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Abstract

We provide a characterization of virtual Bayesian implementation in pure strategies for en
ments satisfying no-total-indifference. A social choice function in such environments is vir
Bayesian implementable if and only if it satisfies incentive compatibility and a condition we term
virtual monotonicity. The latter is weaker than Bayesian monotonicity—known to be necessa
Bayesian implementation. Virtual monotonicity is weak in the sense that it is generically satis
environments with at least three alternatives. This implies that in most environments virtual Bayes
implementation is as successful as it can be (incentive compatibility is the only condition needed).
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Consider the problem of implementing a social choice function (SCF) in an environ
with incomplete information among the agents. Since the socially desirable ou
depends on agents’ private information, it is possible that agents do not have the in
to correctly reveal their private information. Bayesian incentive compatibility of an SC
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simply the requirement that each agent has the incentive to truthfully reveal her informatio
when all other agents report their information truthfully. More precisely, an SCF is
to be incentive compatible if truth-telling is a Bayesian Nash equilibrium of the d
revelation game (in which agents report their private information and the outcome
social choice corresponding to these reports). By the revelation principle (see My
1989 and the references therein), incentivecompatibility of an SCF is necessary for it to
implemented through a Bayesian Nash equilibrium ofany mechanism. In general, howeve
a mechanism applied to an incentive compatible SCF may possess other equilibria
do not correspond to the socially desired outcome). Full implementation refers to the
of a mechanism that resolves this multiplicity problem by ensuring thatall equilibria
correspond to the socially desired outcome ineach information state, and requires so
condition in addition to incentive compatibility.

Postlewaite and Schmeidler (1986) showedthat a necessary condition (in additi
to incentive compatibility) for a social choice set to be Bayesian implementab
Bayesian monotonicity. As the term Bayesian monotonicity suggests, this conditi
can be seen as an analog of Maskin monotonicity (Maskin, 1977) in the presen
incomplete information.1 Palfrey and Srivastava (1989a) found a weakening of incen
compatibility and a variant of Bayesian monotonicity that turned out to be sufficient
implementation in exchange economies. Within economic environments, the gap
Palfrey and Srivastava’s work between necessary and sufficient conditions was clo
Jackson (1991) with a strengthening of Bayesian monotonicity.2 Unfortunately, Bayesian
monotonicity is not satisfied by many well-known social choice functions (SCFs
exchange economies with incomplete information; see Palfrey and Srivastava (
Chakravorti (1992) and Serrano and Vohra (2001). In this sense, Bayesian monot
is a demanding condition. In light of Jackson’s characterization result this means tha
Bayesian implementation is a demanding requirement.

There is another sense in which the complete information environment seems to
more permissive implementation results. Remarkably, the Maskin monotonicity condition
can be entirely dispensed with by slightly weakening the notion of implementation.
is the main insight of Abreu and Sen (1991) and Matsushima (1988), who show that
very mild conditions, any social choice correspondence can be virtually Nash implem
in the sense that, making use of lotteries over social alternatives, it is possible
exactly implement a correspondence that is arbitrarily close to the given correspond3

Moreover, Abreu and Matsushima (1992a) provide a significant improvement of
results by showing that under very weak conditions any SCF can be virtually implement

1 Recall that Maskin monotonicity is a necessary condition for Nash implementation. It also turns o
to be sufficient in environments where there is a private good and at least three agents. This conditio
satisfied by many correspondences of interest in exchange economies (such as the Pareto, core and constr
Walrasian correspondences). However, it may be quite restrictive in other domains (see, for example, Mueller a
Satterthwaite, 1977 and Saijo, 1987).

2 Jackson (1991) also provides sufficient conditions that guarantee implementation outside of econom
environments. He identifies a condition that he terms “monotonicity no veto” that serves this purpose.

3 This can be explained, in part, by the fact that Maskin monotonicity defined over lotteries is a very
condition.
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in the more attractive notion of iteratively undominated strategies, and that this is po
without the use of mechanisms involving integer games.

Given the power of the virtual approach in the complete information case, and give
Bayesian monotonicity is often a very strong condition, it is natural to ask if one can
simpler and/or weaker conditions for virtual implementation in the presence of incom
information. That some condition (in addition to incentive compatibility) is needed
for virtual Bayesian implementation is clear from Example 1 in Serrano and Vohra (2
there are environments with incomplete information in which only constant SCFs c
virtually implemented. Thus, in contrast to the complete information results, even v
implementation requires non-trivial restrictions either on the environment or the SCF

Our aim here is to settle two open issues in this literature:

• Characterize the SCFs that are virtually Bayesian implementable;
• Provide a simple, weak and readily interpretable condition that is sufficient for v

Bayesian implementation of an incentive compatible SCF.

It should be emphasized that we are concerned with implementation in pure Ba
Nash equilibrium. In this sense our characterization of virtual Bayesian implementa
comparable to Jackson’s (1991) characterization of Bayesian implementation.

Two sufficient conditions for virtual Bayesian implementation (in addition to incen
compatibility) are available in the existing literature. Abreu and Matsushima (1992
dispense with Bayesian monotonicityand introduce a new condition termedmeasurability
(henceforth A–M measurability) which, under other weak assumptions, along w
incentive compatibility, is shown to be necessary and sufficient for virtual implement
in iteratively undominated strategies. Their sufficiency result applies, a fortiori, to
notion of virtual implementation in mixed Bayesian Nash equilibrium. Duggan (19
suggests the condition ofincentive consistency and presents a sufficiency result f
environments with “best-element private values.”4 Serrano and Vohra (2001) criticiz
A–M measurability and incentive consistency, by showing them to be sometimes
stronger than Bayesian monotonicity. Indeed, there are environments where eve
is virtually Bayesian implementable, but only constant SCFs satisfy A–M measura
or incentive consistency. Thus, A–M measurability or incentive consistency are far
necessary for virtual Bayesian implementation. For a more detailed comparison o
results with ours, see Section 1.1 below.

Our main result shows that in environments satisfying no-total-indifference (N
an incentive compatible SCF is virtually implementable if and only if it satisfie
condition we termvirtual monotonicity. This result includes two-agent and ‘non-econom
environments. Virtual monotonicity is inspired by the Bayesian monotonicity conditio
stated in Jackson (1991), and by the arguments used by Matsushima (1988) and Ab
Sen (1991) for virtual Nash implementation. Like Maskin monotonicity (Maskin, 19
and the conditions and insights used by those authors, virtual monotonicity is a conditio

4 In the same endeavor of attempting to dispense with Bayesian monotonicity, Matsushima (1993) shows t
this can be done if side payments are allowed. In contrast, our results do not rely on transfers.
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on lower contour sets of preferences. Those papers and our characterization result prov
a unified theory of implementation using pure Nash equilibrium as a solution con
Our new monotonicity condition requires, for each deception that undermines the giv
SCF, the existence of a certain preference reversal for at least one type of one agent. S
a preference reversal is not required to hold for the given SCF but forsome incentive
compatible SCF, thereby making it a weaker condition than Bayesian monotonicity. I
Section 5, we shall consider an important example, due to Palfrey and Srivastava (1
of a common-values environment. In this example, the majoritarian SCF does not
Bayesian monotonicity (or indeed, any of the other available sufficient conditions fo
implementation in other solution concepts). Nor does it satisfy A–M measurabili
incentive consistency. But it does satisfy virtual monotonicity, and is therefore virt
Bayesian implementable. In fact, in this example,all SCFs satisfy virtual monotonicity.

