
Minimal Preference Elicitation in Combinatorial Auctions

Wolfram Conen
XONAR GmbH

Wodanstr. 7
42555 Velbert, Germany
E-mail: conen@gmx.de

Tuomas Sandholm�

Carnegie Mellon University
Computer Science Department

5000 Forbes Avenue
Pittsburgh, PA 15213

E-mail: sandholm@cs.cmu.edu

Abstract

Combinatorial auctions (CAs) where bidders can bid on bundles of items can be very desirable market mechanisms when the
items sold exhibit complementarity and/or substitutability, so the bidder’s valuations for bundles are not additive. However,
in a basic CA, the bidders may need to bid on exponentially many bundles, leading to difficulties in determining those
valuations, undesirable information revelation, and unnecessary communication. In this paper we present a design of
an auctioneer agent that uses topological structure inherent in the problem to reduce the amount of information that it
needs from the bidders. An analysis tool is presented as well as data structures for storing and optimally assimilating the
information received from the bidders. Using this information, the agent then narrows down the set of desirable (welfare
maximizing or Pareto efficient) allocations, and decides which questions to ask next. Several algorithms are presented that
ask the bidders for value, order, and rank information.

1 Introduction

Combinatorial auctions where bidders can bid on bundles of items can be desirable market mechanisms when the items
exhibit complementarity or substitutability, so the bidder’s valuations for bundles are not additive. One of the problems
with these otherwise desirable mechanisms is that determining the winners is computationally complex. There has been a
recent surge of interest in winner determination algorithms for such markets [10, 11, 2, 13, 15, 16, 14].

Another problem, which has received less attention, is that combinatorial auctions require potentially every bundle to
be bid on, and there are exponentially many bundles. This is complex for the bidder because she may need to invest effort
or computation into determining each of her valuations [12, 4, 5, 7]. It can also be undesirable from the perspective of
revealing unnecessary private information and from the perspective of unnecessary communication.

The key observation of this paper is that topological structure that is inherent in the problem can be used to intelligently
ask only relevant questions about the bidders’ preferences while still finding the optimal (welfare maximizing and/or Pareto
efficient) solution(s). We present building blocks for a design of an auctioneer agent that interrogates the bidder intelligently
regarding the bidder’s preferences, and optimally assimilates the returned information. Based on the information, the
auctioneer agent can narrow down the set of potentially desirable allocations, and decide which questions to ask the bidders
next.

We first present our topological observations, and then move to the data structures that are used to store and propagate
the information received. After that we discuss the algorithms for interrogating.

2 The Combinatorial Auction Setting

In a combinatorial auction, the seller has a set
 = f!1; : : : ; !mg of indivisible, distinguishable items that she can sell.
Any subset of the items is called abundle. The set of bidders (buyers) is calledN = f1; : : : ; ng.1 Each bidder has a value
function vi : 2

 ! R that states the value that the bidder is willing to pay for any given bundle. We assume that the
valuations are unique (vi(X) 6= vj(Y) if i 6= j orX 6= Y). This an innocuous assumption since if the valuations are drawn
from reals, the probability of a tie is zero.

�This work was funded by, and conducted at, CombineNet, Inc., 311 S. Craig St., Pittsburgh, PA 15213.
1In our model, the seller has zero reservation prices on all bundles, i.e., she gets no value from keeping them. If in reality she has reservation prices on

bundles, that can be modeled by treating the seller as one of the bidders who submits bids that correspond to the reservation values.

1

Our definitions of desirability of the solution (welfare maximization and Pareto efficiency, discussed later), are defined
with respect to thereportedvaluations. There is a large literature in game theory that deals with the issue of how to design
the incentives (rules of the game, who gets which bundles, who pays what) so as to motivate each bidder to reveal her
preferences truthfully. Later in this paper we will discuss the incentives for truthful revelation within our elicitation method.

We make the standard quasilinearity assumption about the bidder’s utilities, so the utility of any bidderi for bundle
A �
 is ui(A; p) = vi(A)� p, wherep is the amount that the bidder has to pay.

