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Abstract

Combinatorial exchanges arise naturally in multi-agent sys-
tems that execute hierarchically decomposed tasks, when the
agents have uncertainty about each other’s tasks and each
other’s capability of handling tasks. In a combinatorial ex-
change, the information is aggregated to one party who then
decides the task allocation among the agents. Unfortunately,
such exchanges can require that bidders calculate and com-
municate an exponential number of bids, each of which may
involve solving a hard planning problem. We present a design
for an auctioneer agent that can construct and clear a combi-
natorial exchange using preference elicitation. This design
extends existing analyses of elicitation in the combinatorial
auction to the combinatorial exchange. We also introduce the
concept of item discovery that uses elicitation to construct the
exchange when there is uncertainty about which items should
be considered in the market. Our experimental results, in a
multi-robot exploration domain, show that elicitation signif-
icantly reduces the number of bids that must be evaluated in
order to clear the market. More important, the proportion of
bids that must be evaluated decreases as we scale to larger
problem instances. We also present experimental results for
an anytime version of the elicitation algorithm.

Introduction
Combinatorial exchanges are markets with the property that
a single bid can jointly express both supply and demand
for combinations of items. Combinatorial exchanges arise
naturally in multi-agent systems that execute hierarchically
decomposed tasks, when the agents have uncertainty about
each other’s tasks and each other’s capability of handling
tasks. In a market framework, an agent can express its abil-
ity to lead a team by making a bid that supplies a high-level
task, indicates the cost, and demands help in the form of sub-
tasks from other robots. For example, a science rover with
a coring drill could make a bid that supplies a core sam-
ple of a rock and demands an assisting rover to help it align
the drill properly. By using a combinatorial exchange, we
capture the important property that supply and demand are
inter-dependent, which ensures the leader does not win the
contract to supply the high-level task while losing a contract
for one of the necessary sub-tasks.
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Unfortunately, a combinatorial exchange with � items re-
quires that each bidder calculate and communicate its pref-
erences by submitting as many as ��� bids. We present a
design for a auctioneer agent that can construct and clear a
combinatorial exchange using preference elicitation; that is,
by eliciting a reduced number of bids, only enough to prove
that a particular allocation (a selection of which bids to ac-
cept) is optimal in the sense of maximizing welfare over all
bidders. Elicitation is especially important when each bid
itself involves solving a hard planning problem.

This paper builds on work exploring ways to use structure
inherent in bidder preferences to intelligently elicit only rel-
evant bids, while still ensuring that the market finds a wel-
fare maximizing outcome (Conen & Sandholm 2001). We
extend these existing analyses of elicitation in the combina-
torial auction (one seller and multiple buyers) to the combi-
natorial exchange (multiple sellers and buyers).

Our auctioneer agent interrogates each bidder intelli-
gently regarding its preferences, and optimally assimilates
the returned information as bounds on the possible welfare
and feasibility of allocations. These bounds can be used both
to guide interim search for good allocations and to determine
when the preference elicitation is complete; that is, when
there is enough information to prove an allocation optimal.

We also introduce the concept of item discovery that con-
structs the exchange during the process of preference elici-
tation. Most previous work on combinatorial exchanges has
assumed that all of the items available to trade are known
to the auctioneer in advance. We relax that assumption
and think of the market as a demand-driven supply chain.
Only top-level goal items are initially known, and the mar-
ket maker discovers new items at successively earlier stages
of the supply chain in the process of eliciting bids. For ex-
ample, a scientist may submit a bid that demands composi-
tion analyses for two rocks. Each composition analysis is a
goal item. The auctioneer can then query potential suppliers
of composition analyses, learning that they demand spec-
trometer readings and core samples (thus discovering these
new types of items). The process can continue to lower-
level sub-tasks, for instance, when the auctioneer queries a
core sample supplier and learns that it needs drill alignment
assistance. In this way, the auctioneer only considers supply
and demand for items that are relevant to producing the goal
items.



We have applied the proposed auctioneer design to a com-
binatorial exchange that models a multi-robot exploration
task. Our results show that, for the domain in question, pref-
erence elicitation significantly reduces the number of bids
that must be evaluated in order to clear the market. More
important, the proportion of bids that must be evaluated de-
creases as we scale to larger problem instances. We also
present experimental results for an anytime version of the
elicitation algorithm.

