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Abstract

We develop a normative theory of interaction—negotiation in particular—among self-interested
computationally limited agents where computational actions are game theoretically treated as part of
an agent’s strategy. We focus on a 2-agent setting where each agent has an intractable individual
problem, and there is a potential gain from pooling the problems, giving rise to an intractable
joint problem. At any time, an agent can compute to improve its solution to its own problem, its
opponent’s problem, or the joint problem. At a deadline the agents then decide whether to implement
the joint solution, and if so, how to divide its value (or cost). We present a fully normative model
for controlling anytime algorithms where each agent has statistical performance profiles which are
optimally conditioned on the problem instance as well as on the path of results of the algorithm run
so far. Using this model, we introduce a solution concept, which we call deliberation equilibrium.
It is the perfect Bayesian equilibrium of the game where deliberation actions are part of each
agent’s strategy. The equilibria differ based on whether the performance profiles are deterministic
or stochastic, whether the deadline is known or not, and whether the proposer is known in advance or
not. We present algorithms for finding the equilibria. Finally, we show that there exist instances of the
deliberation–bargaining problem where no pure strategy equilibria exist and also instances where the
unique equilibrium outcome is not Pareto efficient.  2001 Elsevier Science B.V. All rights reserved.

Keywords: Automated negotiation; Multiagent systems; Game theory; Resource-bounded reasoning; Bounded
rationality; Bargaining; Anytime algorithm

✩ A short early version of this paper appeared in the proceedings of the National Conference on Artificial
Intelligence (AAAI), Austin, TX, August 2000.

* Corresponding author.
E-mail addresses: klarson@cs.cmu.edu (K. Larson), sandholm@cs.cmu.edu (T. Sandholm).

0004-3702/01/$ – see front matter  2001 Elsevier Science B.V. All rights reserved.
PII: S0004-3702(01)0 01 32 -1



184 K. Larson, T. Sandholm / Artificial Intelligence 132 (2001) 183–217

1. Introduction

Systems, especially on the Internet, are increasingly being used by multiple parties—
or software agents that represent them—with their own preferences. This invalidates
the traditional assumption that a central designer controls the behavior of all system
components. The system designer can only control the mechanism (rules of the game),
while each agent chooses its own strategy. The economic efficiency that a system yields
depends on the agents’ strategies. So, to develop a system that leads to desirable outcomes,
the designer has to make sure that each agent is motivated to behave in the desired way.
This can be achieved by analyzing the game using the Nash equilibrium solution concept
from game theory (or its refinements): no agent is motivated to deviate from its strategy
given that the others do not deviate [19,20].

However, the equilibrium for rational agents does not generally remain an equilibrium
for computationally limited agents. 1 This leaves a potentially hazardous gap in game the-
ory as well as automated negotiation (see, for example, [15,24,31]) because computation-
ally limited agents are not motivated to behave in the desired way. This paper presents a
framework and first steps toward filling that gap.

In this paper we begin to develop a theory of interaction—negotiation in particular—
where computation actions are treated as part of an agent’s strategy. We study a 2-agent
bargaining setting where at any time, the agent can compute to improve its solution to its
own problem, its solution to the opponent’s problem, or its solution to the joint problem
where the tasks and resources of the two agents are pooled. The bargaining occurs over
whether or not to use a solution to the joint problem, and how to divide the associated
value or cost.

Early on, it was recognized that humans have bounded rationality, for example, due to
cognitive limitations, so they do not act rationally as economic theory would predict [7,
35]. Since then, considerable work has focused on developing normative models that
prescribe how a computationally limited agent should behave (see, for example, [5,9,
26]). This is a highly nontrivial undertaking, encompassing numerous fundamental and
technical difficulties. As a result most of those methods resort to simplifying assumptions
such as myopic deliberation control [3,28,29], conditioning the deliberation control on
hand-picked features [28,29], assuming that an algorithm’s future performance can be
deterministically predicted using a performance profile [10,11], assuming that an anytime
algorithm’s future performance does not depend on the run on that instance so far [4,9,38,
39] or that performance is conditioned on quality so far but not the path [8], or resorting to
asymptotic notions of bounded optimality [27].

While such simplifications can be acceptable in single-agent settings as long as the
agent performs reasonably well, any deviation from full normativity can be catastrophic
in multiagent settings. If the designer cannot guarantee that the strategy (including
deliberation actions) is the best strategy that an agent can use, there is a risk that an

1 In the relatively rare settings where the incentives can be designed so that each agent is motivated to use
the desired strategy independent of what others do (dominant strategy equilibrium), a rational agent is best
off maintaining its strategy even if some other agents do not act rationally, for example, due to computational
limitations.
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agent is motivated to use some other strategy. Even if that strategy happens to be “close”
to the desired one, the social outcome may be far from desirable. Therefore, a fully
normative deliberation control method is required as a basis for analyzing each agent’s
best strategy. This paper introduces such a fully normative deliberation control method. It
takes into account that each agent may use all the information it has available to control
its computation, including conditioning on the problem instance and the path of solutions
found on the run so far. This paper will discuss how this deliberation control method can be
used as a basis for deciding on an agent’s best-response strategy: what deliberation actions
and negotiation actions (offers, acceptances, and rejections) the agent should execute at
any point in the game.

Game theorists have also realized the significance of computational limitations (see,
for example, [25]), but the models that address this issue have mostly analyzed how
complex it is to compute the rational strategies [14] (rather than the computation impacting
the strategies), memory limitations in keeping track of history in repeated games via
deterministic finite automata or Turing machines (see, for example, [1,6,22]), limited
uniform-depth lookahead capability in repeated games [12], or showing that allowing
the choice between taking one computation action or not undoes the dominant strategy
property in a Vickrey auction [32]. On the other hand, in this paper, the limited rationality
stems from the complexity of each agent’s optimization problem (each agent has a
computer of finite speed, some anytime algorithm which might not be perfect, and finite
time), a setting which is ubiquitous in practice. 2

In this paper we investigate an ultimatum game where agents must first use their limited
computational resources in order to determine whether any bargaining should occur, and if
so, what the agents are actually bargaining over, that is, what is the value they are trying to
agree to split. While bargaining has been well studied in the economics and game theory
literature (see, for example, [21]), most models of bounded-rational agents assume that
the agents know what they are bargaining over a priori but must learn which strategies
work well [30]. Instead, in our model, agents have to use their limited resources in order to
determine exactly what they are bargaining over.

2. An example application

To make the presentation more concrete, we now discuss an example domain where
our methods are needed. Consider a distributed vehicle routing problem [33] with two
geographically dispersed dispatch centers that are self-interested companies (Fig. 1). Each
center is responsible for certain tasks (deliveries) and has a certain set of resources
(vehicles) to take care of them. So each agent—representing a dispatch center—has its
own vehicles and delivery tasks.

Each agent’s individual problem is to minimize transportation costs (driven mileage)
while still making all of its deliveries while honoring the following constraints [33]:

2 The same source of complexity has been addressed [33], but that paper only studied outcomes, not the process
or the agents’ strategies. It was also assumed that the algorithm’s performance is deterministically known in
advance. Finally, the agents had costly but unlimited computation, while in this paper the agents have free but
limited computation.
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Fig. 1. Small example problem instance of the distributed vehicle routing problem. This instance has two dispatch
centers represented in the figure by computer operators. They receive the delivery orders and route the vehicles.
The light dispatch center has light tasks and trucks while the dark dispatch center has darker tasks and trucks.
The dispatch centers receive all of their delivery orders at once, and then have some time to compute a routing
solution before the trucks need to be dispatched. For example, in some practical settings, the delivery tasks are
known by Friday evening and the route plan for the next week has to be ready by Monday morning when the
trucks need to be dispatched [33].

• Each vehicle has to begin and end its tour at the depot of its center (but neither the
pickup nor the drop-off locations of the orders need to be at the depot).
• Each vehicle has a maximum load weight constraint. These may differ among

vehicles.
• Each vehicle has a maximum load volume constraint. These may differ among

vehicles.
• Each vehicle has a maximum route length (prescribed by law).
• Each delivery has to be included in the route of some vehicle.

An agent’s individual problem is NP-hard since �TSP 3 can be trivially reduced to it. The
problem is in NP because the cost and feasibility of a solution can be checked in polynomial
time. Therefore, the problem is NP-complete.

The geographical operation areas of the centers overlap. This creates the potential for
either center to handle a delivery. There is a potential for savings in driven mileage by
pooling the agents’ tasks and resources since one agent may be able to handle some of the
other’s tasks with less driving than the other due to adjacency. The objective in this joint
problem is to again minimize driven mileage. This problem is again NP-complete.

3 The�TSP is a Traveling Salesman Problem where the distances between cities satisfy the triangle inequality.
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Whether the agents actually decide to coordinate their deliveries is determined by the
costs associated with the different solutions. The agents must negotiate, or bargain, about
whether to independently deliver their own packages, or whether to share their delivery
tasks and resources in order to reduce costs. They must also negotiate as to how they
will split the costs and benefits of the joint solution, if they agree to carry out a joint
solution. However, before agents can decide whether to carry out a joint solution or the
two individual solutions, they must have solutions (possible routes) for the three problems.

3. The general setting

The distributed vehicle routing problem is only one example problem where the methods
of this paper are needed. In general, they are needed in any setting with two self-interested
agents where each agent has an intractable individual problem, and there is a potential
savings from pooling the problems, giving rise to an intractable joint problem. We also
assume that the value of any solution to an agent’s individual problem is not affected by
what solution the other agent uses for its individual problem.