A collection(X1; : : : ; Xn) states which bundleXi �
 each bidderi receives. In a collection, some bidders’ bundles
may overlap in items, which would make the collection infeasible. We call a collection andallocation if it is feasible, i.e.,
each item is allocated to at most one bidder. The possibility thatXi = ; is allowed. An allocationX is welfare maximizing
if it maximizes

Pn

i=1 vi(Xi) among all allocations (feasible collections). An allocationX is Pareto efficientif there is no
other allocationY such thatvi(Xi) � vi(Yi) for each bidderi and strictly for at least some bidderi.2

3 Topological Structure in Combinatorial Auctions

We observed that there is significant topological structure in the combinatorial auction setting. In this paper we will use
that structure to avoid asking the bidders for unnecessary information about their valuations. In this section, we first discuss
the topological structure in the context of an implicit graph which we call therank lattice. We then present an actual data
structure called theaugmented order graphwhere the auctioneer stores all of the known information about the bidders’
valuations, and propagates it using topological structure in several ways.

3.1 Rank Lattice

Conceptually, the bundles can be ranked for each agent from most preferred to least preferred. This gives a unique rank for
each bundle for each agent. The key observation behind therank lattice is the following. Without referring to the values
of the bundles, each collection can be mapped to a unique rank vector[R1(X1); R2(X2); : : : ; Rn(Xn)]. The set of rank
vectors, and a “dominates” relation between them define a lattice. Now, the important fact is that if a collection (rank
vector) is feasible (i.e., is an allocation), then no collection (rank vector) “below” it can be a better solution to the allocation
problem. Consider the following example.

Example: Let there be two goods,A andB, and two agents,a1, anda2. The agents assign the following values to the
bundles:

; A B AB
a1 0 4 3 8
a2 0 1 6 9

These values imply a preference order over the bundles:
Agenta1: (1 : AB; 2 : A; 3 : B; 4 : ;).
Agenta2: (1 : AB; 2 : B; 3 : A; 4 : ;).

Only a subset of the collections is feasible and, thus, corresponds to allocations (see Figure 1, left).

[4,4]

[4,3]

[4,2][3,3][2,4]

[4,1]

[1,1]

[1,2] [2,1]

[1,3]

[1,4]

[2,2]

[2,3] [3,2]

[3,1]

[3,4]

dominated

[4,1]

[1,1]

[1,2] [2,1]

[1,3]

[1,4]

[2,2]

[2,3] [3,2]

[3,1]

[4,2][3,3][2,4]

[3,4] [4,3]

[4,4]

= not feasible

Figure 1: Rank lattice for our example. The nodes are collections. Some of them are infeasible, some are dominated, some
are both, and some are neither.

2Our definition of Pareto efficiency is based on comparison of bundles within an agent. If payments are taken into account in the definition of Pareto
efficiency, then the set of Pareto efficient solutions collapses to equal the set of welfare maximizing solution. We use the termwelfare maximizingfor the
latter set, and reserve the termPareto efficientfor the former purpose.

2

If a feasible collection is not dominated by another feasible collection, it belongs to the set of Pareto-efficient solutions.
In Figure 1, the set of Pareto efficient solutions can be obtained from overlaying the two graphs and picking the uncolored
collections[2; 2], [1; 4], and[4; 1]. Now, the welfare maximizing allocations can be determined by determining the value
of each allocation in this set. In our example, the welfare maximizing allocation is given by rank vector[2; 2], that is
X�

= fA;Bg.
With additional knowledge about the valuation functions, the collections to be checked for feasibility can be further

restricted. For example, in many auctions there isfree-disposal(vi(X) � vi(Y) if X � Y , i.e., the bidder can always
throw away extra items for free). Free disposal combined with our assumption of unique valuations allows for the following
type of pruning. It is never necessary to check the feasibility of collections that include one of the highest ranking bundles (a
rank 1) and a non-empty bundle (the highest ranking bundle is always the bundle including all items, every such collection
must be infeasible). Free disposal can be used to accomplish much more pruning in general. However, our techniques do
not assume free disposal; they capitalize on it if it holds.

While our algorithms never explicitly construct the rank lattice, they capitalize on all of the information that can be
deduced from it. Our algorithms also capitalize on other information and structure, as discussed in the next section.