Related Work
This work extends preference elicitation in the combinato-
rial auction (Conen & Sandholm 2001) to the combinatorial
exchange.

(Walsh & Wellman 1999) examines the formation of
demand-driven supply chains in a progressive distributed
auction framework. That work inspired our novel concept
of dynamic item discovery. Other research has modeled
supply chains using distributed auctions (Babaioff & Nisan
2001) and combinatorial exchanges (Walsh, Wellman, &
Ygge 2000).

Many researchers have designed algorithms to efficiently
clear the combinatorial auction and generalizations, includ-
ing exchanges (Sandholm et al. 2001a; Fujishima, Leyton-
Brown, & Shoham 1999; Sandholm 2002). These algo-
rithms rely on complete information (all bids known to the
auctioneer up front). Our algorithm for clearing the market
with incremental bidding repeatedly solves instances of the
complete information clearing problem, so these existing al-
gorithms can be used to great advantage as subroutines.

The application of market-based techniques to multi-
robot exploration problems is a relatively new concept. In
(Dias & Stentz 2000), multiple simultaneous exchanges con-
cerning single items were used to distribute targets between
a group of exploring robots.

Iterative combinatorial market techniques (Wurman &
Wellman 2000; Parkes 1999; Parkes & Ungar 2000) can be
viewed as another preference elicitation architecture, differ-
ing from our current work in their assumptions about query
types and how auctioneer and bidder communication are in-
terleaved. Some of their concepts, for instance using primal-
dual techniques for query selection, may be applicable to our
architecture.

Problem Formulation
In a combinatorial exchange, the auctioneer receives bids
from both buyers and sellers concerning a set of indivisi-
ble, distinguishable items. Each subset of the set of items
is called a bundle 1. A bid consists of a supply bundle

�
, a

demand bundle � , and a reward � . The semantics are that if
a bid � ��� � � ��� is accepted, the bidder will supply the items
in

�
, consume the items in � , and have a reward (increased

happiness) of � .
There are submits two kinds of bids: goal bids and pro-

duction bids. Goal bids are used to express top-level goals
1Our current formulation is not a multi-unit exchange, so bun-

dles cannot have multiple copies of the same item. However, sup-
porting a multi-unit exchange would be an easy extension.

of the system. A goal bid has an empty supply bundle
�

,
and a non-negative reward � . The items in the demand set,� , are top-level goals. For instance, an agent representing a
scientist could announce a goal bid �	� � � � ��� in which � is
a set of compositional analyses of some rocks, and � is the
importance of those analyses to the scientist.

Production bids are bids whose purpose is to support sat-
isfying goal bids, either directly, or through supporting other
production bids. A production bid � ��� � � ��� has a non-empty
supply bundle

�
, and a non-positive reward � (negative re-

wards represent costs). The set of items in the demand bun-
dle (possibly empty) represent what is needed by the bidder
to produce the supply bundle. In our earlier example of a sci-
ence rover with a drill submitting a bid � ��� � � ��� , � would
contain one item to supply (a core sample), � would contain
one item that is demanded (assistance from another rover in
aligning the drill bit), and the reward � would be a negative
value representing the cost of the drilling operation.

Bidders can also place items in different combination
groups. Whether or not a bidder supplies an item may af-
fect the cost of supplying other items in the same combi-
nation group, but can not affect items in other combina-
tion groups. Consider a rover that is capable of perform-
ing a transport task 
 , a local survey task � , and com-
munications relay task � . The transport and survey tasks
each demand the rover’s full attention, and force it to be
present at a specific location. In this case, the cost of
supplying

� 
 � � � may be different from the sum of the
costs of supplying

� 
 � and
� � � . This interdependence

dictates that 
 and � must be placed in the same combi-
nation group. On the other hand, � is a background task
whose cost is independent of what other items are sup-
plied: it can be placed in a different combination group.
Whenever items are known to be independent, bidders can
drastically reduce the number of bids needed to completely
specify their preferences. The combination group concept
is similar to using OR-of-XOR bidding (Sandholm 2000;
Nisan 2000), and specifying exclusions between bundles of
items that share the same combination group.

