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Abstract

The fair division of indivisible goods has long been
an important topic in economics and, more recently,
computer science. We investigate the existence of envy-
free allocations of indivisible goods, that is, allocations
where each player values her own allocated set of goods
at least as highly as any other player’s allocated set of
goods. Under additive valuations, we show that even
when the number of goods is larger than the number
of agents by a linear fraction, envy-free allocations are
unlikely to exist. We then show that when the number of
goods is larger by a logarithmic factor, such allocations
exist with high probability. We support these results ex-
perimentally and show that the asymptotic behavior of
the theory holds even when the number of goods and
agents is quite small. We demonstrate that there is a
sharp phase transition from nonexistence to existence
of envy-free allocations, and that on average the com-
putational problem is hardest at that transition.

Introduction
The allocation of goods to interested agents is a central tenet
of society. Some goods, like land, are divisible: a mechanism
can split a single good amongst multiple agents. Others, like
the houses or cars in an estate sale or divorce proceedings,
are indivisible: a mechanism must allocate each good to ex-
actly one agent. A chief concern in the assignment of divisi-
ble and indivisible goods to agents—and in the employment
of divorce lawyers—concerns defining and guaranteeing the
fairness of the final allocation.

One formal notion of fairness is envy-freeness. An allo-
cation of goods is envy free (EF) if each player values her
own allocated set of goods at least as highly as any other
player’s allocated set of goods. While EF divisions exist for
any number of players in the divisible goods case (see, e.g.,
(Procaccia 2013), and the references therein), it is not guar-
anteed that such fair allocations exist when indivisible goods
are considered. Indeed, consider the simple case of a single
good and two agents, both of which have positive value for
the good. Allocating the good to either agent will result in
envy from its empty-handed partner.
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In this paper, we investigate the conditions under which
EF allocations of indivisible goods exist, when agents’ val-
ues of goods are drawn at random. Under additive valuations
and rather general conditions on the distributions over values
of individual goods, we characterize conditions for nonexis-
tence, showing that even when the number of goods is larger
than the number of agents by a linear fraction, an EF allo-
cation is unlikely to exist (Theorem 1). We then show that
when the number of goods is larger by a logarithmic factor
than the number of agents, an EF allocation exists with high
probability (Theorem 2). Thus, these asymptotic existence
results are almost tight.

We support our theoretical results, which apply asymp-
totically, with an empirical exploration of the EF allocation
problem on different distributions over valuations and dif-
ferent objectives over EF allocations using two integer pro-
gramming models. The theory applies to each of these exper-
iments even when the number of agents and goods is quite
small. We also uncover a phenomenon common to many
problems in artificial intelligence: that the hardest compu-
tational EF allocation problems on average occur during the
(sharp) transition from nonexistence to existence.

Related Work
Fair division occupies an important place in AI research; see,
e.g., Chevaleyre, Endriss, and Maudet (2007), Bouveret and
Lang (2008), Chen et al. (2010), Cohler et al. (2011) and
the survey by Chevaleyre et al. (2006). Among the many AI
papers that study the EF allocation of indivisible goods, the
work of Bouveret and Lang (2008) is of particular interest.
They showed that determining the existence of an EF alloca-
tion is computationally hard. In contrast, we focus on typical
instances, and show that EF allocations exist, or do not exist,
with high probability.

Similarly, the phase transition phenomenon is a staple
of AI research (Cheeseman, Kanefsky, and Taylor 1991;
Hogg, Huberman, and Williams 1996). In a nutshell, con-
straint satisfaction problems (CSPs) typically have the curi-
ous property that as the problem becomes more constrained,
the probability of the existence of a feasible solution sharply
drops from 1 to 0. Around the same point where this phase
transition occurs (known as the critical value of the order
parameter), search algorithms experience a sharp spike in
running time—a steep computational rise, then an equally



steep fall as the problem becomes more constrained (so rul-
ing out the existence of a solution becomes easier). We show
that a similar phenomenon occurs in the context of the exis-
tence and computation of EF allocations.

The problem of coalitional manipulation in elections is
another popular topic in computational social choice that has
run the gauntlet from (i) worst-case complexity (Conitzer,
Sandholm, and Lang 2007), through (ii) probabilistic ex-
istence and nonexistence results (Conitzer and Sandholm
2006; Procaccia and Rosenschein 2007; Xia and Conitzer
2008), to (iii) investigations of the phase transition at the
threshold between nonexistence and existence (Walsh 2011;
Mossel, Procaccia, and Rácz 2013). From the technical and
conceptual viewpoints, though, our problem is completely
different. Note that we tackle (ii) and (iii) simultaneously,
and for the first time (in the context of fair division).