3.2 Augmented Order Graph

Theaugmented order graphG includes a node for each (bidder, bundle) pair(i;X). It includes a directed arc from node
(i;X) to node(i; Y) (always nodes of the same bidder) whenevervi(X) > vi(Y). We call this a domination arc�. The
graphG also includes an upper boundUB for each node and a lower boundLB for each node. Finally, it includes a rank
Ri(X) for every node. Some of these variables may not have values.

Initially, G includes no edges. The upper bounds are initialized to1, and the lower bounds to0. All of the rank
information is initially missing. If there is free disposal, edges are added to the graph to represent this:((i;X); (i; Y)) 2 �

iff Y � X andX 6= Y .

>

[1,1]

[1,2] [2,1]

[1,3]

[1,4]

[2,2]

[2,3] [3,2]

[3,1]

[4,1]

[4,2][3,3][2,4]

[3,4] [4,3]

[4,4]

6

9

0

660 1.2.3.4.

A

A B

B AB

AB

1 1 1 1

2 2 2 20 0 1

0 0 0

B

A

B

3

101.
AB

2
Agent

Bundle

Rank Upper bound

Lower bound

Agent1:

Agent2:

Explanation:

1

Allocations

Figure 2: Order graph, feasible allocations, and how they relate to the rank lattice

Figure 2 shows the augmented order graph for our 2-agent, 2-good example at a stage where some of the information
from the bidders has not yet been asked. In the upper right corner, two allocations and their relation to the nodes in the
graph are shown. These allocations are connected to the corresponding feasible collections (allocations) in the rank lattice.
The lower boundLB of an allocation is the sum of the lower bounds of the bundles in that allocation. Similarly, the upper
boundUB of an allocation is the sum of the upper bounds of the bundles in that allocation. In the example, the allocations
can be ordered due to the available rank information. The allocation(fAg; fBg) dominates the other. The highlighted
rank combination represents the welfare maximizing allocation. This, however, cannot be determined yet due to lack of
information.

Our algorithms use the augmented order graph as the basic analysis tool. As new information is obtained, it is incorpo-
rated into the augmented order graph. This causes new arcs to be added, bounds to be updated, and rank information to be
filled in. As a piece of information is obtained and incorporated, its implications are fully propagated, as will be discussed.

3

The process is monotonic in that new information allows us to make more specific inferences. Edges are never removed,
upper bounds never increase, lower bounds never decrease, and rank information is never erased.

4 Interactive Algorithms for Selecting an Allocation

In this section we present algorithms that find desirable allocations based on asking the bidders questions. The idea is to use
this as a blueprint for implementing a software agent auctioneer that will intelligently ask the bidders the right questions for
determining good allocations without asking unnecessary questions. Each of our algorithms is incremental in that it requests
information, propagates the implications of the answer, and does this again until it has received enough information. The
auctioneer is allowed to ask any bidderi any of the following questions:

� Order information: Which bundle do you prefer, A or B?

� Value information: What is your valuation for bundle A? (the bidder can answer with bounds or an exact value).

� Rank information: In your preferences, what is the rank of bundle A? Which bundle has rank x in your preferences?
(Later we also discuss the more natural question: If you cannot get the bundles that you have declared most desirable
so far, what is your most desired bundle among the remaining ones?)

In different settings, answering some of these questions might be more natural and easier than answering others. There-
fore, we present different algorithms that use only some of these types of questions.

We first presentpolicy independent algorithmsthat make a clear separation between the policy of which questions to
ask and the assimilation of the information obtained. The advantage is that our optimal assimilation techniques can then be
used with any interrogation policy. The disadvantage is that the techniques are intense in terms of computation time and
space if the number of (bidder, bundle) pairs is large. Later we presentpolicy driven algorithmsthat tightly integrate the
interrogation and assimilation for computational efficiency.

4.1 Policy Independent Algorithms

All of the policy independent algorithms utilize the same general structure. An augmented order graphG and an input set
Y are expected as input to the algorithm. The type of the input setY will depend on the specific algorithm. The general
skeleton algorithm is as follows.