Our characterization result demonstrates that virtual Bayesian implementation is f
more permissive than Bayesian implementation. The argument goes beyond th
that virtual monotonicity is weaker than Bayesian monotonicity. As we will show, t
is a related condition on environments, which we term type diversity, such thaany
incentive compatible SCF is virtually implementable in such environments. This con
is stronger than the necessary condition (itimplies that every SCF satisfies virtu
monotonicity), but it is much easier to state and interpret. It requires that the in
(cardinal) preferences over pure alternatives of different types of an agent be differen5 It is
considerably easier to verify than the other conditions mentioned above. More impor
type diversity turns out to be generic in the set of all environments with at least
alternatives. This implies that in most environments, since every SCF satisfies
monotonicity, every SCF is virtually implementable in Bayesian equilibrium provided
is incentive compatible. In other words, the problem of multiplicity of equilibrium
mechanism design under incomplete information can be completely solved if one
two degrees of approximation:

(a) in the solution concept, by requiring virtual instead of exact implementation, and
(b) in the environments, by perturbing them if necessary to ensure type diversity.

In doing so, Bayesian incentive compatibility remains the only important restriction o
SCF for full implementation.

1.1. A comparison with the related literature

As indicated above, our characterization of virtual Bayesian implementation i
pure strategies is most related to Jackson’s (1991) Theorem 1—both are con
with implementation in pure strategies. The difference is that we also include
economic environments and the case of two agents; and in weakening the impleme

5 This condition appears in Abreu and Matsushima (1992b) as a simple way of ensuring A–M measurabil
In environments satisfying type diversity, every SCF also satisfies incentive consistency. In a private values
it reduces to the condition of value-distinguished types introduced in Palfrey and Srivastava (1989b).
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requirement from exact to virtual Bayesian implementation we can weaken his Bayes
monotonicity condition to virtual monotonicity.

Abreu and Matsushima (1992b) show that if mixed strategies are included
mechanisms are restricted to be regular, then virtual Bayesian Nash implementation
characterized by incentive compatibility and A–M measurability. A characterizatio
the case in which mixed strategies are included, but mechanisms are not required to
regular, remains open.

Duggan (1997) covers mixed equilibria in his sufficiency result. He also uses gene
type spaces, whereas we assume a finite set of types. His main result assumes
post no-total-indifference” condition, instead of our somewhat stronger NTI. Howeve
also assumes “best element private values,” which in conjunction with his version o
implies our NTI condition. An important issue for future work is a characterization
allows mixed strategies and general type spaces.

2. The model and definitions

We shall consider implementation in the context of a general environment
asymmetric information. LetN = {1, . . . , n} be a finite set of agents. LetTi denote the
(finite) set of agenti ’s types. The interpretation is thatti ∈ Ti describes theprivate
information possessed by agenti. We refer to a profile of typest = (t1, . . . , tn) as a state
Let T = ∏

i∈N Ti be the set of states. We will use the notationt−i to denote(tj )j �=i .
Similarly T−i = ∏

j �=i Tj .
Each agent has a prior probability distributionqi defined onT . We assume that for ever

i ∈ N andti ∈ Ti , there existst−i ∈ T−i such thatqi(t) > 0. For eachi ∈ N andt̄i ∈ Ti , the
conditional probability oft−i ∈ T−i , given t̄i is denotedqi(t−i |t̄i ). Let T ∗ ⊆ T be the set
of states with positive probability. We assume that agents agree on the states inT ∗, i.e., for
all i ∈ N , qi(t) = 0 if and only if t /∈ T ∗.

Let A denote the set of social alternatives, which are assumed to be independen
information state. LetA be aσ -algebra onA and∆ denote the set of probability measur
on(A,A). We shall assume thatA contains all singleton sets. The Bernoulli utility of age
i for alternativea in statet is ui(a, t).

We can now define anenvironment asE = {(A,A), (ui, Ti, qi)i∈N }.
A social choice function (SCF) is a functionf :T �→ ∆. Two SCFs,f and h are

equivalent (f ≈ h) if f (t) = h(t) for every t ∈ T ∗ (see Jackson, 1991 for a discuss
on equivalent SCFs). We shall concentrate on SCFs rather than social choice sets
our main interest lies in virtual implementation making use of lotteries overA; a social
choice set can be understood as a random function that puts positive measure only
functions that it includes.

Abusing notation slightly, given an SCFf , ui(f, t) will refer to agenti ’s expected
utility evaluation of lotteryf (t) in statet . The (interim/conditional) expected utility o
agenti of type ti corresponding to an SCFf is defined as:

Ui(f |ti) ≡
∑

t ′ ∈T

qi

(
t ′−i |ti

)
ui

(
f,

(
t ′−i , ti

))
.

−i −i
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We shall make the (weak) regularity assumption that there is no-total-indifference. Th
assumption will be in force throughout the paper.

An environmentE satisfiesno-total-indifference (NTI) if for every j ∈ N , tj ∈ Tj and
T ′−j ⊆ T−j such that{tj } × T ′−j ⊆ T ∗, there exista, a′ ∈ A such that∑

t−j ∈T ′−j

qj (t−j |tj )uj (a, t) �=
∑

t−j ∈T ′−j

qj (t−j |tj )uj (a
′, t).

SinceN andT are finite, it follows that there is a finite setĀ ⊆ A such thata anda′ in the
above condition belong tōA.

This assumption amounts to the statement that there is no total-indifference for eac
agent of each type whatever the updated beliefs about the other agents’ types, provid
that the updating is consistent with Bayes’ rule. Hence, NTI includes the assum
of no-total-indifference ex post (made in Duggan, 1997) as well as interim (Abreu
Matsushima, 1992b). While our assumption is stronger than the corresponding assumpt
in Duggan (1997), he also makes another assumption, best element private values
can be shown that the conjunction of that andhis ex post NTI condition is stronger tha
our version of NTI.

A mechanism G = ((Mi)i∈N,g) describes a message spaceMi for agenti and an
outcome functiong :

∏
i∈N Mi �→ ∆.

A (pure strategy)Bayesian equilibrium of G is a profile of strategies,σ = (σi)i∈N where
σi :Ti �→ Mi such that∀i ∈ N , ∀ti ∈ Ti ,

Ui

(
g(σ)|ti

)
� Ui

(
g
(
σ−i , σ

′
i

)∣∣ti) ∀σ ′
i :Ti �→ Mi.