Brams, Kilgour, and Klamler (2014) design a mechanism
for the EF allocation of indivisible goods, which also sat-
isfies other desirable properties. While their scheme guar-
antees envy-freeness, it may not allocate all the goods. To
ameliorate this shortcoming, they show that when the (ordi-
nal) preferences of agents over goods are drawn uniformly
at random, their scheme will allocate all goods with high
probability, as the number of goods goes to infinity. Our ex-
istence result, Theorem 2, is significantly stronger in several
ways: (i) it gives an exact relation between the number of
agents and number of goods, instead of assuming that one
is constant and the other goes to infinity, (ii) it holds under
far milder assumptions on the probability distribution over
instances, and (iii) it relies on an intuitively desirable al-
location mechanism that gives each good to the agent that
wants it the most, thereby maximizing social welfare (as we
discuss below). Brams and Fishburn (2000) also work in a
probabilistic model, but with only two agents; our results
hold for any number of agents.

Our Model
Denote the set of agents by N = {1, . . . , n}, and the
set of goods by G, where |G| = m. Agent i has utility
ui(g) ∈ [0, 1] for good g; note that constraining the utili-
ties to an interval is without loss of generality. We make the
very common assumption that utilities are additive, that is,
for a subset of goods G′ ⊆ G and agent i ∈ N , it holds that
ui(G

′) =
∑
g∈G′ ui(g).

An allocation is a partition A = (A1, . . . , An) of the
goods, where Ai is the bundle of goods allocated to agent
i ∈ N . The allocation A is said to be envy free (EF) if and
only if for any two agents i, j ∈ N , ui(Ai) ≥ ui(Aj), that
is, each agent weakly prefers its own bundle to the bundle
allocated to any other agent.

Distributions Over Utilities
For every agent i and good g ∈ G, the utilities
u1(g), . . . , un(g) are drawn from a joint, non-atomic dis-
tribution Dn over [0, 1]n, that is, for every x ∈ [0, 1],
Pr[ui(g) = x] = 0. Let us state two assumptions on Dn,
which hold for every g ∈ G; Theorem 1 will require the
first, and Theorem 2 will require the second:

[A1] For all i, j ∈ N such that i 6= j, ui(g) and uj(g) are
independent and identically distributed.

[A2] For all i, j ∈ N ,

Pr[arg max
k∈N

uk(g) = {i}] = 1/n,

and there exist constants µ, µ∗ such that

0 < E[ui(g) | arg max
k∈N

uk(g) = {j}] ≤ µ

< µ∗ ≤ E[ui(g) | arg max
k∈N

uk(g) = {i}].

Let us illustrate these assumptions using two natural dis-
tributions that will be featured in our empirical results:
• UNIFORM(x, y): For each agent i ∈ N and good g ∈ G,

draw ui(g) ∼ U [x, y], where U is the uniform distribu-
tion.

• CORRELATED(x, y): Independently assign each good g
an intrinsic base value µg ∼ U [x, y]. Then, for each agent
i, draw ui(g) ∼ N (µg, σg), where N is the (truncated)
normal distribution and σg ∝ µg .
First, consider UNIFORM. Clearly it satisfies [A1]. As-

sumption [A2] seems technical, but is actually quite mild. To
be concrete, take UNIFORM(0, 1), so the utilities are drawn
uniformly at random in [0, 1]. The first part of [A2] holds
due to symmetry. Moreover, in this case, E[ui(g)] = 1

2 , and
E[maxk∈N uk(g)] = n

n+1 ≥ 2
3 (see, e.g., (Boutilier et al.

2012, Corollary 4.5)). Clearly

E[ui(g) | arg max
k∈N

uk(g) = {j}] ≤ E[ui(g)],

and due to symmetry

E[ui(g) | arg max
k∈N

uk(g) = {i}] = E[max
k∈N

uk(g)],

so we can set µ∗ = 2/3 and µ = 1/2. Assumption [A2] still
holds if the utilities are drawn from an interval [x, y] ⊆ [0, 1]
(by scaling and shifting µ and µ∗).