Algorithm Solve(Y ; G):
while not Done(Y ; G) do

o = SelectOp(Y ; G) /* Choose questions */
I = PerformOp(o;N) /* Interrogate bidders */
G = Propagate(I;G) /* Update graph */
U = Candidates(Y ; G) /* Select candidate allocations */

Given two allocations,a andb, and the augmented order graphG, the following procedure will be used in the policy
independent algorithms to check whethera dominatesb. This is determined using a combination of value information, order
information, and rank information (queried and inferred).3

Algorithm Dominates(a; b;G):
Oab = FALSE /* Flag for order domination */
Cab = 0 /* Amount of value domination */
foreach i 2 N do

if LBa
i > UBb

i

thenCab = Cab + (LBa
i � UBb

i)

else ifai � bi
thenOab = TRUE

elseCab = Cab + (LBa
i � UBb

i)

if Cab > 0 or (Cab = 0 andOab = TRUE)

then return TRUEelsereturn FALSE
3TheDominatesprocedure does not explicitly use rank information because the implications of the rank information will have already been propagated

into the value information in the bounds and the order information.

4

Proposition 1. Given a consistent order graphG, theDominatesalgorithm returns TRUE if and only if enough information
has been queried to determine thata dominatesb.

Next, propagating newly received information will be discussed. If value or order information is inserted into a pre-
viously consistent graphG, values of upper bounds are propagated in the direction of the edges and lower bounds in the
opposite direction. This propagation is done via depth-first-search (that marks the nodes touched when they are visited) in
G, so the propagation time isO(v + e), wherev is the number of bundles (number of nodes inG that correspond to the
agent whose values are getting updated), ande is the number of edges between those nodes.
Case 1: Inserting a new lower bound at nodek:
ProcedurePropLB(k;G) /* G contains the set of edges,� */
Pre = fl : (l; k) 2 �g

foreach l 2 Pre do
if LBk > LBl thenLBl = LBk; PropLB(l; G)

Case 2: Inserting a new upper bound at nodek:
ProcedurePropUB(k;G)

Suc = fl : (k; l) 2 �g

foreach l 2 Suc do
if UBk < UBl thenUBl = UBk; PropUB(l; G)

Case 3: Inserting a new edgek � l:
ProcedureInsertEdge((k; l); G)

if LBk < LBl thenLBk = LBl; PropLB(k;G)

if UBk < UBl thenUBl = UBk; PropUB(l; G).

Case 4: Inserting an exact valuation for nodek:
ProcedureInsertValue((k; v); G)

LBk = v; PropLB(k;G); UBk = v; PropUB(k;G).

Case 5: Inserting a rank for nodek:
ProcedureInsertRank((n; r); G)

(i; b) = n; K = f(j; c) 2 V : j = ig

if 9k 2 K with Rk < Rn and
Rk � Rl 8l 2 K with Rl < Rn

then InsertEdge((k,n),G)
if 9k 2 K with Rk > Rn and

Rk � Rl 8l 2 K with Rl > Rn

then InsertEdge((n,k),G)

Given a set of newly retrieved information,I , and the augmented order graphG, the following algorithm will insert the
information and propagate it.
Algorithm Propagate(I;G):
foreach i 2 I do

switch i /* Structural switch */
(node k, UB b):

if UBk > b thenUBk = b; PropUB(k,G)
(node k, LB b):

if LBk < b thenLBk = b; PropLB(k,G)
(node k, node l):InsertEdge((k; l); G)

(node k, value v):InsertValue((k; v); G)

(node k, rank r):InsertRank((k; r); G)

The following subsections discuss the policy independent algorithms in detail. The algorithms differ based on the types
of information that they request from the bidders. To obtain the complete algorithm, the following procedures have to be
substituted for the corresponding procedures in the general structure above.

5

4.1.1 Algorithms that Use Order Information

Order information allows the Pareto-optimal allocations to be determined, but it cannot be used to determine welfare maxi-
mizing allocations because that would require quantitative tradeoffs across agents.