Applications with these characteristics are ubiquitous, including transportation as
discussed above, manufacturing (where two companies that potentially subcontract with
each other need to construct their manufacturing plans and schedules), electric power
negotiation between a custom provider and an industrial consumer (where the participants
need to construct their production and consumption schedules), classroom scheduling,
scheduling of scientific equipment among multiple users, and bandwidth allocation and
routing in multi-provider multi-consumer computer networks to name just a few.

In order to determine the gain generated by pooling instead of each agent operating
individually, agents need to compute solutions to both agents’ individual problems as well
as to the joint problem. We assume that the agents have anytime algorithms that can be
used to solve problems so that some feasible solution is available whenever the algorithm
is terminated, and the solution improves as more computation time is allocated to the
algorithm.

By computing on the joint problem, an agent reduces the amount of time it has for
computing on its individual problem. This may increase the joint value to the agents
(reduce the sum of the agents’ costs), but makes this agent’s fallback position worse
when it comes to bargaining over how the joint value should be divided between the two
agents. Also, if one agent is computing on the joint problem, would it not be better for
the other agent to compute on something different so as not to waste computation? In this
paper we present a model where each agent strategically decides on how to use its limited
computation in order to maximize its own expected payoff in such settings.

4. The model

In this section we introduce the computational bargaining model. There are two distinct
parts to the model: the deliberation control part and the bargaining part. However, the
actions that an agent takes in one part affect the actions that the agent should take in the
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other part, as well as the actions that the other agents will take in both parts. So, although
the deliberation precedes bargaining, these two stages are deeply interrelated as we will
show.

Let there be two agents, α and β , each with its own individual problem. They also have
the possibility to pool, giving rise to a joint problem. We assume that time is discretized
into time units and each computational step takes one time unit. However, time is limited,
so agents can deliberate for at most T time steps. Agents must decide how and when to
compute on the three problems (the two individual problems and the joint problem), and
which offers to make and which to accept. Each agent makes these decisions online based
on the results of its computations up to that point (which can change the agent’s payoff
expectations and its expected gain from different future computations).

In this section we introduce a normative deliberation control method that captures
the possibilities that agents have in controlling their computation and how it affects the
bargaining process.

4.1. Normative control of deliberation

Each agent has an anytime algorithm that has a feasible solution available whenever
it is terminated, and improves the solution as more computation time is allocated to the
problem. Let vαα (t) be the value of the solution to agent α’s individual problem after

computing on it for t time steps. Similarly, vβα (t) is the value of the solution to agent β’s
individual problem after agent α has computed on it for t time steps. Finally, vjoint

α (t) is the
value of the solution to the joint problem after computing on it for t time steps.

The agents have statistical performance profiles that describe how their anytime
algorithms improve the solutions as a function of the allocated computation time. As will be
discussed later, each agent uses this information to decide how to allocate its computation
at every step of the game, optimally striking a tradeoff between computation time and
solution quality.

A common representation of performance profiles is a table of discrete values [8,39].
This approach requires discretizing time into a finite number of time steps and solution
quality into a finite number of solution levels. For each time step and each level of solution
quality, the table contains the probability that the solution will be of that quality. The
resolution of the discretization determines a tradeoff between accuracy of the performance
profile and the amount of data needed (and the space needed to store it) to populate the
space of performance profile.

Instead of using a table of discrete values to represent the performance profile, we
propose storing the values in a tree structure. While this does not change the tradeoff
between accuracy and required data, using a tree structure allows for optimal conditioning
on results of execution so far which the earlier methods do not support.

We index the problem (agent α’s, agent β’s, and the joint) by z, z ∈ {α,β, joint}. For
each z there is a performance profile tree, T zi , representing the fact that an agent i can
condition its algorithm’s performance profile on the problem instance. Fig. 2 exemplifies
one such tree. Each depth of the tree corresponds to the time t of the run that the algorithm
has executed on that problem instance. Each node at depth t of the tree represents a possible
solution quality (value), vzi , that is obtained by running the algorithm for t time steps on
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Fig. 2. A performance profile tree.

that problem. There may be several nodes at a depth since the algorithm may reach different
solution qualities for a given amount of computation depending on the problem instance.
At any depth there may be more than one node with a given value as the path taken to
reach a certain value may be different depending on the problem instance. We assume that
the solution quality in the performance profile tree, T αi , of agent α’s individual problem is

discretized into a finite number of levels. Similarly, the solution quality in T βi is discretized

into a finite number of levels, as is the solution quality in T joint
i .

Each edge in the tree is associated with the probability that the child is reached in the
next computation step given that the parent has been reached. This allows one to compute
the probability of reaching any particular future node in the tree given the node that has
been reached so far. This is accomplished by multiplying the probabilities on the path
between these two nodes. If there is no path, the probability is 0.

The tree is constructed by collecting statistical data from previous runs of the
algorithm on different problem instances. The more finely solution quality and time are
discretized, the more accurate deliberation control is possible. However, with more refined
discretization, the number of possible runs increases (it is O(mD) where m is the number
of levels of solution quality and D is depth of the tree), so more runs need to be seen to
populate the space. A tighter bound can be obtained once the observation is made that
the values of the solutions are always increasing and can be represented as step functions.
The bound is O(Nd) where N is the number of leaves in the tree and d is the average
depth [3]. Furthermore, the space should be populated densely to get good probability
estimates on the edges of the performance profile trees. 4 Each run is represented as a path
in the tree. As a run proceeds along a path in the tree, the frequency of each edge of that
path is incremented, and the frequencies at the nodes on the path are normalized to obtain
probabilities. If the run leads to a value for which there is no node in the tree, the node is
generated and an edge is inserted from the previous node to it.

4 If the algorithm is stochastic, variability can occur even across multiple runs on the same instance.



190 K. Larson, T. Sandholm / Artificial Intelligence 132 (2001) 183–217

We denote by time(n) the depth of node n in the performance profile tree. In other words,
time(n) is the number of computation steps used to reach node n. We denote by V (n) the
value of node n.

Definition 1. The state of deliberation of agent α at time step t is

θα(t)=
〈
nαα,n

β
α,n

joint
α

〉
,

where nαα , nβα , and njoint
α are the nodes where agent α is currently in each of the

three performance profile trees and time(nαα) + time(nβα)+ time(njoint
α ) = t . The state of

deliberation for agent β is defined analogously.

In practice it is unlikely that an agent knows the solution quality for every time
allocation without actually doing the computation. Rather, there is uncertainty about how
the solution value improves over time. Our performance profile tree allows us to capture
this uncertainty. For example, with a depth t search in the tree one can determine P(vz|t),
denoting the probability that running the algorithm for t time steps produces a solution of
value vz.

The deliberation set is the set of deliberation states that an agent can reach in exactly t
deliberation actions.

Definition 2. The deliberation set of agent α at time t is

Θα(t)=
{
θα(t) | time

(
nαα

)+ time
(
nβα

)+ time
(
n

joint
α

)= t}.
The deliberation set for agent β is defined analogously.

We shall sometimes use the notation Θα(t
α
α , t

β
α , t

joint
α ) to represent the restricted

deliberation set

Θα
(
tαα , t

β
α , t

joint
α

)= {
θα

(
tαα + tβα + t joint

α

) | time
(
nαα

)= tαα , time
(
nβα

)= tβα ,
time

(
n

joint
α

)= t joint
α

}
.

Unlike previous methods for performance profile based deliberation control, our
performance profile tree directly supports conditioning on the path of solution quality
so far. 5 The performance profile tree that applies given a path of computation so far is
simply the subtree rooted at the current node n. We denote this subtree by T z(n). If an
agent is at a node n with value v, then when estimating how much additional deliberation
would increase the solution value, the agent need only consider paths that emanate from
node n. The probability, Pn(n′), of reaching a particular future node n′ in T z(n) given that
the current node is n is simply the product of the probabilities on the path from n to n′.

5 Our results apply directly to the case where the conditioning on the path is based on other solution features
in addition to solution quality. For example, in a scheduling problem, the distribution of slack can significantly
predict how well an iterative refinement algorithm can further improve the solution.



K. Larson, T. Sandholm / Artificial Intelligence 132 (2001) 183–217 191

Similarly, given that the current node is n, the expected solution quality after allocating t
more time steps to this problem is

∑
{n′|n′ is a node in T z(n) with depth t}

Pn(n
′) · V (n′).

This can be easily computed using depth-first-search with a depth limit t in T z(n).
Computation plays several strategic roles in the game. First, it improves the solution that

is available—for any one of the three problems. Second, it resolves some of the uncertainty
about what future computation steps will yield. Third, it gives information about what
solution qualities the opponent has encountered and can expect. This helps in estimating
what solution quality the other agent has available on any of the three problems. It also
helps in estimating what computations the other agent might have done and might do.
Therefore, in equilibrium, an agent may want to allocate computation on its individual
problem, the joint problem, and even on the opponent’s problem. Agents may not share
algorithms for the problems, and so may obtain different results for the solution of the joint
problem. However, if one agent has computed a high value for the joint, then it is likely
that the other agent will also be able to obtain a high value. The agents know this, and,
where applicable, can use this knowledge to speculate as to how the other agent is using
its deliberation resources. We will show how agents use the performance profile trees to
optimally handle these considerations.

4.1.1. Special case: Deterministic performance profiles
In a deterministic performance profile, the algorithm’s performance can be projected

with certainty. In this setting, the tree that represents the performance profile has only one
path. Before using any computation, an agent can determine what the value will be after
any number of computation steps devoted to any problem z, that is, vz(t) ∈ R is known
for all t . So, computation does not provide any information about the expected results
of future computations. Also, computation does not provide any added information about
the performance profiles, which could be used to estimate the other agent’s computational
actions.