The auctioneer’s result is an allocation, a selection of ac-
cepted bids from each bidder. A feasible allocation is one in
which the union of the accepted demand bundles is a subset
of the union of accepted supply bundles (i.e., demand does
not exceed supply). The welfare of an allocation is the to-
tal reward for the accepted bids over all bidders. We want
the auctioneer to find the welfare maximizing feasible allo-
cation; this is called the combinatorial exchange winner de-
termination problem, which we also refer to as the clearing
problem.

The object of preference elicitation is to solve the clear-
ing problem without complete information about the bidder
preferences (i.e., without knowing all of the bids). This is
possible when there are a priori constraints on the prefer-
ences. In this paper, we assume the following constraints on
preferences:

1. Single method: Each bidder  can submit at most one pro-
duction bid � ��� ��� � ����� for each possible supply bundle�

. This implies that a bidder can not express alternate
ways to supply

�
, with different demands and rewards.



We make this important limitation on full expressibility
in order to keep elicitation simple and tractable. We refer
to the unique demand and reward corresponding to each
supply bundle

�
as

� � ��� and
� � � � .

2. Free disposal: If a bidder supplies more items than are
needed, it can throw away the extras at no cost. Thus
supplying a smaller bundle is never harder than supplying
a larger bundle. If we have bids � � � � � � � � � � � � � � � � and� ��� � ��� � � � � ��� � � ��� for two supply bundles

� ��� ���
(the

first supply bundle is smaller), then, correspondingly,

(a) the first demand bundle is smaller (
� � � � � � ��� � � � )

and
(b) the first cost is smaller, equivalent to a higher reward

(
� � � � ��� � � � � � ).

For eliciting preferences, the auctioneer has the ability to
make two types of queries:

1. Value query: ask a bidder  for its unique production bid� ��� � � � � � � that contains a given supply bundle
�

. Our
main emphasis is on reducing the number of value queries
needed to solve the clearing problem.

2. Type query: ask a bidder  whether it is of the right type
to produce item 	 , and if so, what combination group 	
belongs to. We assume that type queries are trivial to an-
swer.

The auctioneer starts by knowing only the goal bids and
the items they demand, which we view as the consumer end
of a supply chain. All other items are discovered in the pro-
cess of making value queries. When the auctioneer makes
a value query for a supply bundle

�
, there may be unfa-

miliar items in
� � ��� . In that case, the auctioneer makes a

type query to each agent, concerning each unfamiliar item.
Those agents capable of supplying a new item 	 may sub-
sequently be queried about supply bundles containing 	 , dis-
covering further new items that are needed in order to supply
	 . In this way, successively earlier stages of the supply chain
are revealed, until we reach bids whose demand bundles are
empty.

Because item discovery is initiated by value queries, and
the market maker is generally able to avoid making some
value queries, some items that are provably not part of the
optimal allocation may never be discovered. This represents
a big win in terms of minimizing the number of supply bun-
dles that must be considered.

The primary goal of this work is preference elicitation:
reducing the number of value queries needed to solve, or
approximately solve, the clearing problem. The motivation
is that, in many applications, appropriate bids are compu-
tationally difficult to generate. Our elicitation approach is
covered in the next section.

Throughout the paper we assume that the bidders bid
truthfully rather than strategically. This is a reasonable as-
sumption, for example, in multi-robot systems, where the
robots are owned by the same real-world party. Further-
more, it is well known that good strategy-proof exchanges
cannot be constructed even in simple non-combinatorial ex-
changes. Even with only one seller, only one buyer and only

one item to be traded, it is impossible to design a mecha-
nism that (1) motivates the parties to participate in the sense
that they can expect a nonnegative benefit from participat-
ing, (2) allocates the item to the party that values it the most,
and (3) does not require an external benefactor (Myerson &
Satterthwaite 1983).

Approach
The standard approach to the clearing problem (without
preference elicitation) effectively makes all possible value
queries up front, and then clears the exchange using com-
plete information. In order to do better, we need to answer
the following questions without complete information (i.e.,
without knowing all of the bids):

 Bounding preferences: How can we use the preference

constraints to infer the tightest possible bounds on bids?

