performs the multiple k-means clusterings for vari-
ous values of k to estimate the expected error of a particular
second-round bucket, given that it is allowed to have k chil-
dren. Then, the second-round abstraction is computed by
solving a 0-1 integer program.

Potential-aware Automated Abstraction for Round 3
In round 3, each hand is associated with a triple (w, l, d)
representing the number of wins, losses, and draws for each
hand. The algorithm simply runs the multiple k-means clus-
terings, followed by the integer program with resource limit
K3, to determine the third round abstraction.

Experiments
In this section we present our experimental results com-
paring the expectation-based and potential-aware abstrac-
tion algorithms while varying the granularity of the abstrac-
tions. We denote an abstraction with K1 first-round buck-
ets, K2 second-round buckets, and K3 third-round buckets
with the string K1-K2-K3. For example, the abstraction
granularity 13-25-125 has 13 first-round buckets, 25 second-
round buckets, and 125 third-round buckets. The abstraction
granularities we consider range from coarse (13-25-125) to
fine (13-205-1774). At this fine granularity an equilibrium-
preserving abstraction exists (Gilpin & Sandholm 2007b).

For two-person zero-sum sequential imperfect informa-
tion games with perfect recall, the equilibrium problem is to
find a solution to

max
x∈Q1

min
y∈Q2

xTAy = min
y∈Q2

max
x∈Q1

xTAy,

where Qi is the set of realization plans for player i and A is
the payoff matrix. The sets of realization plans are derived
from the sequence form representation of the game (Koller
& Megiddo 1992; Romanovskii 1962; von Stengel 1996).
In the experiments we will use (x∗, y∗) to denote an op-
timal solution to Rhode Island Hold’em, and we will use
(xEB , yEB) and (xPA, yPA) to denote strategies for Rhode
Island Hold’em computed using the expectation-based (EB)
algorithm and the potential-aware (PA) algorithm, respec-
tively, for a given level of granularity.

Compared to the time for finding equilibria, the time
needed by the abstraction algorithms was insignificant, al-
though the potential-aware algorithm takes slightly longer
than the expectation-based algorithm since the former is

doing clustering in the higher-dimensional space of his-
tograms. We used CPLEX’s interior-point linear program-
ming solver for finding an exact equilibrium of each of the
abstracted games.

We compared the agents constructed with the two abstrac-
tion approaches using four different evaluation criteria. The
following three subsections discuss three of these.1

Comparing Agents in Head-to-head Play
The first criterion we use to compare the algorithms is to
simply play the resulting strategies against each other in the
full, unabstracted version of Rhode Island Hold’em. For-
mally, if (xEB , yEB) is the pair of strategies computed by
the expectation-based algorithm and (xPA, yPA) is the pair
of strategies computed by the potential-aware algorithm, the
expected payoff to the expectation-based player is

1
2
xT

EBAyPA − 1
2
xT

PAAyEB .

As can be seen in Table 1, the potential-aware algorithm
beats the expectation-based algorithm for the abstraction
granularities 13-50-250 and finer. However, interestingly,
there is a cross-over: the expectation-based algorithm beats
the potential-aware algorithm for the coarsest granularity
13-25-125. One hypothesis for why this is the case is that the
dimensionality of the temporary states used in the bottom-
up pass in the third-round (which must be smaller than the
the number of available second-round buckets in order for
the clustering to discover meaningful centroids) is insuffi-
cient for capturing the strategically relevant aspects of the
game. Another hypothesis is that since the potential-aware
approach is trying to learn a more complex model (in a
sense, clusters of paths of states) and the expectation-based
model is trying to learn a less complex model (clusters of
states, based on mere probability of winning), the former
requires a larger dimension to capture this richness.

Comparing Agents against Equilibrium Play
The second evaluation criterion is to play each of the ab-
stractions against the optimal strategy (i.e., equilibrium
strategy) of the unabstracted game. If (x, y) is the pair of
strategies computed by one of the abstraction algorithms and
(x∗, y∗) is the optimal pair of strategies for the unabstracted
game, the expected payoff to the abstracted player is

1
2
xTAy∗ −

1
2
xT
∗Ay.

The results in Table 1 show that, as expected, both algo-
rithms improve against the optimal strategy as finer-grained
abstractions are allowed. Furthermore, the potential-aware
algorithm has a better payoff than the expectation-based
algorithm for granularity 13-50-250 and finer, and is op-
timal for the 13-205-1774 granularity, indicating that the
potential-aware algorithm finds the a lossless abstraction.
(In fact, we verified that it finds the same abstraction
as the GameShrink algorithm that finds lossless abstrac-
tions (Gilpin & Sandholm 2007b).) In contrast, we see that

1Our results for the fourth criterion, estimating the value of the
game, are available in an extended version of this paper. Those
results are basically the same as under the other three criteria.

1456



Experiment 1 Experiment 2 Experiment 3
Granularity EB Payoff PA Payoff EB Payoff PA Payoff EB Payoff PA Payoff PA - EB

13-25-125 16.6223 -16.6223 -25.0312 -41.7910 -160.527 -204.022 -43.495
13-50-250 -1.06272 1.06272 -19.6519 -18.2612 -134.406 -125.972 8.434
13-100-750 -6.988 6.988 -11.9801 -5.42475 -68.8882 -45.1235 23.7647

13-150-1250 -5.5703 5.5703 -6.81724 -1.57695 -59.1117 -12.067 47.0447
13-205-1774 -0.0877339 0.0877339 -0.0877339 0.0 -0.429457 -0.000460 0.428997

Table 1: Comparison of expectation-based (EB) and potential-aware (PA) abstraction against each other (Experiment 1), against
the optimal strategy (Experiment 2), and against their nemeses (Experiment 3).

the expectation-based algorithm never finds a lossless ab-
straction, regardless of how fine an abstraction we allow it to
make. This is due to the fact that sometimes two game states
have exactly the same probability of winning, yet should be
played differently.