As will be presented later, in some of our settings where the performance profiles are
not deterministic, we assume that the agents have the same performance profile trees T α ,
T β , and T joint. In some of our settings we additionally assume that T α , T β , and T joint

are common knowledge. One scenario where the agents have the same performance profile
trees is where the agents use the same algorithm and have seen the same training instances.
This is arguably roughly the case in practice if the parties have been solving the same
type of instances over time, and the algorithms have evolved through experimentation and
publication. In settings where the performance profiles are deterministic, all of our results
go through even if the agents have different performance profile trees T αα , T βα , T joint

α , T αβ ,

T ββ , and T joint
β . Yet in some of these settings we assume that T αα , T βα , T joint

α , T αβ , T ββ , and

T joint
β are common knowledge.
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4.2. Bargaining

The term bargaining is used to refer to a situation in which:
(1) Agents have the possibility of concluding a mutually beneficial agreement.
(2) There is a conflict of interests about which agreement to conclude.
(3) No agreement may be imposed on any individual without its approval.
In our setting agents bargain over how to divide the surplus (or cost) associated with

implementing the joint solution. Each agent prefers to receive more rather than less and
each has the possibility to opt out of the bargaining procedure and to implement its
individual solution with the associated value v.

At some point in time, T , there is a deadline at which time both agents must stop
deliberating and decide how they will execute the solutions based on the outcome of
a bargaining round. The agents perform their computational actions in parallel with no
communication between them until the deadline is reached. Call the value of the solution
computed by the deadline by agent i ∈ {α,β} to agent α’s problem vαi , to agent β’s

problem vβi , and to the joint problem vjoint
i . Through bargaining, the agents decide whether

to pool or not, and in the former case they also decide how to divide the value of the
solution to the joint problem. If the value of the solution to the joint problem is higher than
the sum of the values of the solutions to the individual problems, then there is a potential
gain from agreeing to implement the joint solution.

We restrict the bargaining so that only one agent is allowed to make an offer, while the
other agent has the ability to either accept or reject the offer made (that is, the agents are
involved in an ultimatum game). If a proposal is accepted, the joint solution is implemented
and the surplus is divided as determined by the agreed upon proposal. If no agreement is
reached then the agents implement their individual solutions with no further interaction.

The values that have been computed by the agents affect the bargaining process and
outcome. For example, if both agents decide to devote no computation on the solution for
the joint problem, then it is unlikely that any agreement will be reached in the bargaining
process on whether to execute the joint solution. Instead, both agents would likely act
independently, implementing their own individual solutions. If, on the other extreme, both
agents had computed only on the solution for the joint problem, then it is more likely that
agreement will be reached. The bargaining strategies of the agents are determined by the
values they have computed on all problems. The offer that an agent makes is determined
by the value of the joint solution that it has computed as well as the value it has obtained
for its individual solution and on the value it believes the other agent has computed for its
own individual solution. Similarly, the offer that an agent will accept is determined by the
value that it has computed for its individual problem, since that is its fallback value (that
is, the agent is guaranteed to receive at least that amount if the agreement is not reached.

Say that agent α is the proposer. It makes a take-it-or-leave-it offer, xoα , to the other
agent, β , about how much agent β’s payoff will be if they pool. 6 Agent β can then accept
or reject. If agent β accepts the offer, the agents pool and use agent α’s solution to the
joint problem. Agent β’s payoff is xoα as proposed and agent α gets the rest of the value

6 We allow an agent to make a negative “unacceptable” offer which signals that it does not want to coordinate
or implement the joint solution.
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Table 1
If agent α makes an offer, xoα , to agent β, then agent β has the choice of either accepting or
rejecting it. The payoffs for the agents in either situation are listed in the table above

Agent Payoff if the offer is accepted Payoff if the offer is rejected

α v
joint
α − xoα vαα

β xoα v
β
β

of the solution: vjoint
α − xoα . If agent β rejects, both agents implement their own computed

solutions to their own individual problems, in which case agent α’s payoff is vαα and agent

β’s payoff is vββ . The payoffs are presented in Table 1.
Before the deadline, the agents may or may not know which one of them is the proposer.

In any case, if the agents agree to implement the joint solution, the joint solution computed
by the proposer is used. In our model the probability that agent α will be the proposer
is Pprop, and this is common knowledge. When agents reach the bargaining stage, each
agent’s strategy is captured by an offer-accept vector. An offer-accept vector for agent α
is OAα = (xoα, xaα) ∈ R

2, where xoα is the amount that agent α would offer if it were the
proposer, and xaα is the minimum value it would accept if agent β made the proposal. The
offer-accept vector for agent β is defined similarly.

4.3. Definition of strategies

The agents’ strategies incorporate actions from both the deliberation part and the
bargaining part of the game. For the deliberation part of the game, an agent’s strategy
is a mapping from the state of deliberation to the next deliberation action (that is, selecting
which solution z, z ∈ {α,β, joint} to compute another time step on—in words, whether to
compute on the agent’s own problem, the other agent’s problem, or the joint problem).

Definition 3. A deliberation strategy for agent α with deadline T is

SDα =
(
SD,tα

)T−1
t=0 ,

where

SD,tα :Θα(t)→
{
aα, aβ, ajoint}

is a mapping from a deliberation state at time t , θα(t) = 〈nαα,nβα,njoint
α 〉, to a deliberation

action az where az is the action of computing one time step on the solution for problem
z ∈ {α,β, joint}. The deliberation strategy of agent β , SDβ , is defined analogously.

In a deterministic setting, taking a deliberation action causes the agent to move into a
specific state of deliberation. However, in the stochastic setting, if an agent is in a certain
state of deliberation at time t , then the action of computing on a problem will cause the
agent to be in any one of several states of deliberation at time t + 1. The probability
with which an agent will enter into a specific state of deliberation is determined by the
performance profiles.
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At the deadline, T , each agent has to decide on its offer-accept vector. Therefore, the
strategy at time T is a mapping from the state of deliberation at time T to an offer-accept
vector.

Definition 4. A bargaining strategy for agent α with deadline T ,

SBα :Θα(T )→R
2

is a mapping from a state of deliberation at time T , to an offer-accept vector, (xoα, x
a
α). The

bargaining strategy of agent β , SBβ , is defined analogously.

An agent’s strategy consists of a deliberation strategy and a bargaining strategy.

Definition 5. A strategy for agent α with deadline T is

Sα =
(
SDα ,S

B
α

)
.

A strategy for agent β , Sβ is defined analogously.

Our analysis will also allow mixed strategies. A mixed strategy for agent α is
S̃α = (S̃Dα , S̃Bα ) where S̃Dα is a mapping from a deliberation state θα(t) to a probability
distribution over the set of deliberation actions {aα, aβ, ajoint}. We let pα be the probability
that an agent takes action aα, pβ be the probability that an agent takes action aβ , and
therefore, 1 − pα − pβ is the probability that an agent takes action ajoint. The mixed
bargaining strategy, S̃Bα , is a mapping from a deliberation state θα(T ) to a probability
distribution over offer-accept vectors.

5. Equilibria and algorithms

We want to make sure that the strategy that we propose for each agent—and according
to which we study the outcome—is indeed the best strategy that the agent has from its
self-interested perspective. This makes the system behave in the desired way even though
every agent is designed by and represents a different self-interested real-world party. One
approach would be to just require that the analysis shows that no agent is motivated to
deviate to another strategy given that the other agent does not deviate. This would be the
Nash equilibrium solution concept from noncooperative game theory [20]. We actually
place a stronger requirement on our method. We require that at any point in the game,
an agent’s strategy prescribes optimal actions from that point on, given the other agent’s
strategy and the agent’s beliefs about what has happened so far in the game. We also
require that the agent’s beliefs are consistent with the strategies. This type of equilibrium
is called a perfect Bayesian equilibrium (PBE) [19]. We introduce a new equilibrium for
computationally limited agents:

Definition 6. A (Nash, perfect Bayesian) deliberation equilibrium for computationally
limited agents is a (Nash, perfect Bayesian) equilibrium where the agents’ deliberation
strategies form a (Nash, perfect Bayesian) equilibrium and the agents’ bargaining strategies
are in (Nash, perfect Bayesian) equilibrium.
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An agent’s offer-accept vector is affected by the solutions that it computes and also what
it believes the other agent has computed for solutions. The fallback value of an agent is the
value it obtained for the solution to its own problem. Clearly, an agent will not accept any
offer less than its fallback.

In making a proposal, agent α must try to estimate agent β’s fallback value and then
decide whether, by making an acceptable proposal to agent β , agent α’s payoff would be
greater than or less than its own fallback. 7

The games differ significantly based on whether the proposer is known in advance or
not, as will be discussed in the next sections.

6. Known proposer

For an agent that is never going to make an offer, we can prescribe a dominant strategy
independent of the statistical performance profiles:

Proposition 1. If an agent, β , knows that it cannot make a proposal at the deadline T ,
then it has a dominant strategy of computing only on its own problem, and accepting any
offer xoα such that xoα � V (n) where n is the node in the performance profile T β that agent
β has reached at time T . If the performance profile does not flatten before the deadline
(V (n′) < V (n) for every node n′ on the path to n), then this is the unique dominant
strategy.