Denote byB(G) the set of Bayesian equilibria of the mechanismG. Let g(B(G)) be
the corresponding set of equilibrium outcomes.

An SCFf is exactly Bayesian implementable if there exists a mechanismG such that
everyh ∈ g(B(G)) is equivalent tof .6

A direct mechanism is one withMi = Ti for all i ∈ N .
Consider the following metric on SCFs:

d(f,h) = sup
{∣∣f (S | t) − h(S | t)∣∣ | t ∈ T ∗, S ∈A

}
.

An SCFf is virtually Bayesian implementable if ∀ε > 0 there exists an SCFf ε such
thatd(f,f ε) < ε andf ε is exactly Bayesian implementable.

A deception is a profile of functions,α = (αi)i∈N , whereαi :Ti �→ Ti , αi(ti ) �= ti for
someti ∈ Ti for somei ∈ N . (Note that the identity function onT is not a deception.) Fo
an SCFf and a deceptionα, f ◦ α denotes the SCF such that for eacht ∈ T , [f ◦ α](t) =
f (α(t)). For an SCFf , a deceptionα and a typeti ∈ Ti , let fαi(ti )(t

′) = f (t ′−i , αi(ti )) for
all t ′ ∈ T .

6 Exact implementation in environments with incomplete information has also been defined with resp
to solution concepts other than Bayesian equilibrium, such as undominated Bayesian equilibrium (Palf
and Srivastava, 1989b), perfect Bayesian equilibrium(Brusco, 1995), sequential equilibrium (Baliga, 199
Bergin and Sen, 1998). In each case, the definition of exact implementation requires the set of outcomes sele
by the chosen solution concept in the mechanism to coincide with the social choice set.
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The next condition is necessary for exact Bayesian implementation (see Jackson, 199
An SCFf satisfiesBayesian monotonicity if for any deceptionα, wheneverf ◦α �≈ f ,

there existi ∈ N , ti ∈ Ti and an SCFy such that

Ui(y ◦ α | ti) > Ui(f ◦ α | ti ) while Ui

(
f |t ′i

)
� Ui

(
yαi(ti)

∣∣t ′i), ∀t ′i ∈ Ti.

An SCFf satisfiesincentive compatibility if for all i ∈ N , ti ∈ Ti and all deceptionsα,

Ui(f |ti) � Ui(fαi (ti)|ti).
Jackson (1991) provides a characterization result for economic environments w

least three agents: a social choice function is Bayesian implementable if and only if
satisfies incentive compatibility and Bayesian monotonicity.7 This result can be readil
compared to our characterization theorem for virtual Bayesian implementation, fou
the next section.

3. A characterization result

In this section we show that a substantial weakening of Bayesian monotonicity
a necessary and sufficient condition, together with incentive compatibility, for vi
Bayesian implementation.

An SCFf satisfiesvirtual monotonicity if for every deceptionα, wheneverf ◦ α �≈ f ,
there existsi ∈ N , ti ∈ Ti , an incentive compatible SCFx and an SCFy such that

Ui(y ◦ α | ti) > Ui(x ◦ α | ti ) while Ui

(
x|t ′i

)
� Ui

(
yαi(ti )

∣∣t ′i), ∀t ′i ∈ Ti . (∗)

The difference with Bayesian monotonicity isthat the preference reversal in the n
condition does not necessarily involve the SCFf . For each deceptionα such that
f ◦ α �≈ f , we have an agent for whom some of their types exhibit a preference re
between two SCFs as specified in(∗). Clearly, under incentive compatibility, virtual
monotonicity is weaker than Bayesian monotonicity. A more detailed comparison o
two is provided in Section 3.1, where we showthat the necessary preference reversal
be shown to hold for SCFs that are arbitrarily close tof . This is our rationale for the
term “virtual monotonicity.” We postpone to Section 4 a discussion of how weak vi
monotonicity really is, and how it followsfrom a much simpler condition that does n
involve any reference to deceptions.

Our main result is the followingcharacterization theorem.

Theorem 1. Suppose an environment E satisfies NTI. Then, a social choice function f

is virtually Bayesian implementable if and only if it satisfies incentive compatibility and
virtual monotonicity.

In comparing this result to Jackson’s (1991) Theorem 1, note that our characteri
of virtual Bayesian implementation does not assume the environment to be econom

7 In the more general case of a social choice set, an added condition, closure, is also needed. This c
requires that the social choice set be closed under concatenation of common knowledge events.
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does it require the number of agents to be at least three. In terms of the conditio
the SCF, closure being a trivial requirementthen, the only difference reduces to requiri
Bayesian monotonicity instead of its virtual counterpart.

Proof of Theorem 1. Necessity. Since the necessity of incentive compatibility is w
known,8 we shall show that virtual monotonicity isnecessary for virtually implementing
an incentive compatible SCF.

Consider a deceptionα such thatf ◦ α �≈ f , and supposef is virtually implementable
i.e., for everyε > 0 there exists and SCFf ε which is implementable and isε-close
to f . Thusf ε satisfies incentive compatibility and Bayesian monotonicity. Choosingε

small enough, it follows that for the given deceptionα, f ε ◦ α �≈ f ε , and by Bayesian
monotonicity off ε , there existsi ∈ N , ti ∈ Ti and an SCFy such that

Ui(y ◦ α | ti) > Ui

(
f ε ◦ α | ti

)
while Ui

(
f ε

∣∣t ′i) � Ui

(
yαi(ti )

∣∣t ′i), ∀t ′i ∈ Ti . (1)

But this means that wheneverf ◦ α �≈ f , there existi ∈ N , ti ∈ Ti and a pair of SCFs
x (incentive compatible) andy satisfying(∗); simply choosex = f ε . Thusf satisfies
virtual monotonicity.

Sufficiency. Supposef satisfies incentive compatibility and virtual monotonicity. We
shall construct a canonical mechanism,G = ((Mi)i∈N,g) to virtually implementf in
Bayesian equilibrium. Before we describe the strategy sets and the outcome functi
introduce some additional notation.

For a deceptionα such thatf ◦ α �≈ f , a test-agent is any agent for whom condition(∗)

holds. Denote byDi the set of deceptions for whichi is a test-agent. For each test-ageni

and each deceptionα ∈ Di , fix two SCFsxα
i andyα

i satisfying(∗) for i of typeti , wherexα
i

is incentive compatible. Notice that condition(∗) concerns the SCFy only in those state
in which agenti is of typeαi(ti). There is, therefore, no loss of generality in assuming
yα
i is of the form:

yα
i

(
t−i , t

′
i

) = yα
i (t−i , ti) for all t−i ∈ T−i and t ′i ∈ Ti.

Thusyα
i is constant overTi .9

If agenti is a test-agent for someα, let

Ci = {(
zα
i

)
α∈Di

∣∣ ∀α ∈ Di, zα
i ∈ {

xα
i , yα

i

}}
.