Similarly, CORRELATED(x, x) satisfies both assumptions
for any x ∈ (0, 1)—utilities are simply drawn i.i.d. from
the same normal distribution. But when x < y, CORRE-
LATED(x, y) only satisfies assumption [A2]. This distribu-
tion does not satisfy [A1], because for a fixed g ∈ G, ui(g)
and uj(g) are not independent.

A Small Number of Goods
If there are fewer goods than agents, i.e.,m < n, then clearly
no EF allocation is possible—there will be an agent with no
goods. Conceivably, though, it could be that if m is slightly
larger than n—say, m = n +

√
n—then an EF allocation

is likely to exist. In this section we show that this is not the
case: the number of “extra” goods must be linear in n.

Recall that our distributions over utilities are non-atomic.
Therefore, for i ∈ N and two goods g 6= g′, Pr[ui(g) =
ui(g

′)] = 0. So, we can safely assume that each agent has
a unique favorite good, and define a function f : N → G
that maps each agent to its favorite good, that is, f(i) =
argmaxg∈Gui(g).

We are now ready to state our first result.



Theorem 1. Assume that [A1] holds. Let δ ∈
(

0, 12 − 1
2
√
e

)
be a constant. If the probability that there exists an EF allo-
cation is at least 1−δ thenm ≥ (1+c(δ))n, where c(δ) > 0
is a constant that depends only on δ.

We require the following lemma, which gives a necessary
condition for envy-freeness that depends on the number of
collisions of the function f .

Lemma 1. Let u1, . . . , un be utility functions for the n
agents such that ui(g) 6= ui(g

′) for all g 6= g′. For each
good g, let Xg = f−1(g) be the set of agents whose fa-
vorite good is g. If there is an EF allocation then m ≥
n+

∑
g∈G max{|Xg| − 1, 0}.

Proof of Lemma 1. Fix an allocation A, and let i ∈ N such
that g ∈ Ai. In order to avoid envying i, every agent in Xg \
{i} must receive at least two goods. Hence,

m ≥
∑

g∈G: |Xg|>0

(2|Xg| − 1)

=
∑

g∈G: |Xg|>0

|Xg|+
∑

g∈G: |Xg|>0

(|Xg| − 1)

=
∑
g∈G

|Xg|+
∑
g∈G

max{|Xg| − 1, 0}

= n+
∑
g∈G

max{|Xg| − 1, 0}.

Proof of Theorem 1. Let C be a random variable that counts
the number of collisions between agents’ top preferences.
Specifically, the value of C is determined as follows. Start-
ing from C = 0, for each i = 1, . . . , n, if there ex-
ists j < i such that f(i) = f(j) then increment C by
1. Using the notations of Lemma 1, it is easy to see that
C =

∑
g∈G max{|Xg| − 1, 0}.

Our first goal is to compute E[C]. Let Yij be a Bernoulli
random variable that takes the value 1 if f(i) = f(j), and 0
otherwise. Then for all i 6= j, Pr[Yij = 1] = 1/m, due to
assumption [A1].

Let Zi be another Bernoulli random variable that takes
the value 1 if f(i) = f(j) for some j < i, and 0 otherwise.
Zi = 1 if and only if there exists j < i such that Yij = 1.
Furthermore, for a fixed i the variables Yij are independent
due to assumption [A1]. Therefore

E[Zi] = 1−
(
1− 1

m

)i−1

.

Now we can simply writeC =
∑
i∈N Zi. Using the linearity

of expectation:

E[C] = E

[∑
i∈N

Zi

]
=

n∑
i=1

(
1−

(
1− 1

m

)i−1
)

≥
n∑
i=1

(
1− e−

i−1
m

)
≥

n∑
i=n

2
+1

(
1− e−

i−1
m

)
≥ n

2

(
1− e−

n
2m

)
,

where the third transition follows from the well-known fact
that (1 − x) ≤ e−x for all x ∈ R, and the fourth transition
assumes that n is even purely for ease of exposition.