Given a non-empty setY of feasible allocations and a graphG, the following algorithm will determine the set of
allocations that are not dominated, given the information in hand.
Algorithm Candidateso(Y ; G):
U = Y ; O = ;; C = ;

while U 6= ; do
pick a 2 U ; U = Unfag; C = ;

while U 6= ; do
pick b 2 U ; U = Unfbg

if Dominates(b; a;G)

then a = b

else if notDominates(a; b;G)

thenC = C [fbg

U = C; O = O [fag

Proposition 2. The above algorithm determines the setO � Y such that for alla 2 O : @b 2 Y with b dominatesa.

Given a set of allocations,Y , which are all pairwise incomparable with respect to domination, and the graphG, the
following function will return FALSE if a pair of allocations exists inY which have been judged incomparable due to lack
of information.
FunctionDoneo(U;G)

foreachfa; bg 2 U � U; a 6= b do
if not DefinitelyIncomparable4 (a; b)

then if 9i 2 N : (i; ai); (i; bi) 62 �

and((i; bi); (i; ai)) 62 �
then return FALSE

return TRUE

The remaining part of the algorithm is the interrogation policy. Our method can accommodate any policy here, but we
suggest two intuitive ones:

(1) Arbitrarily pick a pair of distinct allocationsfa; bg that are incomparable due to a lack of information. Arbitrarily,
choose one of the agentsi 2 N , for which no order information for the corresponding bundlesai andbi is available. Ask
the bidder which one of them she prefers.5

(2) Determine the set of pairs of incomparable allocations,U . While doing so, determine a setP of pairs of unordered
nodesf(i; ai); (i; bi)g 2 G for which9a; b 2 U; a 6= b so that neither((i; ai); (i; bi)) 2 � nor ((i; bi); (i; ai)) 2 �. Select
fromP a pairp = f(i; b1); (i; b2)g of nodes so that the number of pairs inU which containp is maximal.6 Ask the bidder
which bundle she prefers more,b1 or b2.

Proposition 3. Given a set of allocations,Y , and the graphG, for either interrogation policy,Solveo(Y ; G) will determine
the set of Pareto-optimal allocations contained inY .

4.1.2 Algorithms that Use Order and Value Information

Here we present an algorithm to determine welfare maximizing solutions. Given a non-empty set of feasible allocations,Y ,
that are all pairwise incomparable with respect to domination, and an augmented order graphG, the following algorithm
checks ifY contains only welfare maximizing allocations.

4A pair fa; bg of allocations will be calleddefinitely incomparable, iff there is a pair of agents,fi1; i2g such that edges(i1; ai1) � (i1; bi1) and
(i2; bi2) � (i2; ai2) and no edges(i1; bi1) � (i1; ai1) or (i2; ai2) � (i2; bi2) exist.

5The answer to this question alone might not be sufficient to ordera andb since there may be other unordered bundles in those allocations. Also, this
question might not be necessary: it can be possible to deduce the answer from answers to other alternative questions. On the positive side, the answer to
this question may make asking some other questions unnecessary.

6Deciding this edge adds information to the largest number of decisions in the next stage.

6

Algorithm Donev(Y ; G):
if jYj = 1 then return TRUE
foreacha 2 Y do

lb =
P

n2Ga

LBn

ub =
P

n2Ga

UBn

if lb 6= ub then return FALSE
return TRUE

Candidatesv is identical withCandidateso.
Again, any interrogation policy could be used. We propose the following. Pick a noden = (i; b) 2 V with LBn 6= GBn

and (one of) the largest number(s) of relations to allocations inY andLBn 6= GBn with the greatest lower bound. Ask
agenti for the value of bundleb.

Proposition 4. Given a set of feasible allocationsY and a graphG, the algorithmSolvesv will determine the set of welfare
maximizing allocations contained inY .

4.1.3 Algorithms that Use Rank Information

Algorithms that use rank information only cannot determine welfare maximizing solutions because that requires quantitative
tradeoffs across agents. Instead, we present an algorithm for finding Pareto-efficient ones.