Thus, a typical element of the setCi is a list of |Di | components. Each component
one of the two SCFs in(∗) associated with a deceptionα for which agenti is a test-
agent. For notational reasons, we will also find it convenient to construct these s
agents who are not test-agents. For eachi who is not a test-agent for any deception fix
arbitrary deception̄α and an arbitrary incentive compatible SCF,xᾱ

i , and letDi = {ᾱ} and
let Ci = {xᾱi }.

8 See Duggan (1997). Strictly speaking, what is necessary is the existence of an equivalent SCF
incentive compatible, but given the definition of implementation, there is no loss of generality in takingf itself
to be incentive compatible. This should also be understood in the way Theorem 1 is stated.

9 This observation also applies to the definition of Bayesian monotonicity.
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Denote byā ∈ ∆ the uniform probability distribution over̄A. For ε ∈ (0,1), define the
SCFf ε as

f ε(t) = (1− ε)f (t) + ε

2
ā + ε

2n

∑
i∈N

[
1

|Di |
∑
α∈Di

xα
i (t)

]
.

We will now prove thatf ε is Bayesian implementable with the following mechanism:
The message set of agenti is defined asMi = Ti × Ci × Ā × I , where I is the

set of non-negative integers. Denote a typical message of agenti asmi = (t̂i , ci, ai, ki),
where ci = (zα

i )α∈Di , and letm denote a profile of messages. The outcome func
g :

∏
i∈N Mi �→ ∆ is defined by the following rules:

(i) If m is such that at leastn − 1 agents announceci = (xα
i )α∈Di andki = 0,

g(m) = (1− ε)f
(
t̂
) + ε

2
ā + ε

2n

∑
i∈N

[
1

|Di |
∑
α∈Di

zα
i

(
t̂
)]

.

(ii) Otherwise, denoting byh the agent with the lowest index among those who annou
the highest integer,

g(m) = (1− ε)f
(
t̂
) + ε

2

[
1

kh + 1
ā + kh

kh + 1
ah

]
+ ε

2n

∑
i∈N

[
1

|Di |
∑
α∈Di

zα
i

(
t̂
)]

.

To prove the theorem, we take the following steps:

Step 1. A strategy profile where for eachi ∈ N and eachti ∈ Ti , t̂i = ti , ci = (xα
i )α∈Di and

ki = 0 is a Bayesian equilibrium ofG. To see this, note that this strategy profile correspo
to the outcome of rule (i). Moreover, no unilateral deviation from it can trigger rule
and thereforeai andki have no effect on the outcome. The only way an agent can ch
the outcome is by changing his announcement oft̂i or ci . Sincef is incentive compatible
and so isxα

i for all i ∈ N andα ∈ Di , reporting a false type is not a profitable deviation
any agent. By condition(∗) it is not profitable to report a change inci . Nor is it possible
to profit by changing botĥti andci because eachyα

i is constant with respect toi ’s type.
Thus, as claimed, any such profile is a Bayesian equilibrium ofG. Note that asε → 0, the
equilibrium outcome converges tof .

Step 2. There cannot be an equilibriumσ that induces case (ii) in any state inT ∗. Suppose
not. LetT I ⊆ T ∗, T I �= ∅ be the set of states inT ∗ in which σ induces the integer gam
(case (ii)). Letk̂ be the highest integer announced in any state inT I , and leth be the lowest
indexed agent who announcesk̂ in some statet in T I . Let

T ′−h = {
t ′−h ∈ T−h

∣∣ (
th, t

′−h

) ∈ T I
}
.

By hypothesis, this set is non-empty. By construction, agenth of type th, by announcing
kh = k̂, wins the integer game in all states in{th}×T ′−h. Sinceh is the lowest indexed agen

who announceŝk in T I , if agenth of type th changes her announcement of the intege
k′ > k̂, everything else being the same, she continues to be the winner in precise
h
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same states as before, namely{th} × T ′−h. Let σh(th) = (t̂h, ch, ah, k̂). Consider a strateg
σ ′

h such thatσ ′
h(th) = (t̂h, ch, a

′
h, k

′
h), where

k′
h > k̂, (2)∑

t−h∈T ′−h

qh

(
t ′−h

∣∣th)
uh

(
a′
h,

(
t ′−h, th

))
�

∑
t−h∈T ′−h

qh

(
t ′−h

∣∣th)
uh

(
ah,

(
t ′−h, th

))
(3)

and ∑
t−h∈T ′−h

qh

(
t ′−h

∣∣th)
uh

(
a′
h,

(
t ′−h, th

))
>

∑
t−h∈T ′−h

qh

(
t ′−h

∣∣th)uh

(
ā,

(
t ′−h, th

))
. (4)

The last inequality is possible because of NTI and the fact thatā assigns uniform
probability to all outcomes in̄A.

Observe that

Uh

((
σ−h, σ ′

h

)∣∣th) − Uh(σ |th)

= ε

2

∑
t−h∈T ′−h

qh

(
t ′−h

∣∣th)[uh

(
b′,

(
t ′−h, th

)) − uh

(
b,

(
t ′−h, th

))]
,

where b′ = 1

k′
h + 1

ā + k′
h

k′
h + 1

a′
h and b = 1

k̂ + 1
ā + k̂

k̂ + 1
ah.

From (2), (3) and (4), it follows that this expression is positive. This contradicts
hypothesis that the strategy profileσ is a Bayesian equilibrium.

Step 3. There cannot be an equilibriumσ that, in a state inT ∗, induces rule (i) of the
outcome functiong where exactlyn − 1 agents announceci = (xα

i )α∈Di andki = 0, while
agentj announces something else. Suppose this happened underσ in statet ∈ T ∗. Then,
anyh �= j , of typeth, can announcek′

h sufficiently high so that he becomes the winne
all states{th} × T ′−h where

T ′−h = {
t ′−h ∈ T−h

∣∣ there is exactly onei �= h with ki > 0 orci �= (
xα
i

)
α∈Di

}
.

These are precisely the states involvingth where σ induces a non-unanimous repo
within case (i). Letσh(th) = (t̂h, ch, ah,0) and consider a strategyσ ′

h, such thatσ ′
h(th) =

(t̂h, ch, a
′
h, k

′
h) wherek′

h is chosen to ensure thath wins the integer game in all states
{th}×T ′−h, anda′

h is chosen to satisfy (4). By changingσh(th) to σ ′
h(th), agenth of typeth

can shift some of the probability weight from̄a to a′
h (in states in{th} × T ′−h) and gain in

terms of interim utility. This contradicts thehypothesis thatσ is a Bayesian equilibrium.