Now, suppose that C ≤ k with probability 1 − δ. Also
using the fact that C ≤ n, we get

(1− δ)k + δn ≥ E[C] ≥ n

2

(
1− e− n

2m

)
,

and therefore

k ≥ n

1− δ

(
1− e−

n
2m

2
− δ
)
. (1)

We want k to be lower-bounded by a constant fraction of
n, which is true if and only if e−

n
2m < 1 − 2δ. Denoting

m = αn, we can write e−
1
2α < 1−2δ; equivalently,− 1

2α <
ln(1− 2δ), and by rearranging we get

α <
1

2 ln
(

1
1−2δ

) . (2)

Using our assumption that δ < 1
2 − 1

2
√
e
, we see that the

right hand side of Equation (2) is a constant greater than 1.
Let us therefore set

β(δ) =

1 + 1

2 ln( 1
1−2δ )

2
,

then β is a constant greater than 1 that depends only on δ.
We now have all the ingredients in place to complete the

theorem’s proof. On the one hand, ifm > β(δ)n then we are
done. On the other hand, if m ≤ β(δ)n then Equation (1)
gives us a constant lower bound on k that depends only on
δ, say γ(δ)n, which was derived under the assumption that
Pr[C ≤ k] ≥ 1 − δ. Next, set γ′(δ) = γ(δ)/2. So, if it
holds that γ′(δ)n ≤ k < γ(δ)n, i.e., k is a constant fraction
of n that is strictly smaller than the lower bound, then the
assumption does not hold, i.e., Pr[C ≥ k] > δ.

By Lemma 1, in those cases where C ≥ k, there is an
EF allocation only if the number of goods is at least n +
k ≥ n(1 + γ′(δ)). In other words, if m < n(1 + γ′(δ)), an
EF allocation would not exist with probability 1 − δ for the
preceding choices of parameters. We conclude that it must
be the case thatm ≥ min{β(δ), 1+γ′(δ)}·n. Setting c(δ) =
min{β(δ)− 1, γ′(δ)} completes the proof.

A Large Number of Goods
Next, we examine the case where the number of goods is
significantly larger than the number of agents—by a loga-
rithmic factor, to be precise. In this case, an EF allocation
exists with high probability.

Theorem 2. Assume that [A2] holds. Let n = O
(
m

lnm

)
.

Then an EF allocation exists with probability 1 as m→∞.

Before proving the theorem, two comments are in order.
First, why are we writing n = O

(
m

lnm

)
instead of the more

intuitive m = Ω(n lnn)? The reason is that we want to em-
phasize that only the number of goods has to go to infinity;
the number of agents can stay small, even constant. The the-
orem holds even if the number of agents goes to infinity, as



long as this happens at most at the specified rate compared
to the number of goods.

Second, Theorem 2 states that there exists an EF alloca-
tion, but the proof shows something stronger: that this al-
location can be obtained by giving each good to the agent
that values it the most, i.e., to arg maxi∈N ui(g). This is,
in fact, the allocation that maximizes the (utilitarian) social
welfare, which is the sum of utilities. So, an alternative for-
mulation is that, under the theorem’s condition, the social-
welfare-maximizing allocation is EF with high probability.

Turning to the theorem’s proof, we require the following
well-known result.
Lemma 2 (Chernoff). LetX1, . . . , Xm be independent ran-
dom variables in [0, 1]. Denote X =

∑m
i=1X

i. Then for all
ε ∈ [0, 1],

1. Pr[X ≥ (1 + ε)E[X]] ≤ exp
(
− ε

2

3
E[X]

)
.

2. Pr[X ≤ (1− ε)E[X]] ≤ exp
(
− ε

2

2
E[X]

)
.

Proof of Theorem 2. We explicitly construct an allocation
by giving each good g ∈ G to the agent that likes it most,
that is, to arg maxi∈N ui(g). This “algorithm” induces an
allocation A = (A1, . . . , An), where each Ai can be for-
mally thought of as a random variable that takes values in
2G. We prove the allocation A is EF with high probability.

Let Xg
i be a random variable that takes the value ui(g)

if {i} = arg maxk∈N uk(g), and 0 otherwise. It holds that
ui(Ai) =

∑
g∈GX

g
i ; we will use this observation to calcu-

late E[ui(Ai)]. Using [A2] (twice), for all i ∈ N and g ∈ G
it holds that E[Xg

i ]

= Pr

[
{i} = argmax

k∈N
uk(g)

]
· E
[
ui(g)

∣∣∣∣{i} = argmax
k∈N

uk(g)

]
=

1

n
· E
[
ui(g)

∣∣∣∣ {i} = argmax
k∈N

uk(g)

]
≥ µ∗

n
.

Therefore, using the linearity of expectation,

E[ui(Ai)] =
∑
g∈G

E[Xg
i ] ≥ µ

∗m

n
.