 Best allocation search: What is the best allocation ac-

cording to some metric (e.g., the allocation with the high-
est upper bound on welfare)?


 Optimality detection: Do we have enough information to
prove that a given allocation is welfare maximizing?


 Query selection: What is the best next value query to
make in order to reduce the total number of value queries
needed to find a provably welfare maximizing allocation?

Bounding Preferences
Here we are looking for the tightest bounds we can infer on
the welfare of a given allocation. First, we consider ways
to use the free disposal constraint to bound the demand and
reward in a bid. Given a production bid � ����� � � � ��� � � � � for
a given supply bundle

�
, the free disposal constraint dictates

that any superset �� �
must have a corresponding demand

� � � � � � � � � . That is,
� � � � is a lower bound on � � � � .

If � � �
, then

� � � � is an upper bound on � � � � . The
free disposal constraint on reward works similarly. Thus,
free disposal induces a lattice structure on supply bundles in
subset/superset relationships, such that when the auctioneer
gets the answer to a value query about

�
, it can propagate

bounds on demand and reward to subsets and supersets of�
.
If a combination group contains � items, we need to con-

sider all � � possible sets of these items as supply bundles of
production bids that we might make value queries for. The
auctioneer keeps one node in memory for each supply bun-
dle, representing the tightest known bounds on the demand
and reward of the bid with that supply bundle. We refer to
the data structure of nodes as the bid lattice 2. Each node
contains the following information about a supply bundle

�
:

1. Demand interval: sets
� � � ��� min and

� � � ��� max, such that
the demand bundle for bidder  is guaranteed to satisfy� � � ��� min

� � � � � � � � � ��� max. � ��� max may take on the
special value 
���� , meaning that we have no upper bound
information about demand.

2There can be multiple bid lattices for each bidder; there is one
for each combination group.



2. Reward interval:
� � � ��� min and

� � � ��� max. The reward is guar-
anteed to satisfy

� � � � ��� � � � ��� min

��� � � ��� max � . If � � � min ���� or ����� max �	� � , we have no information about the
lower or upper bound, respectively.
Because we discover items in the process of eliciting bids,

each lattice starts empty, and new items are added as elicita-
tion progresses. Thus we must support two basic operations
on the bid lattice data structure:

1. Adding a new item 	 . For every node with supply bundle�
already in the lattice, we add a new node with supply

bundle � � ��
 � 	 � and propagate bounds information
from subsets of � , as explained below.

2. Propagating bounds from a value query. When a query is
made for a supply bundle

�
, returning

� � � � and
� � � � , we

do the following:

(a) Store the now exact bounds on
�

:
 � � � ��� min � � � � �� � � � ��� max � � � � �
 � � � ��� min � � � � �� � � � � � max � � � � �
(b) Propagate the bounds to supersets and subsets accord-

ing to the constraints of free disposal:
 For every superset � of
�

, set � � � � � min � � � � � � min


� � � � and � � ����� max ������� � � � ����� max

� � � � � � .
 Similarly, for every subset � of
�

, set � � � ��� max �
� � � ��� max � � � � � and � � � ��� max ������� � � � � � � max

��� � � � � .
Figure 1 shows progressive states of a lattice correspond-
ing to a combination group with two items: 
 and � .
Rectangles in the figure are nodes, and bounds on � � and��� are shown as intervals ����� � � � ����� . In stage (1), we
see the lattice before any value queries are made. Stages
(2a) and (2b) show bound propagation after the auctioneer
queries about

� � � 
 � receives the bid � � � � 
 � � � � ���� � � ��� � ��� � � .

r: −   .. 0
D: {} .. ALL
S: {B}

∞�

S: {A}
D: {X} .. {X}
r: −50 .. −50

S: {A,B}
D: {X} .. ALL

∞r: −   .. −50

S: {}
D: {} .. {}
r:   0 .. 0

(update Dmin and rmax)

max and rmin,

are already exact)

(update D
but nothing to do: bounds

S: {}
D: {} .. {}
r:   0 .. 0

r: −   .. 0
D: {} .. ALL
S: {B}

∞�

S: {A}
D: {X} .. {X}
r: −50 .. −50

S: {}
D: {} .. {}
r:   0 .. 0

r: −   .. 0

S: {A,B}
D: {} .. ALL

∞

r: −   .. 0∞r: −   .. 0∞

S: {A}
D: {} .. ALL D: {} .. ALL

S: {B}

r: −   .. 0∞ r: −   .. 0∞

r: −   .. 0

S: {A,B}
D: {} .. ALL

∞

(1) No value queries made yet (2a) Store bounds (2b) Propagate bounds

Figure 1: Propagating bounds from a value query.

