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Abstract

We provide a characterization of virtual Bayesian implementation in pure strategies for environ-
ments satisfying no-total-indifference. A social choice function in such environments is virtually
Bayesian implementable if and only if it satisfiencentive comatibility and a ondition we term
virtual monotonicity. The latter is weaker than Bayesian monotonicity—known to be necessary for
Bayesian implementation. Virtual monotonicity is weak in the sense that it is generically satisfied in
environments with at least three alternatives slihiplies that in most environments virtual Bayesian
implementation is as successful as it can bediriive compatittity is the only condition needed).
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1. Introduction

Consider the problem of implementing a social choice function (SCF) in an environment
with incomplete information among the agents. Since the socially desirable outcome
depends on agents’ private information, it is possible that agents do not have the incentive
to correctly reveal their private information. Bayesian incentive compatibility of an SCF is
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simply the requirement that each agent has theritive to truthfully reveal her information
when all other agents report their information truthfully. More precisely, an SCF is said
to be incentive compatible if truth-telling is a Bayesian Nash equilibrium of the direct
revelation game (in which agents report their private information and the outcome is the
social choice corresponding to these reports). By the revelation principle (see Myerson,
1989 and the references therein), incentiwmpatibility of an SCF is necessary for it to be
implemented through a Bayesian Nash equilibriuramgfmechanism. In general, however,
a mechanism applied to an incentive compatible SCF may possess other equilibria (which
do not correspond to the socially desired outcome). Full implementation refers to the design
of a mechanism that resolves this multiplicity problem by ensuring @ahaequilibria
correspond to the socially desired outcomesath information state, and requires some
condition in addition to incentive compatibility.

Postlewaite and Schmeidler (1986) showdt a necessary condition (in addition
to incentive compatibility) for a social choice set to be Bayesian implementable is
Bayesian monotonicity. As the term Bayasi monotonicity suggests, this condition
can be seen as an analog of Maskin monotonicity (Maskin, 1977) in the presence of
incomplete informatior. Palfrey and Srivastava (1989a) found a weakening of incentive
compatibility and a variant of 8yesian monotonicity that turned out to be sufficient for
implementation in exchange economies. Within economic environments, the gap after
Palfrey and Srivastava’s work between necessary and sufficient conditions was closed by
Jackson (1991) with a strengthening of Bayesian monotorfitgityfortunately, Bayesian
monotonicity is not satisfied by many well-known social choice functions (SCFs) for
exchange economies with incomplete information; see Palfrey and Srivastava (1987),
Chakravorti (1992) and Serrano and Vohra (2001). In this sense, Bayesian monotonicity
is a demanding condition. In light of Jackson’s characterization result this means that (full)
Bayesian implementation is a demanding requirement.

There is another sense in which the complete information environment seems to yield
more permissive implemerttan results. Remarkably, ¢hiMaskin monotonicity condition
can be entirely dispensed with by slightly weakening the notion of implementation. This
is the main insight of Abreu and Sen (1991) and Matsushima (1988), who show that under
very mild conditions, any social choice correspondence can be virtually Nash implemented
in the sense that, making use of lotterieseiowsocial alternatives, it is possible to
exactly implement a correspondence that is arbitrarily close to the given correspoAdence.
Moreover, Abreu and Matsushima (1992a) provide a significant improvement of these
results by showing that under very weak citizahs any SCF can be virtually implemented

1 Recall that Maskin monotonicity is a necessary dtod for Nash implementation. It also turns out
to be sufficient in environments where there is avqeé good and at least three agents. This condition is
satisfied by many correspondences of interest in engghaconomies (such as the Pareto, core and constrained
Walrasian correspondences). However, it may be qustiictve in other domains (see, for example, Mueller and
Satterthwaite, 1977 and Saijo, 1987).

2 Jackson (1991) also provides sufficient conditionat thuarantee implementation outside of economic
environments. He identifies a condition that herter‘monotonicity no veto” that serves this purpose.

3 This can be explained, in part, by the fact that Maskin monotonicity defined over lotteries is a very weak
condition.
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in the more attractive notion of iteratively undominated strategies, and that this is possible
without the use of mechanisms involving integer games.

Given the power of the virtual approach in the complete information case, and given that
Bayesian monotonicity is often a very strong condition, it is natural to ask if one can find
simpler and/or weaker conditions for virtual implementation in the presence of incomplete
information. That some condition (in addition to incentive compatibility) is needed even
for virtual Bayesian implementation is clear from Example 1 in Serrano and Vohra (2001):
there are environments with incomplete information in which only constant SCFs can be
virtually implemented. Thus, in contrast to the complete information results, even virtual
implementation requires non-trivial restrictions either on the environment or the SCF.