Next, for all i 6= j and g ∈ G let Y gij be random variables
that take the value ui(g) if {j} = arg maxk∈N uk(g), and 0
otherwise. It holds that ui(Aj) =

∑
g∈G Y

g
ij . Furthermore

E[Y gij ] =
1

n
· E
[
ui(g)

∣∣∣∣ {j} = argmax
k∈N

uk(g)

]
≤ µ

n
,

by assumption [A2]. However, a technicality is that our as-
sumptions do not provide a lower bound for

E
[
ui(g)

∣∣∣∣ {j} = arg max
k∈N

uk(g)

]
(which is required to use Lemma 2). We therefore define
variables Zgij such that E[Zgij ] = µ/n, Zgij ∈ [0, 1], and Zgij
stochastically dominates Y gij . In particular, E[

∑
g∈G Z

g
ij ] =

µmn , and due to stochastic dominance, for all x ∈ R+,

Pr

[∑
g∈G

Zgij ≥ x

]
≥ Pr

[∑
g∈G

Y gij ≥ x

]
.

We can therefore use the Zgij variables to reason about
ui(Aj).

Let Eij be the event that agent i envies agent j. For Eij
to happen, it must be the case that

∑
g∈G Y

g
ij >

∑
g∈GX

g
i ,

which happens only if∑
g∈G

Xg
i ≤ µ

∗m

n
− µ∗ − µ

2

m

n
=

(
1− µ∗ − µ

2µ∗

)
µ∗
m

n

=

(
1− µ∗ − µ

2µ∗

)
E

[∑
g∈G

Xg
i

]
,

or ∑
g∈G

Y gij ≥ µ
∗m

n
− µ∗ − µ

2

m

n
= µ

m

n
+
µ∗ − µ

2

m

n

=

(
1 +

µ∗ − µ
2µ

)
µ
m

n

=

(
1 +

µ∗ − µ
2µ

)
E

[∑
g∈G

Zgij

]
,

Let us set
ε = min

{
1,
µ∗ − µ
2µ∗

}
.

Because µ < µ∗, it also holds that ε ≤ µ∗−µ
2µ .

The variables Xg
i and Xg′

i are independent for g 6= g′,
and similarly Zgij and Zg

′

ij are independent. Using Lemma 2,
we have that

Pr

[∑
g∈G

Xg
i ≤ (1− ε)E

[∑
g∈G

Xg
i

]]
≤ exp

(
− ε

2

2
µ∗
m

n

)
,

and

Pr

[∑
g∈G

Y gij ≥ (1 + ε)E

[∑
g∈G

Zij

]]

≤ Pr

[∑
g∈G

Zgij ≥ (1 + ε)E

[∑
g∈G

Zij

]]
≤ exp

(
− ε

2

3
µ
m

n

)
.

Setting

n ≤ ε2µ

3
· m

ln(2m3)

and using the union bound, we conclude that

Pr[Eij ] ≤ exp

(
− ε

2

2
µ∗
m

n

)
+ exp

(
− ε

2

3
µ
m

n

)
≤ 2 · 1

2m3
=

1

m3
.

(3)

The allocation A is EF if and only if Eij does not occur
for all i 6= j. Using Equation (3) and the union bound over(
n
2

)
pairs of agents, the probability thatA is not EF is at most

Pr

∨
i6=j

Eij

 ≤∑
i6=j

Pr[Eij ] ≤

(
n

2

)
1

m3
≤ 1

m
.

Thus, the probability that A is not EF goes to zero as m
grows.



In Between: A Phase Transition
In this section, we support our theoretical results with an
empirical exploration of the transition from nonexistence to
existence of envy-free allocations as a function of the num-
ber of goods and agents. We find that the most difficult al-
location problems occur during the sharp phase transition
from nonexistence to existence. We show that this behav-
ior, which is common to many discrete feasibility problems,
holds under both of two natural optimization models (one
with and one without an objective function) and under dif-
ferent distributions over agents’ utility values.