Step 4. Finally, we claim that in any equilibrium ofG under rule (i) where each ageni
announcesci = (xα

i )α∈Di andki = 0, agents do not use a deceptionα (in the sense tha
type ti announceŝti = αi(ti)) wheref ◦ α �≈ f . Suppose not, i.e., there is an equilibriu
under rule (i) in which a deceptionα is used wheref ◦ α �≈ f . Sincef satisfies virtual
monotonicity, there exists a test-agenti and two SCFsxα

i andyα
i satisfying(∗). Therefore,

type ti of agenti has an incentive to deviate and change the second component
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announcement to(yα
i , (xα′

i )α′∈Di\{α}), which is a contradiction. Thus, either no decept
is used in equilibrium or the deception being used is such thatf ◦α ≈ f . In either case, the
equilibrium outcome isf ε . This proves that our mechanism virtually implementsf . �
3.1. ε-Bayesian monotonicity and virtual monotonicity

If an SCF f is virtually implementable, then for everyε > 0 there exists an SC
f ε such thatd(f,f ε) < ε, andf ε is Bayesian implementable. Thus,f ε must satisfy
the necessary conditions for Bayesian implementation, namely incentive compa
and Bayesian monotonicity. By the same argument we used in the necessity part
proof of Theorem 1, this yields the following necessary condition for virtual Baye
implementation:

An SCFf satisfiesε-Bayesian monotonicity if for every deceptionα satisfying that
f �≈ f ◦ α, and everyε > 0, there existsi ∈ N , ti ∈ Ti , an incentive compatible SCFf ε ,
with d(f,f ε) < ε, and an SCFy such that

Ui(y ◦ α | ti) > Ui

(
f ε ◦ α | ti

)
while Ui

(
f ε

∣∣t ′i) � Ui

(
yαi(ti )

∣∣t ′i), ∀t ′i ∈ Ti .

Evidently, this condition implies virtual monotonicity, since it concerns an SCF,f ε ,
close tof , rather than some arbitrary SCF. However, the sufficiency part of Theor
implies that in fact the two conditions are equivalent. A direct proof that (for an ince
compatible SCF) virtual monotonicity impliesε-Bayesian monotonicity is as follows.

Supposef satisfies virtual monotonicity and is incentive compatible. Letα be such tha
f ◦α �≈ f . Let i, ti , x andy satisfy(∗). Definef ε = (1−ε)f +εx andy ′ = (1−ε)f +εy.
We claim thatf ε and y ′ satisfy theε-Bayesian monotonicity condition for agenti of
typeti . Since

Ui(y
′ ◦ α | ti) − Ui

(
f ε ◦ α | ti

) = ε
[
Ui(y ◦ α | ti ) − Ui(x ◦ α | ti )

]
,

it follows from (∗) that

Ui(y
′ ◦ α | ti) > Ui

(
f ε ◦ α | ti

)
. (5)

From(∗) we also know that

Ui

(
x
∣∣t ′i) � Ui

(
yαi(ti)

∣∣t ′i), ∀t ′i ∈ Ti.

Thus

(1− ε)Ui

(
f

∣∣t ′i) + εUi

(
x
∣∣t ′i) � (1− ε)Ui

(
f

∣∣t ′i) + εUi

(
yαi(ti )

∣∣t ′i), ∀t ′i ∈ Ti .

Since,f is incentive compatible,

Ui

(
f

∣∣t ′i) � Ui

(
fαi(ti)

∣∣t ′i), ∀t ′i ∈ Ti.

The last two inequalities imply that

Ui

(
f ε

∣∣t ′i) � Ui

(
y ′
αi(ti)

∣∣t ′i), ∀t ′i ∈ Ti. (6)

Sincef andx are incentive compatible, so isf ε . From (5) and (6) it now follows thatf ε

andy ′ satisfy theε-Bayesian monotonicity conditions for agenti of type ti . Thus, virtual
monotonicity impliesε-Bayesian monotonicity.
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4. Type diversity

According to Theorem 1, virtual monotonicity is a necessary condition for an incen
compatible SCF to be virtually implemented. It is not possible, therefore, to ac
virtual Bayesian implementation through a weaker condition. However, this condition, lik
Bayesian monotonicity, is quite involved, and it is difficult to check whether a given
satisfies it or not. Consequently, it is not easy to see (apart from the necessity resu
weak the condition is. The aim ofthis section is to identify asimple condition that is eas
to check, readily interpreted, and that implies that every SCF satisfies virtual monoto
In addition, we show that this condition holds generically in environments. In m
environments, therefore, virtual monotonicity is vacuously satisfied by any ince
compatible SCF, and virtual implementation is as permissive as it can possibly be.

We shall find it convenient in this section to assume that the set of alternatives is
the reader is referred to Section 6 of Abreu and Sen (1991) for extensions to the case
A is an arbitrary subset of an abstract separable space.

Let A = {a1, . . . , aK } be the finite set of alternatives. Henceforth, we will find
convenient to identify a lottery,x ∈ ∆, as a point in the unit simplex inRK , i.e.,xk denotes
the probability assigned by lotteryx to alternativek.

DefineUk
i (ti) to be the interim utility of agenti of type ti for the constant SCF whic

assignsak in each state, i.e.,

Uk
i (ti ) =

∑
t−i∈T−i

qi(t−i |ti)ui(ak, t).

Let Ui(ti ) = (Uk
i (ti ))k=1,...,K .

We will show that any incentive compatible SCF is virtually implementable in Baye
Nash equilibrium if the environment satisfies the following condition:

An environmentE satisfiestype diversity (TD) if there do not existi ∈ N , ti , t
′
i ∈ Ti ,

ti �= t ′i , β ∈ R++ andγ ∈ R such that

Ui(ti ) = βUi

(
t ′i
) + γ e,

wheree is the unit vector inRK .
Condition TD has a simple interpretation: it requires that the interim (card

preferences over pure alternatives of different types of an agent be different. Note th
this does not require ordinal preferences over pure alternatives to differ across types
|A| = 2. Moreover, the condition only concernsconstant SCFs. This condition appe
in Section 4.2 of Abreu and Matsushima (1992b) as a simple way of ensuring
measurability. In a private values model,TD reduces to the condition that Palfrey a
Srivastava (1989b) callvalue-distinguished types, but unlike their condition, it is fully
operative regardless of the information structure, including environments with correlate
and common values.10

Type diversity (TD) has the obvious virtue of being simple and easy to check, espe
compared to virtual monotonicity or to other conditions in the literature, such as Bayes

10 For private values environments, TD rules out the possibility that two types differ only in their beliefs.
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monotonicity, A–M measurability or incentive consistency. Importantly, it is easy to s
that in the space of preferences overpure alternatives, TD is satisfiedgenerically if |A| � 3.
In this sense, TD is indeed a very weak condition if|A| � 3.11 It is, therefore, remarkabl
that TD is sufficient for virtual implementation of an incentive compatible SCF, as wi
shown.

The following lemma provides a useful implication of TD from the point of view
implementation.

Lemma 1. Suppose an environment E satisfies TD and NTI. Then there exist constant SCFs
((li(ti ))ti∈Ti )i∈N such that for every i ∈ N , ti , t

′
i ∈ Ti , ti �= t ′i ,

Ui

(
li(ti )|ti

)
> Ui

(
li
(
t ′i
)∣∣ti).