Proof. In the event that an agreement is not reached, agent β could not have achieved
higher payoff than by computing on its individual problem (even if it knows that further
computation will not improve its solution). In the event that an agreement is reached, agent
β would have been best off by computing so as to maximize the minimal offer it will accept,
V (n

β
β). Since solution quality is nondecreasing in computation time, if agent β deviates and

computes t steps on a different problem, then the value of its fallback is V (n′ββ )� V (n
β
β)

where time(nββ)= time(n′ββ )+ t . If V (n′) < V (n) for every node n′ on the path to n, then
this inequality is strict. ✷
Corollary 1. In the games where the proposer is known, there exists a pure strategy PBE.

Proof. By Proposition 1, the receiver of the offer has a dominant strategy. Say the proposer
were to use a mixed strategy. In general, every pure strategy that has nonzero probability
in a best-response mixed strategy has equal expected payoff [19]. Since mixing by the
proposer will not affect the receiver’s strategy, the proposer might as well use one of the
pure strategies in its mix. ✷

The equilibrium differs based on whether or not the deadline is known, as discussed in
the next subsections.

7 Since solution values are discretized, the best-response offer-accept vectors will also be from a discrete space.
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6.1. Known proposer, known deadline

In the simplest setting, both the deadline and proposer are common knowledge. Without
loss of generality we assume that agent α is the proposer and the deadline is at time T .
Therefore, from Proposition 1, agent β has a dominant strategy, Sβ , which is to compute
on the solution for it’s own problem and accept any offer that is greater than (or equal to)
the value of its computed solution. Knowing this, agent α can determine a strategy which
is a best-response.

Assume that by following a deliberation strategy SDα , the proposing agent α reaches

deliberation state θα(T ) = 〈nαα,nβα,njoint
α 〉 at time T . It is possible to compute agent α’s

expected utility of following a bargaining strategy SBα where it makes an offer xoα to
agent β . The expected utility is

E
[
πα

((
SDα ,S

B
α

)
, Sβ

)]= Pa(xoα)[V (
n

joint
α

)− xoα]+ (
1− Pa

(
xoα

))
V

(
nαα

)
, (1)

where Pa(xoα) is the probability that agent β will accept an offer xoα . These probabilities
are determined by agent α’s beliefs about what value agent β has computed for its own
individual problem. In a setting where agent β has a dominant strategy (that is, it computes
only on the solution for its own problem), agent α can compute its beliefs that agent β will
accept an offer of x with probability Pa(x), simply by noting the values of the nodes that
can be reached at time T in the performance profile for agent β’s individual problem, and
computing the probability of reaching each node. 8

In a stochastic setting, there is uncertainty as to whether following a certain deliberation
strategy will result in being in a specific deliberation state. We can determine the proposer’s
expected utility from following a particular strategy as follows. Assume agent α is
executing strategy Sα = (SDα ,SBα ). At time T , when the agent must make a proposal, it
is in some deliberation state

θα(T )=
〈
nαα,n

β
α,n

joint
α

〉
,

where time(nαα)= tαα , time(nβα)= tβα , and time(njoint
α )= t joint

α . If its bargaining strategy, SBα
dictates that it make an offer of xoα , then agent α’s expected utility from following Sα is

E
[
πα(Sα,Sβ)

] = ∑
θα(T )∈Θα(tαα ,tβα ,t joint

α )

p
(
θα(T )|SDα

)(
Pa

(
xoα

)[
V

(
n

joint
α

)− xoα]

+ (
1− Pa

(
xoα

))
V

(
nαα

))
, (2)

where p(θα(T )|SDα ) is the probability of being in deliberation state θα(T ) after following
deliberation strategy SDα .

The game differs based on whether the performance profiles are deterministic or
stochastic.

8 If the performance profiles are shared by the agents, agent α’s beliefs are based on the node nβα it has reached

in the performance profile tree, T β , given that agent α has reached node nβα in the tree, T βα .
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6.1.1. Deterministic performance profiles
In an environment where the performance profiles are deterministic, the equilibria can

be analytically determined.

Proposition 2. Assume that the agents’ performance profiles T αα , T βα , T joint
α , T αβ , T ββ ,

and T joint
β are deterministic and agent α knows agent β’s performance profiles. Then there

exists a PBE where agent β will only compute on its own problem, and agent α will never
split its computation. It will either compute solely on its own problem or solely on the
joint problem. The PBE payoffs to the agents are unique, and the PBE is unique unless
the performance profile that an agent is computing on flattens, after which time it does
not matter where the agent computes since that does not change its payoff or bargaining
strategy. The PBEs are also the only Nash equilibria.

Proof. Let ηjoint
α be the node in T joint

α that agent α reaches after allocating all of its
computation on the joint problem. Let ηαα be the node in T αα that agent α reaches after

allocating all of its computation on its own problem. Let ηββ be the node in T ββ that agent
β reaches after allocating all of its computation on its own problem.

By Proposition 1, agent β has a dominant strategy to compute on its own solution
(unless its performance profile flattens after which time it does not matter where the agent
computes since that does not change its payoff). Agent α’s strategies are more complex
since they depend on agent β’s final fallback value, V (ηββ ), and also on what potential
values the joint solution and α’s individual solution may have.

(1) Case 1: V (ηjoint
α )− V (ηββ ) > V (ηαα). Agent β will accept any offer greater than or

equal to V (ηββ ) since that is its fallback. If agent α makes an offer that is acceptable

to agent β , then the highest payoff that agent α can receive is V (ηjoint
α ) − V (ηββ ).

If this value is greater than V (ηαα)—that is, the highest fallback value agent α can
have—then agent α will make an acceptable offer. To maximize the amount it will
get from making the offer, agent α must compute only on the joint problem. Any
deviation from this strategy will result in agent α receiving a lesser payoff (and
strictly less if its performance profile has not flattened).

(2) Case 2: V (ηjoint
α )−V (ηββ ) < V (ηαα). Any acceptable offer that agent α makes results

in agent α receiving a lesser payoff than if it had computed on its own solution
solely, and made an unacceptable offer (and strictly less if its performance profile
has not flattened). Therefore agent α will compute only on its own problem until
that performance profile flattens, after which it does not matter where it allocates
the rest of its computation.

(3) Case 3: V (ηjoint
α ) − V (ηββ) = V (ηαα). By computing only on its own problem,

agent α’s payoff is V (ηαα). By computing only on the joint problem, the payoff is

V (η
joint
α )− V (ηββ ). These payoffs are equal. However, by dividing the computation

across the problems, both payoffs decrease (unless at least one of the two
performance profiles has flattened, after which it does not matter where the agent
allocates the rest of its computation).

The above arguments also hold for Nash equilibrium. ✷
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6.1.2. Stochastic performance profiles
If the performance profiles are shared but stochastic, determining the equilibrium is more

difficult. By Proposition 1, agent β has a dominant strategy, Sβ , and only computes on its
individual problem. 9

However, based on the results it has obtained so far, agent α may decide to switch
between problems on which it is computing—possibly several times. The problem is
similar to computing values and policies for a sequential decision problem with stochastic
actions, except that the deadlines mean that the game has a finite horizon. The payoffs can
be seen as state-dependent reward values and the accessibility functions can be modeled as
the probability of transferring into a deliberation state, given the action taken.

There are two different cases that affect agent α’s capabilities when it comes to
speculating as to what value agent β has obtained from deliberation. If the two agents
share algorithms and, therefore, performance profiles, then agent α can can deliberate on
agent β’s problem, and be sure that the results obtained are related to those that agent β
has obtained. Agent α might then find it useful to deliberate on agent β’s problem in order
to refine its beliefs as to what value agent β has obtained. On the other hand, if the agents
have different algorithms and, therefore, different performance profiles, any deliberation
that agent α does on agent β’s problem, using its own algorithm, may not correctly reflect
the solutions that agent β has achieved. It gets no utility from computing on agent β’s
problem since its beliefs can not be updated.

In this section we do not assume that the performance profiles are common knowledge.
However, it is required that at least agent α can observe the performance profiles for agent
β . Agent β does not need to know that agent α can view its performance profiles. This
knowledge does not change agent β’s behavior as it has a dominant strategy.

We use a dynamic programming algorithm to determine agent α’s best response to agent
β’s strategy. The base case involves looping through all possible deliberation states θα(T )
for agent α at the deadline T . Each θα(T ) determines a probability distribution over the
set of nodes agent β reached by computing T time steps. For any offer x that agent α may
make, the probability that agent β will accept is

Pa(x)=
∑

{nβ |nβ in subtree T β (nβα) at depth T − time(nβα) s.t. V (nβ )�x}
P(nβ). (3)

The best offer, xoα , that agent α can make to agent β , given that α is in the state of

deliberation θα(T )= 〈nαα,nβα,njoint
α 〉 is

xoα
(
θα(T )

)= arg max
x

[
Pa(x)

(
V

(
n

joint
α

)− x)+ (
1− Pa(x)

)
V

(
nαα

)]
. (4)

We denote the optimal bargaining strategy, given the deliberation state θα(T ) by

SB∗α
(
θTα

)= (
xoα

(
θα(T )

)
,V

(
nαα

))
. (5)

The expected utility to agent α from following such a bargaining strategy while in
deliberation state θα(T ) is

E
[
πα

((
SDα ,S

B∗
α (θα(T ))

)
, Sβ

)]= Pa(xoα)(V (
n

joint
α

)− x)+ (
1− Pa

(
xoα

))
V

(
nαα

)
. (6)

9 If that performance profile has flattened and agent β has computed on agent α’s or the joint problem thereafter,
this does not change agent β’s fallback, and this is the only aspect of agent β that agent α cares about.
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It is possible to work backwards and to compute which deliberation action, az, is optimal
if agent α finds itself in deliberation state θα(t) at time t once the optimal offers have been
computed for each final deliberation state. Let πDα ((a

z, θα(t)), Sβ ) denote the utility to
agent α of computing on problem z at time t + 1, given that at time t it is in deliberation
state θα(t) and agent β is following strategy Sβ . The expected value is

E
[
πDα

(
(az, θα(T − 1)

)
, Sβ

)]
=

∑
θα(T )∈Θα(T )

P
(
θα(T )|θα(T − 1), az

)
E

[
πα

(
(SDα ,S

B∗
α (θα(T )))

)]
, (7)

and

E
[
πDα

(
(az, θα(t)), Sβ

)]
=

∑
θα(t+1)∈Θα(t+1)

P
(
θα(t + 1)|θα(t), az

)
max
az
E

[
πDα

(
(az, θα(t + 1)), Sβ

)]
(8)

for t < T − 1 where P(θα(t)|θα(t − 1), az) is the probability of reaching deliberation state
θα(t) given that upon reaching deliberation state θα(t − 1) the agent computes one step on
problem z.