Best Allocation Search
In an allocation, exactly one bid is accepted from each
bid lattice. We use � to denote the set of all bid lattices,
and

�"! �$#	� to denote the supply bundle of the bid that al-
location 
 accepts from lattice # � � . Further, noting
that each lattice # belongs to a single bidder, we will use
the notation

� ! �%# � � � and
� ! �%#	� � � to mean

� ! �%# � � � � and�&! �%# � � ��� , where  is the bidder for lattice # . An allocation
 is feasible if demand does not exceed supply; that is, if')(+*-, � ! �%# � � � � ')(+*-, � ! �%#	� . We define the welfare as. � 
 � � /10 (2*-, � ! �$#	� � � if 
 is feasible��� otherwise

We also define the best case welfare
.

best �	
 � and worst
case welfare

.
worst �	
 � of an allocation. To calculate these

measures, we apply a selection function that fills in the miss-
ing information in a bid to form a complete virtual bid, ac-
cording to rules that we define:

1. The best case selection function sets the virtual bid from
bidder  for

�
to be � ��� � � � ��� � � � � � � � � � � min

� � � ����� max � .
2. The worst case selection function sets the virtual bid from

bidder  for
�

to be � ��� � � � � � � � � � � � � � � � max

��� � � ��� min � .
Once a selection function has generated complete virtual
bids, we calculate the welfare

.
worst �	
 � or

.
best � 
 � accord-

ing to the definition already given. Note that the auctioneer
can calculate these measures based on the information it has,
and they satisfy

.
worst �	
 �43 . � 
 �53 .

best � 
 � .
Each selection function transforms the partial informa-

tion in the bid lattice to complete information, represent-
ing a best case or worst case scenario. Finding the al-
location with the highest best case or worst case welfare
is then an instance of the combinatorial exchange winner
determination problem with complete information. This
is an NP-hard and inapproximable problem. There are
good existing algorithms for the related problem of clear-
ing the combinatorial auction (Sandholm et al. 2001a;
Fujishima, Leyton-Brown, & Shoham 1999). The combi-
natorial exchange is substantially harder, with the best algo-
rithms clearing an exchange of a few hundred bids in a few
seconds (Sandholm et al. 2001b).

Our current approach searches depth-first, branching on
which bid is accepted from each bid lattice, with branch-
and-bound pruning. This is structurally similar to some of
the advanced algorithms; however, we did not invest the ef-
fort to duplicate their sophisticated heuristics, because our
experiments do not include timing results.

Optimality Detection

Optimality detection is the problem of determining when we
have enough information to prove that an allocation 
 is
optimal. To do so, we need to show that

. � 
 � � . � � �
for every allocation � . Assuming 
 and � are feasible, this
is equivalent to:6

(+*-, �&7 �%# � � � � � ! �%# � � � 3 �
We call the term for each # in the above sum the advantage
of 
 over � in lattice # . What upper bound can we calculate
on the advantage in order to prove

. � 
 � � . �	� � ?
One obvious answer is that
�"7 �%# � � � � � ! �$#	� � �)3 �&7 �%#	� � � max

� � ! �$#	� � � min

Summing over all lattices, this upper bound gives us the suf-
ficient condition for superiority of

.
worst � � �83 .

best �	
 � ,
which is not surprising. But we can do better: if

�9! �%# � ��&7 �$#	� , free disposal dictates that
�"7 �%#	� � �:3 � ! �%#	� � � , so that

we get the tightest possible bound
�&7 �%#	� � � � � ! �%#	� � �:3 �:��� � � � �"7 �%# � � � max