Proof. Consider the constant SCFx̄, which prescribes in each state the lotteryx̄, assigning
equal probability to each alternative inA, i.e., x̄(t) = (1/K, . . . ,1/K) for all t ∈ T . We
will show that fori ∈ N , ti , t

′
i ∈ Ti , ti �= t ′i , there exist constant SCFsx andx ′, close tox̄,

such that

Ui(x|ti) > Ui

(
x ′|ti

)
and Ui

(
x ′∣∣t ′i) > Ui

(
x
∣∣t ′i). (7)

The (interim) indifference curve of agenti of type ti throughx̄ (over constant SCFs) i
described by a hyperplane,H , in RK−1+ :

H =
{

(x1, . . . , xK−1) ∈ RK−1+
∣∣∣∣

K−1∑
k=1

pk(ti)xk = ū

}
,

where pk(ti) = (Uk
i (ti) − UK

i (ti)), for k = 1, . . . ,K − 1. Consider the indifferenc
hyperplane through̄x of agenti of type t ′i wheret ′i �= ti :

H ′ =
{

(x1, . . . , xK−1) ∈ RK−1+
∣∣∣∣

K−1∑
k=1

pk

(
t ′i
)
xk = ū′

}
.

Given NTI, we must havep(ti ) �= 0 andp(t ′i ) �= 0. Moreover,p(ti ) �= cp(t ′i ) for a
positive numberc, as that would mean thatUi(ti ) = cUi(t

′
i ) + γ e, violating condition

TD. Thus, eitherp(ti ) = cp(t ′i ) where c < 0 or there does not existc �= 0 such that
p(ti ) = cp(t ′i ). In the former case, it is easy to see (using NTI) that any point which
aboveH must be belowH ′ and by choosing two points (one aboveH and one below it)
close tox̄ one finds constant SCFs which satisfy (7). In the latter case, it is clear th
can choose two constant SCFsx andx ′ close tox̄ satisfying (7).

Given (7) we can complete the proof by the same argument as in the lemma in
and Matsushima (1992a) or Lemma 1 in Abreu and Matsushima (1992b).�

It is now easy to show that every SCF satisfies virtual monotonicity.

11 There is another reason why the weakness of condition TD relies on there being at least 3 alterna
there are only 2 alternatives and an agent has more than 2 types then this condition cannot hold.
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Lemma 2. Suppose an environment E satisfies TD and NTI. Then every SCF satisfies
virtual monotonicity.

Proof. Suppose the environment satisfies NTI and TD. For any deceptionα, there exists
i ∈ N and ti ∈ Ti such thatαi(ti ) �= ti . Given the SCFs,(li (ti)) described in Lemma 1
define a pair of SCFs,y andx, where

y(t ′) = li(ti ) for all t ′ ∈ T and x(t ′) = li (t
′
i ) for all t ′ ∈ T .

By construction,x is incentive compatible. Note also thaty is a constant SCF. Sinc
αi(ti) �= ti ,

Ui(y ◦ α | ti) = Ui

(
li (ti)|ti

)
> Ui

(
li
(
αi(ti)

) ∣∣ ti
) = Ui(x ◦ α | ti).

Moreover,

Ui

(
x
∣∣t ′i) = Ui

(
li
(
t ′i
) ∣∣ t ′i

)
� Ui

(
li(ti)

∣∣ t ′i
) = Ui

(
yαi(ti )

∣∣t ′i) for all t ′i ∈ Ti.

Thus, for any deceptionα, andany SCF, condition(∗) is satisfied withi ∈ N , ti ∈ Ti , and
SCFsy andx chosen as above.�

Applying Theorem 1, we have the following corollary.

Corollary 1. In an environment satisfying NTI and TD, every incentive compatible SCF is
virtually Bayesian implementable.

This result can also be proved directly by constructing a mechanism based o
constant SCFs,(li (ti)). We have constructed such a mechanism without relying on
notion of deceptions, and it is available upon request.

To illustrate TD, or its implications drawn out in Lemma 1, see Fig. 1, drawn
the case of three pure alternatives, with alternativea2 ranked abovea1, which in turn is
ranked abovea3 (for all three types, the direction of preference increases towardsa2). This
figure is very similar to one that could be drawn to illustrate the power of virtual N
implementation in the complete information case. We can illustrate TD in this figure
because condition TD concerns preferences overconstant SCFs. If an SCF is not consta
in principle the final outcome it prescribesis subject to deceptions, and an agent will fi
difficulties evaluating such SCFs because his Bernoulli utility or the final lottery prescribed
change from state to state. Preferences over constant SCFs do not encounter this d
and the surprising fact is that imposing a condition on preferences over constant
alone turns out to be so powerful, as shown in Corollary 1.

Conditions TD and NTI imply that every SCF is A–M measurable; see Ab
and Matsushima (1992b, Section 4.2), and also the related condition of interim valu
distinguished types in Palfrey and Srivastava (1993, Definition 6.3). It is also easy to s
that if TD and NTI are satisfied, the SCFf ∗ = (1/n)

∑
i∈N li(ti), whereli (ti) satisfy the

inequalities in the statement of Lemma 1, has the property that truth-telling is the
Bayesian equilibrium of the direct mechanism forf ∗. This implies that, under TD an
NTI, every SCF is incentive consistent, a condition which plays a crucial role in Duggan
(1997) sufficiency result.
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Fig. 1. Type diversity.

5. An example

We now consider an important example (Example 3 in Palfrey and Srivastava, 1
to show the permissiveness of our conditions and to clarify the comparison betwe
results and related results in the literature. Palfrey and Srivastava use this exam
show the difficulties that may arise in an environment with common values. There a
alternatives,A = {a, b} and three agents. Each agent has two possible types,Ti = {ta, tb}
and each type is drawn independently withqi(tb) = q for all i andq2 > 0.5. Agents have
identical preferences, given by

ui(a, t) =
{

1 if at least two agents are of typeta ,
0 otherwise;

ui(b, t) =
{

1 if at least two agents are of typetb,
0 otherwise.

For each agent, the corresponding interim utilities for the constant SCFs assigning
alternativesa andb are:

Ua
i (ta) = 1− q2, Ub

i (ta) = q2,

Ua
i (tb) = (1− q)2, Ub

i (tb) = 1− (1− q)2.

Sinceq2 > 0.5, this implies thatUb
i (ti ) > Ua

i (ti ) for all i andti ∈ Ti ; ordinal preference
do not vary across types.

Consider the “majoritarian" SCF,x∗, which choosesa when at least two agents are
type ta andb when at least two agents are of typetb. This SCF does not satisfy Bayesi
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monotonicity. To see this consider the deception,αi(ti ) = tb for all i and ti . Of course,
x∗ ◦ α �≈ x∗. Sincex∗ ◦ α(t) = b for all t andUb

i (ti ) > Ua
i (ti) for all i andti ∈ Ti , there

does not existy such thatUi(y ◦ α | ti ) > Ui(x
∗ ◦ α | ti) for any i andti . As Palfrey and

Srivastava (1989b) show, this SCF is not implementable in undominated Bayesian
equilibrium either. It can also be checked that in this environment, only constant
satisfy A–M measurability or incentive consistency.