The optimal action in deliberation state θα(t) is

az
(
θα(t)

)= arg max
az
E

[
πDα

(
(az, θα(t)), Sβ

)]
. (9)

The sequence of actions (az(θα(t)))
T−1
t=0 is agent α’s best-response deliberation strategy

to agent β , and the offer-accept vectors (xoα(θα(T )),V (n
α
α))θα(T ) define its best-re-

sponse bargaining strategy. Therefore, Sα = ((az(θα(t)))T−1
t=0 , (x

o
α(θα(T )),V (n

α
α))θα(T )).

The following algorithm computes the best-response strategy for agent α.

Algorithm 1. StratFinder1(T )
For each deliberation state θα(T ) at time T

xoα
(
θα(T )

)← arg max
x

[
Pa(x)

[
V

(
n

joint
α

)− x]+ (
1− Pa(x)

)
V

(
nαα

)]
.

For time t = T − 1 down to 0
For each deliberation state θα(t)

az
(
θα(t)

)← arg max
az
E

[
πDα

(
(az, θα(t)), Sβ

)]
.

Return ((az(θα(t)))
T−1
t=0 , (x

o
α(θα(T ),V (n

α
α))θα(T ))

Proposition 3. Algorithm 1 correctly computes a PBE strategy for agent α. 10 Assume that
the number of children of any node in T αα , T βα and T joint

α is at most k. Algorithm 1 runs in
O(kT−1T 3) time.

10 By keeping track of equally good actions at every step, Algorithms 1, 2, and 3 can return all PBE strategies
for agent α. Again, the dominant strategy of agent β is to compute on its own problem (unless the performance
profile flattens out after which it does not matter what agent β computes on.
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Proof. The nonproposing agent, β , has a dominant strategy, Sβ . Algorithm 1 computes the
best-response for agent α, at every time and for every state of deliberation.

Let k be the maximum number of children of any node in the performance profiles. At
time t the number of states of deliberation is at most kt

(
t+2

2

)= kt (t + 2)(t + 1)/2. Since

T−1∑
t=0

kt
(t + 1)(t + 2)

2
� kT−1

T−1∑
t=0

(t + 1)(t + 2)

2

= kT−1 T (T + 1)(T + 2)

6

the algorithm runs in O(kT−1T 3) time. ✷
6.2. Known proposer, unknown deadline

There are situations where agents may not know the deadline. We represent this by
a probability distribution Q = {q(i)}Ti=1 over possible deadlines. Q is assumed to be
common knowledge.

Whenever time t is reached but the deadline does not arrive, agents update their beliefs
aboutQ. The new distribution is Q′ = {q ′(i)}Ti=t where q ′(t)= q(t)/(∑T

j=t q(j)).

6.2.1. Deterministic performance profiles
Since there is no uncertainty as to agent β’s fallback value, agent α need never compute

on agent β’s problem. Therefore, agent α will only be in deliberation states 〈nαα,nβα,njoint
α 〉

where time(nβα)= 0. Therefore, strategies that include computation actions aβ need not be
considered. This, and the lack of uncertainty in which deliberation state action a leads to,
greatly reduce the space of deliberation states to consider. Denote by Γα(t) any deliberation
state of agent α where time(nαα) + time(njoint

α ) = t and time(nβα) = 0. The algorithm for
determining agent α’s equilibrium strategy differs from Algorithm 1 in that it incorporates
the probability that the deadline may arrive at any time, and considers only the restricted
space of deliberation states.

Algorithm 2. StratFinder2(Q)
For each deliberation state Γα(T ) at time T

xoα
(
Γα(T )

)← arg max
x

[
Pa(x)

[
V

(
n

joint
α

)− x]+ (
1− Pa(x)

)
V

(
nαα

)]
.

For t = T − 1 down to 0 q ′(t)← q(t)/(
∑T
j=t q(j))

For each deliberation state Γα(t)

xoα
(
Γα(t)

) ← arg max
x

[
Pa(x)

[
V

(
n

joint
α

)− x]+ (
1− Pa(x)

)
V

(
nαα

)]
,

az
(
Γα(t)

) ← arg max
az

[
q ′(t)E

[
πα

((
SDα ,S

B∗
α (Γα(t))

)
, Sβ

)]
+ (

1− q ′(t))E[
πDα

(
(az,Γα(t)), Sβ

)]]
.

Return ((az(Γα(t)))
T−1
t=0 , (x

o
α(Γα(t),V (n

α
α))

T
t=0)
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Proposition 4. With deterministic performance profiles, Algorithm 2 correctly computes a
PBE strategy for agent α in O(T 2) time.

Proof. The nonproposing agent, β , has a dominant strategy, Sβ . Algorithm 2 computes the
best-response for agent α, at every time and for every state of deliberation.

Since the setting is deterministic, agent α need only consider deliberation states at
time t of the form θα(t) = 〈nαα,nβα,njoint

α 〉 where time(nβα) = 0. At time t there are t + 1
deliberation states of this form. Each calculation in the algorithm takes constant time. The
first loop is repeated T + 1 times. In the second loop, the calculations are done t + 1 times
for t = 0 to T − 1, or T (T + 1)/2 times. Therefore, the algorithm takes O(T 2) time. ✷
6.2.2. Stochastic performance profiles

The algorithm differs from Algorithm 1 in that it considers the probability that the
deadline might arrive at any time.

Algorithm 3. StratFinder3(Q)
For each deliberation state θα(T ) at time T

xoα(θα(T ))← arg max
x

[
Pa(x)

[
V

(
n

joint
α

)− x]+ (
1− Pa(x)

)
V

(
nαα

)]
.

For t = T − 1 down to 1 q ′(t)← q(t)/(
∑T
j=t q(j)).

For each deliberation state θα(t)

xoα(θα(t)) ← arg max
x

[
Pa(x)

[
V

(
n

joint
α

)− x]+ (
1− Pa(x)

)
V

(
nαα

)]
,

az(θα(t)) ← arg max
az

[
q ′(t)E

[
πα

((
SDα ,S

B∗
α (θα(t))

)
, Sβ

)]
+ (

1− q ′(t))E[
πDα

(
(az, θα(t)), Sβ

)]]
.

Return ((az(θα(t)))
T−1
t=0 , (x

o
α(θα(t)),V (n

α
α)
T
t=0)

Proposition 5. Algorithm 3 correctly computes a PBE strategy for agent α. Assume that
the number of children of any node in T αα , T βα and T joint

α is at most k. Algorithm 3 runs in
O(kT−1T 3) time.

Proof. The nonproposing agent, β , has a dominant strategy, Sβ . Algorithm 3 computes the
best-response for agent α, at every time and for every state of deliberation.

Let k be the maximum branching factor for the performance profiles. At time t the
number of states of deliberation is kt

(
t+2

2

)= kt (t + 2)(t + 1)/2. Since

T−1∑
t=0

kt
(t + 1)(t + 2)

2
� kT−1

T−1∑
t=0

(t + 1)(t + 2)

2

= kT−1 T (T + 1)(T + 2)

6

the algorithm runs in O(kT−1T 3) time. ✷
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Fig. 3. Performance profile trees for the example where there is no pure strategy Nash equilibrium.

7. Unknown proposer

This section discusses the case where the proposer is unknown but the probability of each
agent being the proposer is common knowledge. The deadline may be common knowledge.
Alternatively, the deadline is not known but its distribution is common knowledge. This is
a more complex setting since neither agent may have a dominant strategy. In fact, there
exist instances where in equilibrium neither agent has a pure strategy.

7.1. Nonexistence of a pure strategy equilibrium

In this subsection we show that in some cases, there is no pure strategy equilibrium.

Proposition 6. There exist instances (defined by the performance profile trees) of the game
that have a unique mixed strategy PBE, but no pure strategy PBE (not even a pure strategy
Nash equilibrium).

Proof. Assume that the agents have the performance profiles in Fig. 3 and are allowed to
take only one deliberation action (T = 1). Assume, also, that with equal probability either
agent may be named as the proposer, that is, agent α is the proposer with probability 1

2 . Let
∅ represent a null offer, where the proposer does not want to implement a joint solution.
The undominated strategies for agent α are
• S1

α = {aα, (∅,3.0)}: Agent α computes one time step on its own problem. If it is
chosen as the proposer then it makes a null offer, otherwise it accepts any offer that is
greater than or equal to the fallback value of 3.0.
• S2

α = {ajoint, (0.0,0.0)}: Agent α computes one time step on the joint problem. If it
is chosen as the proposer then it makes an offer of 0.0, otherwise it accepts any offer
greater than or equal to the fallback value of 0.0.