Comparing Agents against Their Nemeses:
Worst-case Performance
The third criterion examines the expected worst-case per-
formance of the algorithms. This is done by computing a
best response strategy—i.e., a nemesis—for each of the two
strategies, and then playing each strategy against its neme-
sis. If (x, y) is the strategy pair computed by one of the
abstraction algorithms, the expected worst-case payoff is

1
2

min
v∈Q2

xTAv +
1
2

max
u∈Q1

uTAy.

Table 1 shows that the performance guarantees of each
of the algorithms improve as finer abstraction is al-
lowed. Again, the potential-aware algorithm outperforms
the expectation-based algorithm for abstraction granularities
13-50-250 and finer, but the expectation-based algorithm
provides a better bound for the coarsest granularity.

Conclusions and Discussion
We provided the first systematic comparison of automated
abstraction algorithm for sequential imperfect informa-
tion games. We examined two families of algorithms:
expectation-based and potential-aware. Our experiments,
conducted using the game of Rhode Island Hold’em poker
(in order to isolate the abstraction issues from confounding
effects), examined four criteria. The results were consistent
across all four criteria. For extremely coarse abstractions,
expectation-based abstraction performed the best. As the ab-
straction granularity becomes finer, the potential-aware al-
gorithm outperformed the expectation-based algorithm, and
was optimal in the limit. Interestingly, players generated us-
ing expectation-based abstraction are much more exploitable
(by the nemesis) than the head-to-head comparisons against
potential-aware abstraction would suggest.

Currently, the most successful heads-up Texas Hold’em
poker-playing programs employ some form of automated
abstraction followed by equilibrium computation in the ab-
stracted game. Until now, it was not clear which method of
abstraction was better. In this paper, we have shed some
light on this question. Based on our experiments, it ap-
pears that for coarse abstractions, expectation-based is the
best approach, and for fine-grained abstraction, potential-
aware abstraction is superior. Thus, for a given game—
such as Texas Hold’em—as computers become faster and

equilibrium-finding algorithms more scalable so games with
finer-grained abstractions become solvable, the potential-
aware approach will become the method of choice.

Acknowledgments
This material is based upon work supported by the National
Science Foundation under ITR grant IIS-0427858. We also
acknowledge Intel Corporation and IBM for their gifts.

References
Billings, D.; Davidson, A.; Schaeffer, J.; and Szafron, D. 2002.
The challenge of poker. Artificial Intelligence 134(1-2):201–240.
Gilpin, A., and Sandholm, T. 2007a. Better automated abstraction
techniques for imperfect information games, with application to
Texas Hold’em poker. In AAMAS’08.
Gilpin, A., and Sandholm, T. 2007b. Lossless abstraction of
imperfect information games. Journal of the ACM 54(5).
Gilpin, A.; Hoda, S.; Peña, J.; and Sandholm, T. 2007. Gradient-
based algorithms for finding Nash equilibria in extensive form
games. In WINE’07.
Gilpin, A.; Peña, J.; and Sandholm, T. 2008. First-order algorithm
with O(log(1/ε)) convergence for ε-equilibrium in games. In
AAAI’08.
Gilpin, A.; Sandholm, T.; and Sørensen, T. B. 2007. Potential-
aware automated abstraction of sequential games, and holistic
equilibrium analysis of Texas Hold’em poker. In AAAI’07.
Gilpin, A.; Sandholm, T.; and Sørensen, T. B. 2008. A heads-up
no-limit Texas Hold’em poker player: Discretized betting mod-
els and automatically generated equilibrium-finding programs. In
AAMAS’08.
Hoda, S.; Gilpin, A.; and Peña, J. 2007. A gradient-based ap-
proach for computing Nash equilibria of large sequential games.
Available at http://www.optimization-online.org/.
Koller, D., and Megiddo, N. 1992. The complexity of two-person
zero-sum games in extensive form. Games and Economic Behav-
ior 4(4):528–552.
McMahan, H. B., and Gordon, G. J. 2007. A fast bundle-based
anytime algorithm for poker and other convex games. In 11th Int.
Conf. on Artificial Intelligence and Statistics (AISTATS).
Romanovskii, I. 1962. Reduction of a game with complete mem-
ory to a matrix game. Soviet Mathematics 3:678–681.
Shi, J., and Littman, M. 2002. Abstraction methods for game
theoretic poker. In CG ’00: Revised Papers from the Second In-
ternational Conference on Computers and Games, 333–345.
von Stengel, B. 1996. Efficient computation of behavior strate-
gies. Games and Economic Behavior 14(2):220–246.
Zinkevich, M.; Bowling, M.; Johanson, M.; and Piccione, C.
2007. Regret minimization in games with incomplete informa-
tion. In NIPS’07.
Zinkevich, M.; Bowling, M.; and Burch, N. 2007. A new al-
gorithm for generating equilibria in massive zero-sum games. In
AAAI’07.

1457


	AAAI-08
	Contents
	Index
	www.aaai.org