GivenG and a setC of rank combinations, the following function answers TRUE if all elements ofC are feasible.
FunctionDoner(C; G)

foreachc 2 C do
if 9i 2 N : @(i; b) 2 V with R(i;b) = ci

then return FALSE /* Information missing */
if not Feasible7(c;G)

then return FALSEelse returnTRUE

FunctionCandidatesr(C; G):
foreachc 2 C do

if Infeasible8(c;G)

then C = Expand(c; C; G)

/* Loops over newly inserted elements */
FunctionExpand(c; C;G)

S = suc
9
(c); C = Cnfcg;

foreachs 2 S do
if not IsDominated(s; C;G)

thenC = C [fsg

FunctionIsDominated(s; C;G): foreachc 2 C do
if c � s /* lexicographic */

then if not Infeasible(c;G) return TRUE
return FALSE

We propose two interrogation policies forSelectOpr(C; G): (1) Select fromC a combinationc with the least number of
ranks without related nodes inG. For each such rankr at positioni of c, ask bidderi which bundle she has at rankr. (2)
As (1), but pick only one rank without a related node fromc.

Proposition 5. Given a set of combinations,C, and the graphG, for both policies, algorithmSolver(C; G) will determine
the set of feasible combinations in the (partial) lattice determined byC that are either inC or dominated only by infeasible
combinations inC. If C is initialized to(1; : : : ; 1), the resulting set represents the set of Pareto-optimal allocations.

7c is feasible ifbc, the corresponding set of bundles, is a partition of a subset of
. If not all bundles related to ranks are known yet, a FALSE will be
returned.

8Infeasibility can often be determined without knowing all rank-bundle relations. If the partial information available is not sufficient to decide about
infeasibility, FALSE will be returned. Thus, if both functions return FALSE, the information is insufficient.

9The successor function derives from a nodec = (r1; : : : ; rn) its set of successors as follows. For eachi; 1 � i � n with ri < 2m, generate
si 2 suc(c) as(r1; : : : ; ri + 1; : : : ; rn).

7

4.1.4 Algorithms that Use Rank and Value Information

In this section we discuss how rank and value information can be used to determine welfare maximizing solutions. The
Candidates and Done functions are instantiated as follows to do this.
FunctionCandidatesrv(C; G):
c = arg maxd2C LB10

(d;G)

if @d 2 Cnfcg with UB(d;G) >LB(c;G)

then C =Expand(c; C;G)

FunctionDonerv(C; G)

c = arg maxd2C LB(d;G) /* Best valued node */
if 9d 2 Cnfcg with UB(d;G) >LB(c;G) and

not Infeasible(d,G)
then return FALSEelse returnTRUE

We propose the following interrogation policy forSelectOprv(C; G). Pick the undecided combination with the highest lower
bound, sayc. Pick from the remaining combinations one, sayd, with UPd > LBc. If there is a ranki in d without a related
node, ask agenti which bundles she ranks at rankr. Otherwise, if there is a ranki and a corresponding node(i; b) with
UB(i; b) 6= LB(i; b), ask agenti her value for bundleb. Otherwise, there is a rankj in c and a corresponding node(j; a)
with UB(j; a) 6= LB(j; a). Ask agenti her value of bundlea.

Proposition 6. Given a set of combinations,C, and the graphG, algorithmSolverv(C; G) will determine the set of feasible
combinations in the (partial) lattice determined byC that are not dominated by other feasible combinations in the sublattice.
If C is initialized to(1; : : : ; 1), the resulting set represents the welfare maximizing allocations.

4.2 Policy-Driven Algorithms

While the algorithms presented above are very flexible in terms of their interrogation policies, tying the policy more closely
to the algorithm allows for improvements in computational efficiency, and also allows for the use of standard search strate-
gies in these interactive algorithms.

4.2.1 Algorithm that Uses Rank and Value Information

The following search algorithm uses rank and value information to determine a welfare maximizing allocation.
Algorithm BBF:
s = (1; : : : ; 1) /* start node */
OPEN= fsg; /* Unexpanded nodes, initialized tos */
CLOSED= ;; /* Expanded nodes */
while OPEN 6= ; do

c = argmaxc2OPEN

P
i2N vi(ci)

OPEN= OPENnfcg
if Feasible(c)then return fcg
CLOSED= CLOSED[fcg; SUC= suc(c)

foreachn 2 SUCdo
if n 62 OPEN andn 62 CLOSED
then OPEN= OPEN[fng

The algorithm asks questions to determine theargmax. There are the obvious value questions first, and then the search
proceeds one step down a path in the rank lattice. This entails asking all winning bidders the following question which is
more natural than an unconstrained rank question: if you cannot get any one of the bundles that you have named desirable
so far, what is your next preferred bundle?