The undominated strategies for agent β are
• S1

β = {ajoint, (0.0,0.0)}: Agent β computes on the joint problem. If it is chosen
proposer then it offers 0.0, otherwise it accepts anything greater than or equal to the
fallback value of 0.0.
• S2

β = {ajoint, (3.0,0.0)}: Agent β computes on the joint problem. If it is chosen as the
proposer, then it offers 3.0, otherwise it accepts anything greater than or equal to the
fallback value of 0.0.
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Table 2
Reduced normal form of the bargaining game with performance
profiles in Fig. 3. There is no pure strategy Nash equilibrium

S1
β S2

β

S1
α 3.0, 0.0 3.0, 0.5

S2
α 2.0, 2.0 3.5, 0.5

The game can be represented in normal form (Table 2). There is no pure strategy Nash
equilibrium for this game. It is easy to prove this by checking each strategy profile.

(1) (S1
α, S

1
β) is not a Nash equilibrium since agent β would respond with S2

β if α

played S1
α .

(2) (S1
α, S

2
β) is not a Nash equilibrium since agent α would respond with S2

α is agent β

played S2
β .

(3) (S2
α, S

2
β) is not a Nash equilibrium since agent β would respond with S1

β if agent α

played S2
α .

(4) (S2
α, S

1
β) is not a Nash equilibrium since agent α would respond with S1

α if agent β

played S1
β .

There does exist a mixed strategy Nash equilibrium. If agent α plays S1
α with probability

γ and if agent β plays S1
β with probability δ then α’s expected payoff is

uα = γ
(
3.0δ+ 3.0(1− δ))+ (1− γ )(2.0δ+ 3.5(1− δ))

= 1.5γ δ− 0.5γ − 0.5δ+ 3.5.

The first order condition is

0 = duα
dγ
= 1.5δ− 0.5

⇒ δ = 1
3 .

Similarly for agent β

uβ = δ
(
2.0(1− γ ))+ (1− δ)(0.5γ + 0.5(1− γ ))

= −2.0γ δ+ 1.5δ+ 0.5.

The first order condition is

0 = duβ
dδ
=−2.0γ + 1.5

⇒ γ = 3
4 .

Therefore, in Nash equilibrium, agent α plays S1
α with probability 3/4 and agent β plays

S1
β with probability 1/3. ✷
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Fig. 4. Performance profile trees where the equilibrium outcome is not Pareto efficient.

7.2. Suboptimal outcome

It is often of interest to ask whether an outcome is “optimal”. An essential requirement
for any optimal outcome is that it possess the property of Pareto efficiency. An outcome is
Pareto efficient if there is no alternative outcome where some agent is better off without
making some other agent worse off. Unfortunately, as we show below, in the setting where
there is uncertainty as to which agent will be the proposer, agents may allocate their
deliberation resources in a nonoptimal manner in equilibrium, so the outcome will not
be Pareto efficient. In other words, if the agents would use different deliberation strategies,
they would both be better off.

Proposition 7. There exist instances (defined by T α , T β , and T joint) of the game where
the outcome of the unique Nash equilibrium is not Pareto efficient.

Proof. Consider the performance profiles in Fig. 4. Let the probability that agent α will be
the proposer be 1/2. The agents are allowed only one deliberation step each, (T = 1). Let
∅ represent a null offer, where the proposer does not want to implement a joint solution.

The undominated strategies for agent α are
• S1

α = {aα, (∅,2.4)}: Agent α computes on its own problem and makes a null offer if
it is the proposer. Otherwise, it accepts anything greater than or equal to 2.4.
• S2

α = {ajoint, (0.0,0.0)}: Agent α computes on the joint problem and offers nothing if
it is the proposer. Otherwise, it accepts anything greater than or equal to 0.0.
• S3

α = {ajoint, (1.4,0.0)}: Agent α computes on the joint problem and offers 1.4 if it is
the proposer. Otherwise, it accepts anything greater or equal to 0.0.

The undominated strategies for agent β are
• S1

β = {aβ, (∅,1.4)}: Agent β computes on its own problem and makes a null offer if
it named as the proposer. Otherwise it accepts any offer greater than or equal to 1.4.
• S2

β = {ajoint, (0.0,0.0)}: Agent β computes on the joint problem and offers nothing if
it is the proposer. Otherwise, it accepts anything greater than or equal to 0.0.
• S3

β = {ajoint, (2.4,0.0)}: Agent β computes on the joint problem and makes an offer
of 2.4 if it is the proposer. Otherwise it accepts anything greater or equal to 0.0.

The game can be represented in normal form (Table 3). There is a unique pure Nash
equilibrium where agent α plays strategy S1

α and agent β plays strategy S1
β , that is,

both agents compute on their own problems. However, the equilibrium outcome is not
Pareto efficient. Both agents would be strictly better off if agent α played S3

α and agent β
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Table 3
Normal form representation of the bargaining game where the perfor-
mance profiles are found in Fig. 4, and the probability of agent α being
the proposer is 1/2. The pure strategy Nash equilibrium is (S1

α,S
1
β). The

Pareto efficient outcome is (S3
α,S

3
β)

S1
β S2

β S3
β

S1
α 2.4, 1.4 2.4, 0.0 2.4, 0.705

S2
α 0.0, 1.4 1.905, 1.905 3.105, 0.705

S3
α 1.205, 1.4 1.205, 2.605 2.405, 1.405

played S3
β . Unfortunately, the strategies S3

α and S3
β are not in equilibrium. If agent α played

S3
α then agent β would deviate to S2

β . Similarly, if β played S3
β then agent α would deviate

to S2
α . ✷

7.3. A general method for solving the game with an unknown proposer

In general, solving an unknown proposer problem is hard, as neither agent may have a
dominant strategy. Instead, the strategy of one player depends on the strategy of the other.
One approach of solving for perfect Bayesian equilibria is to convert the game into its
normal form by considering all pure strategies for each player and the resulting payoffs
when these strategies are employed. There are relatively efficient algorithms for solving
normal form games [2,37], but the conversion itself usually incurs an exponential blowup
since the number of pure strategies is often exponential in the depth of the game tree
because a pure strategy specifies a move for each information set of the player.

A more recent approach is to represent the extensive form game in its sequence
form [36]. In the rest of this subsection we show how that technique can be used in our
setting. A sequence of choices of a player corresponds to a node a in the game tree. The
sequences replace the set of pure strategies in the normal form. In our setting a sequence
is either;

(1) ∅, the empty sequence,
(2) a sequence of deliberation actions,
(3) a sequence of deliberation actions followed by a proposal, or
(4) a sequence of deliberation actions followed by either an accept or reject action.

All nodes in an information set, I , of an agent are defined by the same sequence, σI . If, after
reaching information set I , an agent then makes action c, the new sequence is denoted σI c.
The set SQα denotes the set of all sequences for agent α. Similarly the set SQβ is the set of
all sequences for agent β .

Payoffs to agents α and β are represented by matrices A and B respectively. Each
row corresponds to a sequence of agent α and each column corresponds to a sequence
of agent β . Every leaf in the game tree defines a pair of sequences, that is, actions that both
agents must have taken in order to reach that node. For each sequence pair defined by a
leaf node, the agent’s payoff is the payoff it received at the leaf node if there are no chance
moves. If there are chance moves, as there are in our setting, then a pair of sequences may



206 K. Larson, T. Sandholm / Artificial Intelligence 132 (2001) 183–217

correspond to more than one leaf node. The payoff entry is the sum of the payoffs over all
leaves that correspond to the sequence pair weighted by the probabilities of reaching the
leaves given the sequence pair. If a pair of sequences does not correspond to a leaf node,
then the payoff entry is zero. The matrices, A and B , are sparse as the only (possible)
nonzero entries occur at sequence pairs defined by leaf nodes which is linear in the size of
the game tree.

Both agents also have realization plans, which are nonnegative vectors that represent the
realization probabilities for the sequences of the agent when it is playing a mixed strategy.
Let x be the realization plan for agent α and let y be the realization plan for agent β . The
plans for agent α are characterized by the following constraints.

x(∅)= 1,

−x(σI )+
∑
c∈CI

x(σI c)= 0,

for all information sets I of agent α where CI is the set of possible moves that agent α
can make at information set I . This means that at any information set, I , the probability of
reaching I is the same as the sum of the probabilities of taking an action that leaves I . The
constraints for the realization plan, y , for agent β are similarly defined.

The realization plans can be represented by

Ex = e and Fy = f,
where E and F are constraint matrices. The first row is (1,0,0, . . .) and corresponds to
the empty sequence having probability one. The other rows corresponds to the information
sets of the respective agent. The vectors e and f are equal to the vector (1,0,0, . . . ,0)T

which is of the appropriate size.
The Nash equilibrium of the game is a solution to a linear programming problem. The

vectors x and y are in Nash equilibrium if they are mutual best responses. If y is fixed,
then x is a best response if and only if it is an optimal solution to the linear program

maximizex x
T(Ay)

subject to xTET = eT,

x � 0.

The dual linear program is

minimizep eTp

subject to ETp �Ay,
where p is an unconstrained vector of variables.

Similarly, y is a best response to x if it is an optimal solution to

maximizey yT(Bx)

subject to yTFT = f T,

y � 0,

with dual
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minimizeq f Tq

subject to FTq �Bx,

where q is an unconstrained vector of variables.
The feasible solutions to the linear programming problems are optimal only if the two

objective function values are equal. That is, x is a best response to y only if

xT(−Ay +ETp
)= 0

and y is a best response to x only if

yT(−Bx + FTq
)= 0.