� � ! �%#	� � � min �



A simple way to check that 
 is optimal is to use this
bound to compare 
 to every other allocation � . Unfor-
tunately, there are exponentially many allocations to com-
pare against. We can save some of this effort by defin-
ing a new selection function called the upper bound advan-
tage over 
 (adv( 
 )), as follows: set the virtual bid for
a supply bundle

�
in lattice # belonging to bidder  to be� � � � � � ����� � � ��� � � � ��� min

� � adv � , where

� adv �
� �:��� � � � � � � � � max

� �&! �%# � � ����� min � �&! �$#	� � �� � � ��� max
� � ! �%# � � � ��� min otherwise

This selection has the property that
. � � � 3 . � 
 �

is provable given our current information if and only
if

.
adv � !�� �	� � 3 � . We can use our existing tech-

niques to quickly find the allocation ��� which maximizes.
adv � !�� �	����� . If

.
adv � !�� �	��� �:3 � , 
 is optimal. This op-

timality test is not only sound but also complete, meaning
that it flags optimality of an allocation as soon as we have
enough information to prove it.

We should also mention a much simpler optimality con-
dition: find the allocation 
 with highest best case wel-
fare. If the auctioneer has tight bounds on the welfare of
 (

.
worst � 
 � � .

best � 
 � ), then 
 is optimal. This condi-
tion is sound, but not complete. However, for our domain,
it essentially always becomes true at the same time as the
complete condition explained above, and is much faster to
compute.

Query Selection
Query selection is the problem of finding the best next value
query to make in order to reduce the total number of value
queries needed to find a provably welfare maximizing allo-
cation. At this stage in our research, we are focusing on
heuristic rules for query selection, and we do not yet have a
general theory for how well the auctioneer can do.

Currently, we refine the allocation 
 with the highest best
case welfare

.
best � 
 � . Refining 
 means making a value

query for one of the bids accepted by 
 that we do not have
complete information about. The intuition is that the auc-
tioneer should continue working on 
 until 
 is either prov-
ably optimal or no longer the best candidate. Among the
bids accepted by 
 , we currently query about the one clos-
est to the consumer end of the supply chain.

Overall Elicitation Algorithm
We now have the building blocks for a full elicitation algo-
rithm:

1. Find the allocation 
 that maximizes
.

best � 
 � .
2. If 
 is optimal, we are done. Check using either of the

two optimality conditions described above.

3. If desired, return an anytime result as follows:

(a) The anytime answer is the allocation � that maximizes.
worst � � � .

(b) Let � be the allocation that maximizes
.

adv � 7 � � � � .
The solution quality of � , defined as

. � � � /OPT, has
a lower bound of � worst � 7 �� worst � 7 �	� � adv 
��� ��� � . If desired, we

can use this bound to halt the anytime algorithm when
the quality is provably above � ��� for a given � .

4. Make a value query concerning one of the bids accepted
by 
 that the auctioneer does not yet have complete infor-
mation about. Propagate bounds in the corresponding bid
lattice.

5. Return to step 1.

Experiments
We applied the elicitation algorithm described above to a
multi-robot exploration domain. This domain is a greatly
simplified version of a detailed multi-robot Mars rover sim-
ulation we are currently developing. In particular, there are
��� science targets (in our experiments, ��� � � ), whose po-
sitions are independently drawn from a uniform distribution
over the unit square. There is one goal bid for each target:
this bid demands a set of tasks to be performed at the tar-
get location. All goal bids have the same reward, ��� . The
tasks are distributed among targets as evenly as possible.
The number of items in the exchange is the same as the num-
ber of tasks. A single bidder submits all of the goal bids on
behalf of scientists.

There are ��� rovers (in our experiments, ��� ��� ) with
differing capabilities. The initial position of each rover is
random on the unit square. For every task, there is at least
one rover with the capability of performing that task. Ca-
pabilities are distributed randomly among rovers, as evenly
as possible. The number of lattice nodes in the exchange
is determined by the number of capabilities distributed to
the rovers. When reporting the number of nodes in the ex-
change, we count only non-trivial nodes (those with non-
empty supply bundles).