Experimental Setup
We generate instances with n agents and m goods as
follows by sampling valuations for each agent and each
good from a given distribution over utility functions. In
our experimental setup, we draw from two distributions—
CORRELATED(0.4, 0.6) and UNIFORM(0, 1)—defined ear-
lier. Intuitively, the UNIFORM distribution randomly assigns
a value to each good for each agent, while the CORRELATED
distribution first draws an intrinsic value for each good, then
assigns a random value to each agent drawn from a (trun-
cated nonnegative normal) distribution around that intrinsic
value. UNIFORM satisfies both distributional assumptions
and thus aligns with both Theorems 1 and 2, while our in-
stantiation of CORRELATED only satisfies assumption [A2],
or the assumption needed for Theorem 2. Still, we will show
that both theoretical results hold experimentally for both dis-
tributions, even when the number of agents and goods is
quite small.

Given an instance as generated above, we search for an
envy-free allocation using one of two mixed integer pro-
grams (MIPs). Both formulations use n×m binary variables
xig that are activated if and only if agent i is allocated good
g. Model #1, a feasibility problem, is defined as follows:

find xig ∀i ∈ N, g ∈ G
s.t.

∑
i∈N xig = 1 ∀g ∈ G∑
g∈G vigxi′g −

∑
g∈G vigxig ≤ 0 ∀i 6= i′ ∈ N

xig ∈ {0, 1} ∀i ∈ N, g ∈ G
Intuitively, the first set of constraints ensures that each

good is allocated to exactly one agent, while the second set
of constraints ensures that each agent values its allocation at
least as highly as any other agent’s allocation. For this fea-
sibility problem, no explicit objective function is necessary;
indeed, the feasible region defined by the constraints is ex-
actly the space of all envy-free allocations.

We now define Model #2, an optimization version of the
envy-free allocation problem, as follows:

min e
s.t.

∑
i∈N xig = 1 ∀g ∈ G∑
g∈G vigxi′g −

∑
g∈G vigxig ≤ e ∀i 6= i′ ∈ N

xig ∈ {0, 1} ∀i ∈ N, g ∈ G
e ∈ Rnonneg

This second MIP model minimizes a real-valued non-
negative variable e representing the maximum envy between
any two agents; thus, an EF allocation exists if and only if
the objective value is zero at the optimum. This is an integer
programming-based implementation of the envy minimiza-
tion problem described by Lipton et al. (2004).

Model #1 may seem like the more general model since it
is amenable to the addition of various objective functions.
For example, adding an objective function that maximizes∑
i∈N

∑
g∈G vigxig would produce an envy-free allocation

that also maximizes social welfare. It is not obvious how
to adapt Model #2 to include arbitrary objective functions.
Still, there is some evidence that relaxing the feasible re-
gion and then re-casting the feasibility problem as an opti-
mization problem may result in better runtime performance.
For example, Sandholm, Gilpin, and Conitzer (2005) saw
speedups using an optimization model instead of a feasibil-
ity model in specific problem classes when exploring various
MIP models for finding Nash equilibria in two-player games
(although they did not see an overall speedup). We compare
the performance of both models in the coming section.

All experiments were performed in Python using IBM
ILOG CPLEX 12.61 in single-threaded mode under its de-
fault configuration.2 Runs were conducted on Blacklight,3 a
ccNUMA supercomputer with 8GB of RAM per core; each
experiment was run at least 160 times with a time limit of 12
hours per run. For solve time comparison, runs that timed
out were conservatively considered to have completed in
12 hours. When timeouts were ignored or penalized heavily
(e.g., counted as a 10×12 = 120 hour run), our experiments
exhibited the same qualitative behavior.

Phase Transitions
We now explore the existence of phase transitions in various
instantiations of the envy-free allocation problem.

Figure 1 shows an example phase transition for the ex-
istence of, and hardness of finding, an envy-free alloca-
tion in a problem with n = 10 agents valuing m ∈
{10, . . . , 30} goods. Results are presented for both the UNI-
FORM and CORRELATED distributions over utility functions
using Model #1 without and with a social welfare maximiz-
ing objective function. The thick red line (corresponding to
the left y-axis) plots the fraction of instances with m goods
and n agents such that an envy-free allocation existed.

Aligning with Theorem 1, Figure 1 shows that the proba-
bility of an EF allocation existing is small when the number
of goods is not much larger than the number of agents. Simi-
larly, aligning with Theorem 2, when the number of goods is
more (but not necessarily substantially more), the probabil-
ity of an EF allocation existing is essentially one. Figure 2
explores this transition quantitatively for increasing num-
bers of agents n by plotting the minimum value m where
at least 99% of the generated instances were feasible. Fitting
anm/ ln(m) function for either UNIFORM or CORRELATED
shows that the asymptotically-stated Theorem 2 holds even
when the number of goods and agents is quite small.