Any Nash equilibrium x, y is part of a solution x, y,p, q to the previous constraints.
These constraints define a linear complementarity problem and therefore the solution to
the linear complementarity problem is also a Nash equilibrium [2]. The standard linear
complementarity problem is to find a vector z ∈R

n so that

z � 0,

b+Mz � 0,

zT(b+Mz) = 0,

where b ∈R
n and M is an n× n matrix.

It is possible to create a linear complementarity problem that is equivalent to the linear
programming problems [14]. First, set

M =




−A ET −ET

−BT FT −FT

−E
E

−F
F




and

b=




0

0

e

−e
f

−f



.

Let z = (x, y,p′,p′′, q ′, q ′′)T where p′,p′′, q ′, q ′′ are nonnegative vectors such that p =
p′ −p′′ and q = q ′ − q ′′.

Using this representation, the equilibria for the extensive form game can be determined
by similar algorithms that are known for the normal form, such as Lemke’s algorithm for
solving linear complementarity problems. Often, these algorithms run exponentially faster
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Fig. 5. An augmented performance profile tree. Node B is a random node. All other nodes are value nodes. The
edges emanating from node B correspond to a random number generator producing different values.

than with the standard approach since the size of the sequence form is linear, and not
exponential, in the size of the game tree [14].

However, these are general techniques which do not take advantage of specific properties
of the particular game. It can be the case that the performance profiles will affect the
payoffs in such a way that finding the equilibrium strategies is straightforward (for
example, in situations where it is always better not to coordinate actions and implement
the joint solution). Thus, specially designed algorithms can sometimes take advantage of
the special structure and be more efficient than general techniques for computing equilibria.
Earlier in the paper we presented such specialized algorithms for the setting with a known
proposer, but currently we only have general algorithms for the setting with an unknown
proposer.

8. Other sources of uncertainty

So far in this paper we have discussed settings where uncertainty in deliberation stems
from different performance of the algorithm on different problem instances. In this section
we discuss other sources of uncertainty that may also arise.

We address settings where agents are running randomized algorithms, agents have
different algorithms and are uncertain about what algorithm the opponent is using, and
agents that may not know each others’ problem instances exactly.

8.1. Randomized algorithms

An algorithm is randomized if its behavior is determined by both its input and also values
produced by a random number generator. Examples of randomized algorithms include
simulated annealing [13], and some variants of hill climbing [34].

We can capture randomized algorithms in our deliberation control framework by using
an augmented performance profile tree. An example of an augmented performance profile
tree is presented in Fig. 5. An augmented performance profile tree can include two different
types of nodes, value nodes and random nodes. Value nodes are similar to the nodes in the
earlier definition of a performance profile tree. They hold the value of the solution, given
that the algorithm has followed a path which would reach the node. The children of value
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nodes are the nodes reached by taking one more deliberation step. The edges emanating
from a value node all have a weight of one time step. Each edge is also associated with a
probability that the child is reached in the next computation step given that the parent has
been reached.

Random nodes represent places where random numbers are used during the algorithm
run. Edges emanating from the random node are associated with the possible random
numbers that might be generated. Each edge is labeled with the probability that its
associated random number was used. All edges emanating from a random node have a
weight of zero time steps.

The roles of deliberation are slightly different when agents have randomized algorithms.
Agents must still use their deliberation resources in order to determine what their solutions
to the various problems will be. However, if, for example, agent α computes on agent β’s
individual problem, then there is no guarantee that agent α’s random number generator
will produce the same numbers as agent β’s random number generator. Therefore, the
results obtained by the agents on the same problem instance may be different. In this
setting an agent can use its deliberation resources to emulate the run of a random
algorithm. Emulation is different from running a random algorithm. If an agent is
running an algorithm, whenever a random node in the performance profile is reached, a
random number generator would generate some number which would specify the path the
algorithm should take. In emulation, agents take a more active role. Whenever a random
node is encountered, the agent can choose a “random” number instead of using a number
generated by a random number generator. This allows the agent doing the emulation to
learn what solution would have been obtained if the random numbers generated were the
same as the ones chosen by the agent itself. This means that the agent can emulate different
random numbers that the opponent may have used. An agent can use emulation to get a
better idea of what solutions the opponent may have seen (and thus also a better idea of
how the opponent may have allocated its computation as a function of the results it has
obtained). An agent can emulate on the opponent’s problem, the joint problem and even its
own problem. As a side effect of emulating on one’s own problem or on the joint problem,
the agent obtains solutions that it can use. The agent can also obtain solutions without
emulation, that is, by using actual random numbers in its randomized algorithm rather than
emulating different edges emanating from random nodes.

The deliberation state has to be modified when agents are allowed to emulate algorithms.
When emulating, an agent may follow different paths in a performance profile tree. Agents
are allowed to revisit random nodes, and choose different random numbers in order to
see where that new path of computation will lead. Therefore, an agent may reach several
different nodes in a performance profile tree. This means that an agent may have several
different possible solutions to a problem, among which it can select the best (as a solution
to its own problem or the joint problem) or use all of the solutions and the associated
distribution information (when speculating about the opponent’s solutions to the three
problems). The new deliberation state for agent i at time t is defined as

θi(t)=
〈(
n
α,j
i

)
,
(
n
β,j
i

)
,
(
n

joint,j
i

)〉
,
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where (nz,ji ) is a list of nodes in performance profile T z that agent i has reached. The
time, t , is equal to the amount of time it took to reach all nodes listed in the deliberation
state. That is,

t =
∑
j

time
(
n
α,j

i

)+∑
j

time
(
n
β,j

i

)+∑
j

time
(
n

joint,j
i

)
.

A new technique for computing the time function is used. If the agent followed only
one path in the performance profile tree, then the time for any node on this path would
merely be the sum of the weights of the edges of the path to that node. However, if
there are multiple paths produced by an agent choosing different random numbers at
a node, then the technique of summing the edge weights no longer works. It leads to
overcounting since an agent does not need to start at the root of the performance profile
tree each time it emulates a run. Instead it can back up to a random node, choose a
new random number and continue emulation from there. Thus, when determining the
emulation time for each node in the emulation component, the following approach is
used. For any random node r , time(r) is equal to the sum of the weights of the edges
on the path to the node r . Let n1 and n2 be two value nodes in the same performance
profile tree. Let r ′ be the least common random node ancestor of nodes n1 and n2. Then
time(n1) is equal to time(r ′) plus the sum of the weights of the edges on the path from
node r ′ to node n1. Since the paths to nodes n1 and n2 are the same from the root to
node r ′, the agent performing the emulation need only backtrack to node r ′ and continue
deliberating from there. Thus, the time to reach node n2 is only the additional time needed
from node r ′, that is, the sum of the weights of the edges on the path from node r ′ to
node n2.

We also define a deliberation set which corresponds to the earlier definition of
deliberation set.

Definition 7. The deliberation set for agent i at time t is

Θi(t)=
{
θi(t)

}
.

The agents’ strategies also change slightly, as there is a larger action space. Agents
must first decide which problem they wish to devote a deliberation step on and also they
must select which “random” numbers to use, and whether to start the algorithm at an
earlier random node with a new “random” number. These “random” numbers can be actual
random numbers or numbers chosen by the agent for emulation purposes.

Definition 8. A deliberation strategy for agent i with deadline T is

SDi =
(
S
D,t
i

)T−1
t=0 ,

where

S
D,t
i :Θi(t)→ z× n(z)× ran-numb

(
n(z)

)
is a mapping from a deliberation state at time t to a tuple which specifies that the agent
should take one deliberation step starting at the node defined by
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(1) a problem z ∈ {α,β, joint} on which to devote one deliberation step,
(2) a node, n(z), which is either

(a) a random node that the agent has reached earlier when deliberating on
problem z, or

(b) a value node which is at the end of a path that the agent has followed when
deliberating on problem z,

(3) a chosen “random” number, ran-numb(n(z)), that will be used to determine the
direction of the path of computation if the node chosen is a random node.

The bargaining strategy does not change. As before, it is a mapping from the deliberation
state at the deadline T to an offer accept vector.

Definition 9. A bargaining strategy for agent i with deadline T

SBi :Θi(T )→R
2

is a mapping from a state of deliberation at time T , to an offer accept vector (xoi , x
a
i ).

An agent’s strategy consists of a deliberation strategy and a bargaining strategy.

Definition 10. A strategy for agent i with deadline T is

Si =
(
SDi , S

B
i

)
.

If the proposer is known in advance, then the agent not proposing has a dominant strategy
which is independent of its performance profiles.

Proposition 8. Assume agent i knows that it cannot make a proposal. Then it has a
dominant strategy where it will emulate on its own problem in such a way as to maximize its
fallback value. It will accept any offer that is greater than or equal to its computed fallback.
If the performance profile does not flatten out before the deadline (V (n′) < V (n) for every
value node n′ on the path to value node n) then this is the unique dominant strategy.

The proof is identical to that of Proposition 1.
Since the nonproposing agent has a dominant strategy, the proposing agent can

determine a best response. Algorithms 1 and 3 that were presented earlier for finding
equilibrium strategies for the proposing agent when the agents have stochastic performance
profiles need to be slightly generalized in order to find the equilibrium strategies when the
agents have randomized algorithms. First, the new definition of a deliberation state must be
used. Secondly, the deliberation action space must be enlarged to coincide with the action
space specified in the definition for the deliberation strategy. As defined earlier, an action
is a tuple which specifies what problem, what node to start from, and what “random” node
to use as the agent takes one deliberation step. Once these modifications are made, both
Algorithm 1 and Algorithm 3 correctly return the PBE strategy for the proposing agent
when the deadline is known in advance (Algorithm 1) and when the deadline is known
with some probability (Algorithm 3).