Proposition 7. The algorithmBBF determines a welfare maximizing allocation.

10LBd =
P

i2N B(i; di), whereB(i; di) isLB(i; b) if 9(i; b) 2 V with R(i;b) = di, and0 otherwise.UBd analogously, with1 instead of0.

8

5 Conclusions and Future Research

Combinatorial auctions where bidders can bid on bundles of items can be very desirable market mechanisms when the
items sold exhibit complementarity and/or substitutability, so the bidder’s valuations for bundles are not additive. However,
they require potentially every bundle to be bid on, and there are exponentially many bundles. This is complex for the bidder
because she may need to invest effort or computation into determining each of her valuations. If the bidder evaluates bundles
that she does not win, evaluation effort is wasted. Bidding on too many bundles can also be undesirable from the perspective
of revealing unnecessary private information and from the perspective of causing unnecessary communication overhead. If
the bidder omits evaluating (and bidding on) some bundles on which she would have been competitive, economic efficiency
and revenue are generally compromised. A bidder could try to evaluate (more accurately) only those bundles on which she
would be competitive. However, in general it is difficult for the bidder to know on which bundles she would be competitive
before evaluating the bundles.

The key observation of this paper is that topological structure that is inherent in the problem can be used to intelligently
ask only relevant questions about the bidders’ valuations while still finding the optimal (welfare maximizing and/or Pareto
efficient) solution(s). We presented the rank lattice as an analysis tool. We then designed a data structure for storing and
propagating all of the information that the auctioneer agent has received. Based on the information, the agent can narrow
down the set of potentially desirable allocations, and intelligently decide which questions to ask the bidders next.

Three types of information queries were considered: value information (potentially with bounds only), order informa-
tion, and rank information (arbitrarily or in order). Selective interrogation algorithms were presented that use different
combinations of these to provably find the desired solution(s). Some of the algorithms focused on the propagation of infor-
mation, and would support any interrogation policy. Finally, we presented a search-based algorithm that deeply integrates
the interrogation policy into the algorithm in order to use a standard search strategy for interrogation, and in order to not
have to use and store the elaborate data structure of the policy independent algorithms.

We believe that this line of research holds significant promise. We plan to integrate it with incentive compatible auction
mechanisms such as the generalized Vickrey auction (GVA) [17, 1, 3]. The idea is that the our preference elicitation method
would find a welfare maximizing solution, but would ask extra questions to be able to find the welfare maximizing solution
under the assumption that each bidder in turn were not participating in the auction. These answers would suffice to compute
the Vickrey payments, which would motivate the bidders to bid truthfully. Any of the algorithms of this paper could be
used for this purpose by simply ignoring every bidder’s bids in turn and asking the ensuing questions for determining the
welfare maximizing allocation. If there are lazy bidders that would not participate once their bundles and prices have been
determined, the mechanism could interleave the questions pertinent to GVA amidst questions for determining the overall
allocation. This way the bidders would not know (at least not directly) which purpose the questions are for. The only open
issue to deal with is the concern that the questions that the auctioneer asks a bidder leak information to the bidder about the
answers that the other bidders have submitted so far. This makes the auction format not entirely sealed-bid. Since the GVA
was originally designed for sealed-bid auctions, it is not totally obvious that it leads to an incentive compatible mechanism
when used in conjunction with our preference elicitation method.

Another interesting avenue is to integrate this selective revelation technique with open-cry ascending combinatorial
auctions, where some unnecessary revelation is avoided in another way [9, 8, 6, 18, 7]. Namely, if the price of a bundle is
already too high for an agent for sure, the agent need not compute or communicate the exact value. Combining that idea
with the topological ideas of this paper is likely to lead to a hybrid protocol that requires less information than either method
alone.