We show now thatevery SCF satisfies virtual monotonicity in this example. To be
with, consider the majoritarian SCFx∗. Let

λ = (1− q)2 < 1/2

and definex as

x(t) = (1− λ)x∗ + λz(t)

wherez makes the choice least preferred by the majority, i.e.,z(t) = a if x∗(t) = b and
z(t) = b if x∗(t) = a.

The SCFx∗, choosing always the best alternative, yields a utility of 1 in each state
while z, choosing the worst alternative, yields 0 in each state. Thus,x yields a utility of
(1− λ) in each state, and the interim utility of each agent of each type is therefore(1− λ),
i.e.,

Ui(x|ta) = Ui(x|tb) = (1− λ) for all i.

Notice thatx chooses the best alternative with probability 1− λ and the worst one with
probabilityλ. Consider a unilateral deception from truth-telling by agenti. This does no
change the outcome ifi is not pivotal. But in each state wherei is pivotal, this causes th
outcome to be the best one with probabilityλ and the worst one with probability(1 − λ).
Sinceλ < 1/2, this results in an interim utility less than(1 − λ). Thus,x is incentive
compatible.

In fact, the argument of the previous paragraph can be extended to show thany
deceptionα applied tox results in some agent receiving an interim utility strictly le
than(1− λ):

If α(t) �= t for somet, then there existsi such that Ui(x ◦ α | tb) < (1− λ). (8)

Of course, in each statet , ui(x ◦ α, t) � 1 − λ. To prove (8), it suffices to show that the
existsi andt , with ti = tb such thatx ◦ α(t) �= x(t). There are two cases to consider.

Case 1. Suppose there existsi such thatαi(tb) = ta . If for somej �= i, αj (ta) = ta , this
implies that fort such thatti = tb andtj = ta , tk = tb,

x ◦ α(t) = (1− λ)a + λb while x(t) = (1− λ)b + λa.

If αj (ta) = tb for bothj �= i, then fort such thatti = tb andtj = ta for j �= i, we have

x ◦ α(t) = (1− λ)b + λa while x(t) = (1− λ)a + λb.

Thus, in either case,Ui(x ◦ α | tb) < 1− λ.
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Case 2. Supposeα is such that all agents report truthfully when they are of typetb. Then,
there existsj such thatαj (ta) = tb. Consideri �= j and the statet whereti = tb, tj = ta ,
tk = ta . Sinceαi(tb) = tb,

x ◦ α(t) = (1− λ)b + λa while x(t) = (1− λ)a + λb,

andUi(x ◦ α | tb) < 1− λ.

Definey to be the constant SCF which prescribesb in each state. Clearly, for eachi,

Ui(y|ta) = q2, Ui(y|tb) = 1− (1− q)2.

Sincey is constant, this means that for any deceptionα and any typeti , yαi(ti )(t) = y(t)

for all t . In particular,

Ui(y ◦ α | tb) = 1− (1− q)2 = (1− λ).

This, along with (8), implies that there existsi such that

Ui(y ◦ α | tb) > Ui(x ◦ α | tb). (9)

Recall thatUi(x|ta) = Ui(x|tb) = (1− λ) = 1− (1− q)2 > q2. Thus,

Ui(x|ta) � Ui(yαi(ti) | ta) and Ui(x|tb) � Ui(yαi(ti) | tb).
Given (9), this implies thatx andy satisfy our condition, for any deceptionα.

In fact, a slight modification of the arguments above shows that for any deceptiα,
one can choosex to bex = (1 − β)x∗ + βz for β > 0 arbitrarily small (together with th
samey, where the test-agent is always a typetb, chosen as above).

Since for every deceptionα, x∗ �≈ x∗ ◦α, the desired preference reversal has been fo
andx∗ satisfies virtual monotonicity. Moreover, since we have found a preference re
for every deception, it follows that every SCF inthis example satisfies virtual monotonici
Since the environment clearly satisfies NTI, it follows from Theorem 1 that every ince
compatible SCF is virtually Bayesian implementable.

Checking for virtual monotonicity may sometimes be cumbersome. It may the
easier to check that the environment satisfies TD. Actually, this environment doe
However, TD is easily satisfied if we modify this example to have a third alternativec. For
instance, supposeui(c, t) = 0 for all i and allt ∈ T and the preferences overa andb are
the same as before. Note that

Ua
i (ta) = 1− q2, Ub

i (ta) = q2, Uc
i (ta) = 0,

Ua
i (tb) = (1− q)2, Ub

i (tb) = 1− (1− q)2, Uc
i (tb) = 0.

Clearly, TD is now satisfied. Thus, Corollary 1 applies to this modified example;
incentive compatible SCF is virtually implementable. Since TD holds, every SCF sa
A–M measurability and incentive consistency in this environment with three alterna
However, the results of Abreu and Matsushima (1992b) and Duggan (1997) can
applied to any non-constant SCF even then. Abreu and Matsushima (1992b) u
assumption (their Assumption 2) which requires that in each state theex post preferences
(over lotteries) of the agents are different, which is clearly not the case in the prese
example. Duggan’s (1997) sufficiency theorem uses a weaker version of best e
private values. This too fails in the present example.
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It is of interest to note that even in this modified example, the majoritarian SCF c
be implemented in undominated Nash equilibrium; it can be checked that it does not sati
the necessary condition identified by Palfrey and Srivastava (1989b). Of course,
Bayesian implementation of a non-constant SCF remains impossible; ordinal prefe
over the alternatives remain identical for all types of all agents even after the new alter
is added, and only constant SCFs satisfy Bayesian monotonicity.

6. Concluding remarks

We conclude with a few remarks that apply to both Theorem 1 and Corollary 1.

Remark 1. Theorem 1 and the discussion in Section 5 show that, in some environm
virtual implementation in Bayesian equilibrium is more permissive than virtual im
mentation in iterative undominated strategies or exact implementation in undom
Bayesian equilibrium.

Remark 2. In environments violating TD, virtual implementation may be impossi
through a general violation of virtual monotonicity. For instance, this is the cas
Example 1 of Serrano and Vohra (2001), where only constant SCFs are vir
implementable in Bayesian equilibrium, even though the set ofincentive compatible SCFs
contains many non-constant ones. In fact, in the environment described in that ex
implementation is also impossible in other solution concepts: only constant SCFs
the necessary condition for undominated Bayesian implementation identified by Palfre
and Srivastava (1989b), and the necessary condition for perfect Bayesian implementatio
identified by Brusco (1995). Non-constant SCFs in that example also escape the su
conditions for implementation in sequential equilibrium used in Baliga (1999) and
Bergin and Sen (1998).