If a rover performs a task, it must visit the target refer-
enced by that task, incurring a motion cost equal to the dis-
tance traveled. Thus, to find the total cost of performing a
set of tasks, the rover calculates the distance traveled along
the minimum length path from its starting point that visits
all its targets. Finding this TSP-like optimal path for a large
number of targets is an example of the kind of hard planning
problem that we wish to avoid through reducing the number
of value queries. Since visiting one target affects the cost
of visiting any other target, each rover has one combination
group that contains all the tasks it is capable of.

The uniform reward per goal bid, � � , is chosen so that the
minimum cost allocation with all goal bids satisfied has total
cost and total reward equal. With this reward setting, about
half of the goal bids are accepted in the optimal allocation
for a typical problem instance.

Scaling Experiment
In this experiment, we looked at the effect of exchange size
on the elicitation ratio: the proportion of non-trivial nodes
that the auctioneer queried about before finding a provably
optimal allocation. Average results over five runs are shown
in Figure 2. We see that when the number of nodes increases,
the elicitation ratio generally drops. When the number of
items increases, the elicitation ratio increases slightly (for



instance, the elicitation ratio line for 12 items is generally
above that for 10 items).
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Figure 2: Scaling experiment: elicitation vs. exchange size.

For the domain studied, elicitation allows significant and
increasing savings in bidder effort as the exchange scales.
Competing factors influence the ratio:

1. When there are a larger number of nodes in each bid
lattice, each query has the ability to affect more nodes
through bounds propagation; this leads to a lower elicita-
tion ratio as the number of bids increases.

2. On the other hand, increasing numbers of items and nodes
mean that there are more similar allocations whose cost is
difficult to differentiate, so that more queries are needed
to prove any one allocation optimal.

Of these factors, (1) appears to be more important in our do-
main when scaling the number of nodes. An apparent excep-
tion is seen near the right end of the 5 items line, where the
elicitation ratio rises as the problems approach node satura-
tion (i.e., approach the maximum possible number of nodes
given the number of items and the other fixed parameters
of the domain). More research is needed to determine how
domain parameters and query selection influence scaling.

Anytime Experiment
This experiment shows how the solution quality of the best
allocation so far varies as a function of the number of value
queries. After each query, the auctioneer reports the alloca-
tion 
 with the highest worst case welfare. Two measures
of 
 were taken: the actual quality

. �	
 � /OPT, and the auc-
tioneer’s provable lower bound on quality given its informa-
tion so far. Median results over five runs are shown in Figure
3. Tests over a wide range of exchange sizes gave quali-
tatively similar results. An alternative anytime scheme of
reporting the allocation with highest best case welfare per-
formed much worse.

Most of the improvement in the lower bound on solution
quality comes very near the end of the run, so approximation
schemes that stop early based on the lower bound reaching
some high quality � ��� will save only marginal effort.

On the other hand, the actual quality typically reaches
1 (optimality) about 20-50% more quickly than the lower
bound. Thus, if we are willing to give up a provable quality
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Figure 3: Anytime experiment: solution quality vs. queries.

bound, the auctioneer could do better. On repeated instances
of similar problems, it could save significant effort by learn-
ing how many queries are needed before it has a probably
approximately optimal solution.

Conclusions and Future Research
We have presented a design for a auctioneer agent that can
construct and clear a combinatorial exchange using prefer-
ence elicitation. Our design extends existing analyses of
elicitation in the combinatorial auction to the combinatorial
exchange. We also introduced the concept of item discovery
during the process of preference elicitation. Our experimen-
tal results, in a multi-robot exploration domain, show that
elicitation allows significant and increasing savings in bid-
der effort as the exchange scales. Tests of an anytime version
of the elicitation algorithm show that we could save further
effort by stopping early, if we are willing to accept a proba-
bly approximately optimal solution.

In future work, we hope to relax the single method of pro-
duction constraint, allowing robots to have multiple plans
for supplying the same items, with different corresponding
demands and costs. We are also working on an architecture
for coordinating multiple combinatorial exchanges. Each
bidder communicates with one local exchange, and the lo-
cal exchanges are themselves bidders in a larger exchange.
In a distributed system, this architecture can minimize bot-
tlenecks and delays due to communication latency.
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