References

[1] E H Clarke. Multipart pricing of public goods.Public Choice, 11:17–33, 1971.

[2] Yuzo Fujishima, Kevin Leyton-Brown, and Yoav Shoham. Taming the computational complexity of combinatorial
auctions: Optimal and approximate approaches. InProceedings of the Sixteenth International Joint Conference on
Artificial Intelligence (IJCAI), pages 548–553, Stockholm, Sweden, August 1999.

[3] Theodore Groves. Incentives in teams.Econometrica, 41:617–631, 1973.

[4] Kate Larson and Tuomas Sandholm. Computationally limited agents in auctions. InAGENTS-01 Workshop of Agents
for B2B, Montreal, Canada, 2001.

9

[5] Kate Larson and Tuomas Sandholm. Costly valuation computation in auctions: Deliberation equilibrium. InTheoret-
ical Aspects of Reasoning about Knowledge (TARK), Siena, Italy, 2001.

[6] David C Parkes. iBundle: An efficient ascending price bundle auction. InProceedings of the ACM Conference on
Electronic Commerce (ACM-EC), pages 148–157, Denver, CO, November 1999.

[7] David C Parkes. Optimal auction design for agents with hard valuation problems. InAgent-Mediated Electronic
Commerce Workshop at the International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 1999.

[8] David C Parkes and Lyle Ungar. Iterative combinatorial auctions: Theory and practice. InProceedings of the National
Conference on Artificial Intelligence (AAAI), pages 74–81, Austin, TX, August 2000.

[9] David C Parkes and Lyle Ungar. Preventing strategic manipulation in iterative auctions: Proxy-agents and price-
adjustment. InProceedings of the National Conference on Artificial Intelligence (AAAI), pages 82–89, Austin, TX,
August 2000.

[10] Michael H Rothkopf, Aleksandar Pekeˇc, and Ronald M Harstad. Computationally manageable combinatorial auctions.
Management Science, 44(8):1131–1147, 1998.

[11] Tuomas Sandholm. An algorithm for optimal winner determination in combinatorial auctions. InProceedings of the
Sixteenth International Joint Conference on Artificial Intelligence (IJCAI), pages 542–547, Stockholm, Sweden, 1999.
Extended version first appeared as Washington Univ., Dept. of Computer Science, tech report WUCS-99-01, January
28th.

[12] Tuomas Sandholm. Issues in computational Vickrey auctions.International Journal of Electronic Commerce,
4(3):107–129, 2000. Special Issue on Applying Intelligent Agents for Electronic Commerce. A short, early version
appeared at the Second International Conference on Multi–Agent Systems, pages 299–306, 1996.

[13] Tuomas Sandholm and Subhash Suri. Improved algorithms for optimal winner determination in combinatorial auctions
and generalizations. InProceedings of the National Conference on Artificial Intelligence (AAAI), pages 90–97, Austin,
TX, 2000.

[14] Tuomas Sandholm and Subhash Suri. Side constraints and non-price attributes in combinatorial markets. InIJCAI-
2001 Workshop on Distributed Constraint Reasoning, Seattle, WA, 2001.

[15] Tuomas Sandholm, Subhash Suri, Andrew Gilpin, and David Levine. CABOB: A fast optimal algorithm for combi-
natorial auctions. InProceedings of the Seventeenth International Joint Conference on Artificial Intelligence (IJCAI),
Seattle, WA, 2001.

[16] Tuomas Sandholm, Subhash Suri, Andrew Gilpin, and David Levine. Winner determination in combinatorial auction
generalizations. InAGENTS-2001 Workshop on Agent-Based Approaches to B2B, Montreal, Canada, 2001.

[17] W Vickrey. Counterspeculation, auctions, and competitive sealed tenders.Journal of Finance, 16:8–37, 1961.

[18] Peter R Wurman and Michael P Wellman. AkBA: A progressive, anonymous-price combinatorial auction. InPro-
ceedings of the ACM Conference on Electronic Commerce (ACM-EC), pages 21–29, Minneapolis, MN, October 2000.

10