Our aim here is to settle two open issues in this literature:

e Characterize the SCFs that aretwally Bayesian implementable;
e Provide a simple, weak and readily interpretable condition that is sufficient for virtual
Bayesian implementation of an incentive compatible SCF.

It should be emphasized that we are concerned with implementation in pure Bayesian
Nash equilibrium. In this sense our characterization of virtual Bayesian implementation is
comparable to Jackson’s (1991) characterization of Bayesian implementation.

Two sufficient conditions for virtual Bayesian implementation (in addition to incentive
compatibility) are available in the exisgnliterature. Abreu and Matsushima (1992b)
dispense with Bayesian monotonicépd introduce a new condition termegasurability
(henceforth A-M meagability) which, under other weak assumptions, along with
incentive compatibility, is shown to be necessary and sufficient for virtual implementation
in iteratively undominated strategies. Their sufficiency result applies, a fortiori, to the
notion of virtual implemetation in mixed Bayesian Nash equilibrium. Duggan (1997)
suggests the condition dhcentive consistency and presents a sufficiency result for
environments with “beselement private values” Serrano and Vohra (2001) criticize
A-M measurability and incentive consistency, by showing them to be sometimes even
stronger than Bayesian monotonicity. Indeed, there are environments where every SCF
is virtually Bayesian implementable, but only constant SCFs satisfy A—M measurability
or incentive consistency. Thus, A—-M measurability or incentive consistency are far from
necessary for virtual Bayesian implementation. For a more detailed comparison of these
results with ours, see Section 1.1 below.

Our main result shows that in environments satisfying no-total-indifference (NTI),
an incentive compatible SCF is virtually implementable if and only if it satisfies a
condition we ternvirtual monotonicity. This resultincludes two-agent and ‘non-economic’
environments. Virtual monotonicity is ingpd by the Bayesian monotonicity condition
stated in Jackson (1991), and by the arguments used by Matsushima (1988) and Abreu and
Sen (1991) for virtual Nash implementation. Like Maskin monotonicity (Maskin, 1977)
and the conditions and insights used by thasthors, virtual monotonicity is a condition

4 In the same endeavor of attempting to dispense witfeBian monotonicity, Matsushima (1993) shows that
this can be done if side payments are allowed. In contrast, our results do not rely on transfers.
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on lower contour sets of preferences. Thosegpspnd our characterization result provide

a unified theory of implementation using pure Nash equilibrium as a solution concept.
Our new monotonicity condition requires,rfeach deception that undermines the given
SCF, the existence of a certain preferenaersal for at least one type of one agent. Such

a preference reversal is not required to hold for the given SCF bugofoe incentive
compatible SCF, theby making it a weaker conditioman Bayesian monotonicity. In
Section 5, we shall consider an important example, due to Palfrey and Srivastava (1989b),
of a common-values environment. In this example, the majoritarian SCF does not satisfy
Bayesian monotonicity (or indeed, any of thther available sufficient conditions for
implementation in other solution concepts). Nor does it satisfy A—M measurability or
incentive consistency. But it does satisfy virtual monotonicity, and is therefore virtually
Bayesian implementable. In fact, in this examglé SCFs satisfy virtual monotonicity.

Our characterization result demonstrateat thirtual Bayesian implementation is far
more permissive than Bayesian implementation. The argument goes beyond the fact
that virtual monotonicity is weaker than Bayesian monotonicity. As we will show, there
is a related condition on environments, which we term type diversity, suchattat
incentive compatible SCF is virtually implementable in such environments. This condition
is stronger than the necessary condition ifitplies that every SCF satisfies virtual
monotonicity), but it is much easier to state and interpret. It requires that the interim
(cardinal) preferences over pure alternatives of different types of an agent be difftrient.
considerably easier to verify than the other conditions mentioned above. More importantly,
type diversity turns out to be generic in the set of all environments with at least three
alternatives. This implies that in most environments, since every SCF satisfies virtual
monotonicity, every SCF is virtually impleemtable in Bayesian equilibrium provided it
is incentive compatible. In other words, the problem of multiplicity of equilibrium in
mechanism design under incomplete information can be completely solved if one takes
two degrees of approximation:

(a) in the solution concept, by requiring virtual instead of exact implementation, and
(b) in the environments, by perturbing them if necessary to ensure type diversity.