Figure 1 also plots runtime as a function of the number of
goods m. The thick dashed line (corresponding to the right
y-axis) plots the median runtime to either prove the nonexis-
tence of a solution or find and prove the optimality of a fea-
sible solution. The two dotted lines (also corresponding to

1
ibm.com/software/commerce/optimization/cplex-optimizer/

2
Source code & data: https://github.com/JohnDickerson/EnvyFree

3
blacklight.psc.edu
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Figure 1: Phase transition for n = 10 under either UNIFORM or CORRELATED, with or without maximizing social welfare.

5 10 15 20 25 30
m

0

1

2

3

4

5

6

7

8

9

M
ed

ia
n

R
un

tim
e

(s
)

n = 6, Existence, U[0,1]
Model 1
Model 2

5 10 15 20 25 30
m

0

2

4

6

8

10

12

14

16

M
ed

ia
n

R
un

tim
e

(s
)

n = 6, Existence, Correlated
Model 1
Model 2

10 15 20 25 30
m

0

2000

4000

6000

8000

10000

12000

M
ed

ia
n

R
un

tim
e

(s
)

n = 10, Existence, U[0,1]
Model 1
Model 2

10 15 20 25 30
m

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

M
ed

ia
n

R
un

tim
e

(s
)

n = 10, Existence, Correlated
Model 1
Model 2

Figure 3: Runtime comparison of Model #1 (feasibility) and Model #2 (optimization) for n = 6 and n = 10 agents.
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Figure 2: The minimum value of m where at least 99% of
the instances were feasible as n increases.

the right y-axis) plot the median runtimes for only the feasi-
ble and infeasible instances, respectively. We see a classical
“hardness bump” around the phase transition, with median
solution time being much higher when the probability of a
feasible instance is small but not trivial. Here, proving infea-
sibility takes significant computational effort.

Figure 3 shows that this hardness behavior is not just
an artifact of the feasibility Model #1; indeed, the opti-
mization problem defined by Model #2 exhibits an even
more stark hardness bump around the phase transition. This
roughly aligns with the experiences of Sandholm, Gilpin,
and Conitzer (2005), who found that relaxing the feasible
region while moving some constraints into the objective did
not result in an overall speedup.

Discussion & Future Research
In this paper, we theoretically and empirically investigated
the existence of envy-free allocations of indivisible goods.
Under additive valuations and general assumptions on the
distributions over values of individual goods, we theoreti-
cally characterized the conditions for nonexistence and ex-

istence of envy-free allocations. We supported these asymp-
totic results with experiments on two value distributions us-
ing two MIP models and found, empirically, that the theoret-
ical conditions for (non)existence of envy-free allocations
apply even when the number of agents and goods is quite
small. Furthermore, we discovered that the hardest compu-
tational problems in this space on average exist during the
phase transition between nonexistence and existence.

In typical phase transition work, what is increased on the
“x-axis” is the number of constraints while keeping the num-
ber of variables constant. Our phase transition is, in that
sense, different because as we increase the number of goods
(while keeping the number of agents fixed), both the number
of variables and constraints increases. Our phase transition
is nevertheless similar to prior ones in that (i) there is a sharp
transition from infeasibility to feasibility, (ii) the complex-
ity peak occurs at that transition, (iii) the complexity peak is
driven mainly by infeasible instances, and (iv) the infeasible
instances get harder—and rarer—as we move to the side of
the phase transition where instances are typically feasible.

While the theoretical results we presented are essentially
tight, it would be useful to completely characterize the phase
transition between nonexistence and existence of an envy-
free allocation. We showed experimentally that this phase
transition is quite sharp, but either proving that the loga-
rithmic factor in Theorem 2 is necessary or further whit-
tling down this bound toward Theorem 1 would be helpful.
Results of this nature are actively being pursued with ran-
dom 3-SAT problems (Kaporis, Kirousis, and Lalas 2006;
Maneva and Sinclair 2008). Furthermore, relaxing the dis-
tributional assumptions (especially on Theorem 1) would, if
possible, be useful toward this end.

Along the lines of enhanced MIP techniques, it would be
interesting to try to “flatten the hardness bump” we saw in
the experiments through the use of custom branching and
fathoming rules, variable prioritization schemes, and other
heuristics that maintain search completeness.
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