212 K. Larson, T. Sandholm / Artificial Intelligence 132 (2001) 183–217

If the proposer is not known in advance then, in general, neither agent has a dominant
strategy. In Section 7.3 a general method for solving the game with an unknown proposer
was discussed. This same approach can be used if agents have random algorithms, where
the new definition of a deliberation state is used, and the deliberation action space in
enlarged to include the selection of random nodes and numbers.

8.2. Agents with different algorithms

Another setting where uncertainty arises is the situation where agents do not necessarily
use the same algorithms. For example, agent α may be very skilled at solving one problem
type while agent β may have different algorithmic skills.

If the agents, α and β , do not have access to the same algorithms, and the algorithms
are not related (that is, one agent’s algorithm performing well on a problem instance is no
indication that the other agent’s algorithm would have also performed well on the same
problem instance) then an agent has no incentive to use any of its deliberation resources
to compute solutions for the other agent’s problem. Deliberating (or emulating) on an
opponent’s problem reduces the amount of time (and thus solution quality) that an agent
can obtain for its own problem, or for the joint problem, while providing no signals as to
what values the opponent has obtained for the problems.

However, often the agents’ algorithms will be correlated in that if one agent’s algorithm
returns a certain solution value to a problem, another agent’s algorithm would return a
similar solution value. In such a setting, an agent may want to use some of its deliberation
resources to compute on its opponent’s problems. While the agent must use its own
algorithms which differ from its opponents, the results obtained from deliberation (or
emulation) can signal information about the solution quality that the opponent has obtained
for its problems.

Agents may also have collections of algorithms, and use different algorithms to compute
solutions to different types of problem instances. They may select which algorithm to use
on which problem instance and may switch between algorithms even while deliberating on
the same problem instance, starting the new algorithm with the solution computed by an
earlier algorithm.

A collection of algorithms can be captured in an augmented performance profile tree as
seen in Fig. 6. Our results that use augmented performance profile trees apply to the case
of algorithm collections and agents having different algorithms as long as the choice of the
algorithms is done at random (for example, each agent happens to have some algorithm
from a collection of algorithms) rather than strategically by the agents. Specifically, the
random nodes in the augmented performance profile tree will then represent randomness
that stems from uncertainty regarding the opponent’s algorithm. 11

11 The setting where agents strategically switch between algorithms is more complicated. An agent may use
partial results from one algorithm as a starting point for another. Each agent’s single deliberation problem, of
how much time to allocate to its own problem, when to switch between algorithms, and what solution to use as a
starting point for the new algorithm is complicated in itself. Therefore, in this paper we do not attempt to analyze
such a situation. However, the single agent problem is interesting in itself and is worth future investigation.
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Fig. 6. An agent’s augmented performance profile tree where the opponent may have either of two algorithms,
Algorithm A or Algorithm B. At random node x, the two algorithms start to differ in how well they are likely
to solve the problem instance. In one step of computation, Algorithm B would reach a solution represented by
node r . On the other hand, Algorithm A could lead to node y, z, or q, each with a certain probability.

8.3. Agents that do not know each others’ problem instances

Another situation where uncertainty can enter the picture occurs when agents do not
actually know what problem instance (tasks, resources, etc.) the opponent has and that
affects the opponent’s individual problem and the joint problem. Instead, each agent has a
probability distribution over possible problem instances of the opponent, and performance
profile trees which describe how each algorithm performs on the different instances. Now,
an agent can deliberate (or emulate) several steps on the solution to one problem instance,
and then several more steps on another problem instance, etc., using the performance
profile trees (see, for example, Fig. 7) to guide the deliberation process. This allows the
agent to get a better probabilistic estimate of the opponent’s solutions to the three problems
as well as the agent’s own solutions to the three problems. 12 However, this deliberation
does not remove any of the uncertainty as to what problem instance the opponent has. That
is, the agent cannot update its probability distribution over the possible problem instances
by deliberating on the opponent’s problem.

8.4. Uncertainty that arises from combinations of sources

As mentioned in the previous subsections, uncertainty may arise for many different
reasons:

12 We assume that if the agents agree to go with the joint solution, the agents learn each others’ problem
instances at the end of the game. That is, no deliberation can occur after that time. We also assume that the
proposer offers the other agent a fixed value (chosen by the proposer), so that the proposer carries all the risk
related to the uncertainty about the other’s problem instance.
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Fig. 7. An augmented performance profile tree that agent α uses for agent β’s problem. Agent α has uncertainty as
to which problem instance agent β has encountered. Instead, agent α has a probability distribution over the three
possible problem instances, problem instance 1, problem instance 2, and problem instance 3. At node A agent α
selects which problem instance to begin computing on. After deliberating for several steps, it can return to node A
and select another problem instance to deliberate on. Say, for example, agent α computed on all three problem
instances and reached node B for problem instance 1, node C for problem instance 2, and node D for problem
instance 3. Then, agent α knows that if agent β has computed on its own problem and the problem instance was 1,
then the solution agent β obtained was either node x or node y. If the problem instance was problem instance 2,
then agent β would have reached node n and if the problem instance was problem instance 3, then agent β would
have reached either node p or node q. It is not possible for agent β to have obtained solutions z, m or o.

(1) The algorithms may perform differently on different problem instances.
(2) Agents may have randomized algorithms.
(3) Agents may have different algorithms and might not know which algorithm the

opponent uses for sure.
(4) Agents may have uncertainty as to what problem instance the opponent has.

The results and techniques of this paper apply to combinations of the sources of uncertainty
as well. For example, in any setting where there are randomized algorithms, agents can
emulate the algorithms’ runs. The emulation will still be effective even if there are other
sources of uncertainty such as uncertainty about the problem instance.

In the most general setting, agents have different randomized algorithms and do not
know exactly what each others’ problem instances are or what algorithm the opponent is
running exactly. The results of this paper apply to that setting as well, when augmented
performance profile trees are used. The random nodes in those trees capture the different
types of uncertainty.
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9. Conclusions and future research

Noncooperative game-theoretic analysis is necessary to guarantee nonmanipulability of
systems that consist of self-interested agents. However, the equilibrium for rational agents
does not generally remain an equilibrium for computationally limited agents. This leaves
a potentially hazardous gap in theory. This paper presented a framework and the first steps
toward filling that gap.

We studied a setting where each agent has an intractable optimization problem, and
the agents can benefit from pooling their problems and solving the joint problem. We
presented a fully normative model of deliberation control that allows agents to condition
their projections of their anytime algorithms’ performance on the problem instance and
path of solutions seen so far. We show how this approach can be generalized to handle
uncertainty that may arise in deliberation, either from the problem instance itself, from
the use of random algorithms, from the use of different algorithms, and uncertainty about
the opponent’s problem instance. Using that model, we solved the equilibrium of the
bargaining game. This is, to our knowledge, the first piece of research to treat deliberation
actions strategically via noncooperative game-theoretic analysis. We call this solution
concept the deliberation equilibrium.

In ultimatum games where the agents know which one gets to make a take-it-or-leave-it
offer to the other, the receiver of the offer has a dominant strategy of computing on its own
problem, independent of the algorithm’s statistical performance profiles. It follows that
these games have pure strategy equilibria. In equilibrium, the proposer can switch multiple
times between computing on its own, the other agents, and the joint problem. The games
differ based on whether or not the deadline is known and whether the performance profiles
are deterministic or stochastic. We presented algorithms for computing a pure strategy
equilibrium in each of these variants. For games where the proposer is not known in
advance, we use a general algorithm for finding a mixed strategy equilibrium in a 2-person
game [14]. This generality comes at the cost of potentially being slower than our algorithms
for the other cases and only guarantees that some equilibrium will be found, not necessarily
all.

In situations where there is uncertainty as to which agent will make the final proposal,
we show that there exists instances, defined by the performance profiles, where there
is a unique mixed strategy perfect Bayesian equilibrium but no pure strategy one. This
means that in equilibrium agents would have to randomized over which action to take.
We also show that there exist instances where, in equilibrium, agents do not allocate their
deliberation resources optimally which leads to non-Pareto efficient outcomes.

Our approach of combining a normative model of bounded rationality with a nonco-
operative solution concept leads the way to building systems where the agents are self–
interested and computationally limited. This area is filled with promising future research
possibilities and can be extended in several directions. We plan to analyze richer bargaining
settings. In particular we are interested in allowing negotiation to occur amidst computa-
tion, not just after it [16]. In such settings, proposals signal about what problems the other
agent has computed on, what solutions it has found, and what solutions it expects to find if
it computes further. We are also interested in extending the model to settings where there
are different models of bounded rationality (e.g., costly but unlimited computation as well
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as computation which is both costly and limited), and to settings where there are more than
two agents involved in bargaining.

An exciting research path which we plan to explore is the design of mechanisms that
lead to as efficient as possible outcomes with as little redundant computation as possible.
While it has been pointed out that the central revelation principle from noncooperative
game theory [19] ceases to apply when computational complexity limits each agent’s
rationality [23,32], our model provides a framework for actually deriving results in settings
where the revelation principle fails to hold. This framework allows one to analyze problems
beyond bargaining as well, including auctions where each agent needs to potentially
solve an intractable problem to determine its valuations [17,18], and voting where each
agent needs to potentially solve an intractable problem to determine its preferences over
outcomes.
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