In doing so, Bayesian incentive compatibility remains the only important restriction on an
SCF for full implementation.

1.1. Acomparison with the related literature

As indicated above, our characterizatiof wrtual Bayesian implementation in
pure strategies is most related to Jackson’s (1991) Theorem 1—both are concerned
with implementation in pure strategies. The difference is that we also include non-
economic environments and the case of two agents; and in weakening the implementation

5 This condition appears in Abreu and Matsushirh@92b) as a simple way of ensuring A-M measurability.
In environments satisfying type diversity, every SCF also satisfies incentive consistency. In a private values model,
it reduces to the condition of value-distinguishggds introduced in Palfrey and Srivastava (1989b).
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requirement from exact to virtual Bayesianplementation we can weaken his Bayesian
monotonicity condition to virtual monotonicity.

Abreu and Matsushima (1992b) show that if mixed strategies are included and
mechanisms are restricted to be regularnthtual Bayesian Nash implementation is
characterized by incentive compatibility and A—M measurability. A characterization for
the case in which mixed strategies are imt#d, but mechanisms are not required to be
regular, remains open.

Duggan (1997) covers mixed equilibria in hisffitiency result. He also uses general
type spaces, whereas we assume a finite set of types. His main result assumes an “ex
post no-total-indifference” condition, instead of our somewhat stronger NTI. However, he
also assumes “best element private values,” which in conjunction with his version of NTI
implies our NTI condition. An important issue for future work is a characterization that
allows mixed strategies and general type spaces.

2. Themodel and definitions

We shall consider implementation in the context of a general environment with
asymmetric information. LeN = {1, ..., n} be a finite set of agents. L& denote the
(finite) set of agent’s types. The interpretation is that € T; describes therivate
information possessed by agehtWe refer to a profile of types= (71, ..., t,) as a state.

Let T = [[;cn Ti be the set of states. We will use the notatiopn to denote(r;) ;.
Similarly 7_; =[], T;.

Each agent has a prior probability distributigrdefined or". We assume that for every
i € N andy; € T;, there exists_; € T_; such thay; (r) > 0. For each € N ands; € T;, the
conditional probability of_; € T_;, giveny; is denotedy; (r_;|z;). Let T* C T be the set
of states with positive probability. We assume that agents agree on the states.a, for
allieN,qi(t)=0ifand onlyifs ¢ T*.

Let A denote the set of social alternatives, which are assumed to be independent of the
information state. Le#d be ac-algebra omA and A denote the set of probability measures
on (A, A). We shall assume that contains all singleton sets. The Bernoulli utility of agent
i for alternatives in stater is u; (a, t).

We can now define aenvironment as€ = {(A, A), (u;, T;, gi)ien}-

A social choice function (SCF) is a functionf:T — A. Two SCFs,f andh are
equivalent f ~ h) if f(z) = h(¢) for everyt € T* (see Jackson, 1991 for a discussion
on equivalent SCFs). We shall concentrate on SCFs rather than social choice sets because
our main interest lies in virtual implementation making use of lotteries advea social
choice set can be understood as a random function that puts positive measure only on the
functions that it includes.

Abusing notation slightly, given an SCF, u;(f,t) will refer to agenti's expected
utility evaluation of lottery f(¢) in statet. The (interim/conditional) expected utility of
agenti of typer; corresponding to an SCF is defined as:

Ui(flt) = Z qi (¢t )ui (f. (225, 1))

l‘/_iET_,‘
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We shall make the (weak) regularity assumptibat there is no-total-indifference. This
assumption will be in force throughout the paper.

An environment€ satisfiesno-total-indifference (NTI) if for every j e N, t; € T; and
T’ S T-jsuchthafs;} x 7', € T*, there exist, a’ € A such that

Y g jltpujan# Y g6 jltui@. 0.

. ! . !
t,]eTfj t,]eTfj

SinceN andT are finite, it follows that there is a finite sa&tC A such that anda’ in the
above condition belong ta.

This assumption amounts to the statement thare is no total-indifference for each
agent of each type whatever the updated lfelgout the other agents’ types, provided
that the updating is consistent with Bayes’ rule. Hence, NTI includes the assumption
of no-total-indifference ex post (made in Duggan, 1997) as well as interim (Abreu and
Matsushima, 1992b). While our assumptionti®@sger than the corresponding assumption
in Duggan (1997), he also makes another assumption, best element private values, and it
can be shown that the conjunction of that dmsl ex post NTI condition is stronger than
our version of NTI.