Remark 3. In this paper we have used the traditional notion of implementability w
ignores mixed strategies and imposes no restrictions on the nature of the mechan
one were allowed to use small transfers, and one were to insist on ‘regular mecha
and virtual Bayesian implementation using mixed strategies, virtual monotonic
not sufficient; A–M measurability then becomes necessary, as shown by Abre
Matsushima (1992b).

Remark 4. Our mechanism makes a use of the integergame that is a bit different from th
usual. In the traditional mechanisms, the integer game cannot be triggered in equilibriu
because (given some version of the no-veto-power assumption) different agents wou
attempt to get different alternatives. Our mechanism works even if all agents have identic
preferences (as in the example in Section 5) because the set of SCFs achievable by a win
of the integer game is ‘open’: a higher integer shifts more of the probability weight
ā to the chosen outcome in̄A. Of course, this makes essential use of NTI and the fact
virtual rather than exact implementation is being sought.
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The integer game used in our mechanism can be replaced by a modulo game,
making the mechanism compact. However, it is not clear to us whether it can be replaced
a finite modulo game. Dutta and Sen (1994) showedthe necessity of infinite mechanism
for exact Bayesian implementation even in finite environments. (While the example
by Dutta and Sen, 1994 does not satisfy TD, it can be modified by adding a third alter
which yields 0 utility to each agent in each state to satisfy TD. It is easy to check tha
result continues to apply to this modified example.) Yet TD implies A–M measurab
and under A–M’s conditions, virtual implementation can be accomplished throug
regular mechanism. Clarifying this aspect of the theory should be the object of fu
research.

Remark 5. Given the very positive results reported in this paper, one may wonder
much they depend on the expected utility assumption. To the extent that this is j
approximation of more realistic preferences, it would be desirable that the assump
expected utility be not a crucial one for the theory. Indeed, it is not. One can easily se
all our conclusions extend to preferences over lotteries that have lower contour se
are not nested in two different environments (many monotonic preferences in the se
first-order stochastic dominance will satisfy this). Reflection on Fig. 1 should suffi
convince the reader of this assertion: the relevant indifference surfaces yielding non-nest
lower contour sets in the interior of the probability simplex is completely independent
having a map of parallel straight lines (see Abreu and Sen, 1991 for a similar obser
in the context of virtual Nash implementation).

Remark 6. A connection of our analysis with subgame perfect implementation i
interest. Note that virtual monotonicity differs from Bayesian monotonicity much
the necessary condition for subgame perfectimplementation (Moore and Repullo, 198
Abreu and Sen, 1990) differs from Maskin monotonicity: while the latter requ
preference reversals around the SCF, the former can be satisfied by reversals over a
pairs (provided they are connected to the SCFby a suitable sequence). It remains as
open question whether a similar condition canbe found for implementation with dynam
mechanisms in incomplete information environments.

Acknowledgments

We thank several anonymous referees, whosecareful reading improved the presentat
substantially. We acknowledge numerous conversations with O. Volij on the subjec
also thank S. Baliga, J. Bergin, L. Corchon, M. Jackson, G. Mailath, E. Maskin, T. Pa
and P. Reny for helpful comments. Conference and seminar audiences at Venice, Pom
Fabra, Stanford, Arizona, Carlos III, Brown, Jerusalem, Minnesota, Caltech, Mary
Chicago, Pittsburgh, Institute for Advanced Study, Sao Paulo, Princeton, Rutgers, P
Northwestern and NYU also had useful suggestions. Both authors acknowledge s
from NSF grant SES-0133113 and Salomon research awards from Brown Univ
Serrano also thanks the Institute for Advanced Study for its warm hospitality
acknowledges research support from Deutsche Bank and the Alfred P. Sloan Found



R. Serrano, R. Vohra / Games and Economic Behavior 50 (2005) 312–331 331

te

te

con.

e

n.

ory 64,

Stud.

ss. J.

lgrave:

es.

ta-

9,

2.
References

Abreu, D., Matsushima, H., 1992a. Virtual implementation in iteratively undominated strategies: comple
information. Econometrica 60, 993–1008.

Abreu, D., Matsushima, H., 1992b. Virtual implementation in iteratively undominated strategies: incomple
information. Mimeo. Princeton University.

Abreu, D., Sen, A., 1990. Subgame perfect implementation: a necessary and almost sufficient condition. J. E
Theory 50, 285–299.

Abreu, D., Sen, A., 1991. Virtual implementation in Nash equilibrium. Econometrica 59, 997–1021.
Baliga, S., 1999. Implementation in economic environmentswith incomplete information: the use of multi-stag

games. Games Econ. Behav. 27, 173–183.
Bergin, J., Sen, A., 1998. Extensive form implementation in incomplete information environments. J. Eco

Theory 80, 222–256.
Brusco, S., 1995. Perfect Bayesian implementation. Econ. Theory 5, 419–444.
Chakravorti, B., 1992. Efficiency and mechanisms with no regret. Int. Econ. Rev. 33, 45–59.
Duggan, J., 1997. Virtual Bayesian implementation. Econometrica 65, 1175–1199.
Dutta, B., Sen, A., 1994. Bayesian implementation: the necessity of infinite mechanisms. J. Econ. The

130–141.
Jackson, M., 1991. Bayesian implementation. Econometrica 59, 461–477.
Maskin, E., 1977. Nash equilibrium and welfare optimality. Mimeo. MIT. Published in 1999 in: Rev. Econ.

66, 23–38.
Matsushima, H., 1988. A new approach to the implementation problem. J. Econ. Theory 45, 128–144.
Matsushima, H., 1993. Bayesian monotonicitywith side payments. J. Econ. Theory 59, 107–121.
Moore, J., Repullo, R., 1988. Subgame perfect implementation. Econometrica 56, 1191–1220.
Mueller, E., Satterthwaite, M., 1977.The equivalence of strong positive association and strategy-proofne

Econ. Theory 14, 412–418.
Myerson, R., 1989. Mechanism design. In: Eatwell, J., Milgate, M., Newman, P. (Eds.), The New Pa

Allocation, Information, and Markets. Norton, New York.
Palfrey, T., Srivastava, S., 1987. On Bayesian implementable allocations. Rev. Econ. Stud. 54, 193–208.
Palfrey, T., Srivastava, S., 1989a. Implementation with incomplete information in exchange economi

Econometrica 57, 115–134.
Palfrey, T., Srivastava, S., 1989b. Mechanism design with incomplete information: a solution to the implemen

tion problem. J. Polit. Economy 97, 668–691.
Palfrey, T., Srivastava, S., 1993. Bayesian Implementation. Harwood Academic Publishers, New York.
Postlewaite, A., Schmeidler, D., 1986. Implementation in differential information economies. J. Econ. Theory 3

14–33.
Saijo, T., 1987. On constant Maskin monotonic social choice functions. J. Econ. Theory 42, 382–386.
Serrano, R., Vohra, R., 2001. Some limitations of virtual Bayesian implementation. Econometrica 69, 785–79