A mechanism G = ((M,);cn, g) describes a message spade for agenti and an
outcome functiorg : [[;cy Mi — A.

A (pure strategyBayesian equilibriumof G is a profile of strategies; = (o;);cy Where
o; . T; — M; suchthawi € N, Vt; € T;,

Ui(g(o)lti) = Ui(g(o—i,o})|ti) Vo :Ti > M;.

Denote byB(G) the set of Bayesian equilibria of the mechaniémLet g(B(G)) be
the corresponding set of equilibrium outcomes.

An SCF f is exactly Bayesian implementable if there exists a mechanis such that
everyh € g(B(G)) is equivalent tof .6

A direct mechanismis one withM; =T; forall i € N.

Consider the following metric on SCFs:

d(f.h)y=sup{|f(S1)—h(S|)||teT* SeAl.

An SCF f is virtually Bayesian implementable if Ve > O there exists an SCFF€ such
thatd(f, f€) < e and f€ is exactly Bayesian implementable.

A deception is a profile of functionse = («;)ien, Wheree; : T; — T;, «;(t;) # t; for
somey; € T; for somei € N. (Note that the identity function ofi is not a deception.) For
an SCFf and a deception, f o« denotes the SCF such that for eachT, [ f o «](t) =
f(a(2)). For an SCFf, a deceptiom and a type; € T;, let fu, ) (') = f(t_;, ai(t;)) for
allt/ eT.

6 Exact implementation in environments with incontplénformation has also been defined with respect
to solution concepts other than Bayesian equilibrisunch as undominated Bayesian equilibrium (Palfrey
and Srivastava, 1989b), perfect Bayesian equilibriiBrusco, 1995), sequential equilibrium (Baliga, 1999;
Bergin and Sen, 1998). In each case, teérition of exact implementation requires the set of outcomes selected
by the chosen solution concept in the medianto coincide with the social choice set.
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The next condition is necessary for exact Bsiga implementation (see Jackson, 1991).
An SCF f satisfiedBayesian monotonicity if for any deceptiony, wheneverf oa % f,
there exist € N, t; € T; and an SCH such that

Ui(yoa |tj) > Ui(foalty) while Ui(flt]) = Ui(vamlt]). Vi €T
An SCF f satisfiedncentive compatibility if for all i € N, t; € T; and all deceptions,
Ui(flt:) = Ui (fa; i ti)-

Jackson (1991) provides a characterization result for economic environments with at
least three agents: a social choice functisrBayesian implementable if and only if it
satisfies incentive compatitty and Bayesian monotonicity.This result can be readily
compared to our characterization theorem for virtual Bayesian implementation, found in
the next section.

3. A characterization result

In this section we show that a substantial weakening of Bayesian monotonicity yields
a necessary and sufficient condition, together with incentive compatibility, for virtual
Bayesian implementation.

An SCF f satisfiesvirtual monotonicity if for every deceptiorr, wheneverf o % f,
there existg € N, t; € T;, an incentive compatible SCFand an SCFH such that

Ui(yoa |tj) > Ui(xoa | t;) while Uj(x|t)) > Ui(yqat]). Vi €T;. (%)

The difference with Bayesian monotonicitytisat the preference reversal in the new
condition does not necessarily involve the SGF For each deceptiow such that
foa# f, we have an agent for whom some of their types exhibit a preference reversal
between two SCFs as specified (®). Clearly, under incente compatibility, virtual
monotonicity is weaker than Bayesian monotonicity. A more detailed comparison of the
two is provided in Section 3.1, where we shtvat the necessary preference reversal can
be shown to hold for SCFs that are arbitrarily closeftoThis is our rationale for the
term “virtual monotonicity.” We postpone to Section 4 a discussion of how weak virtual
monotonicity really is, and how it followfom a much simpler condition that does not
involve any reference to deceptions.

Our main result is the followingharacterization theorem.

Theorem 1. Suppose an environment £ satisfies NTI. Then, a social choice function f
is virtually Bayesian implementable if and only if it satisfies incentive compatibility and
virtual monotonicity.

In comparing this result to Jackson’s (1991) Theorem 1, note that our characterization
of virtual Bayesian implementation does not assume the environment to be economic, nor

7 In the more general case of a social choice set, an added condition, closure, is also needed. This condition
requires that the social choice set be closed undecatenation of common knowledge events.



R. Serrano, R. Vohra / Games and Economic Behavior 50 (2005) 312-331 319

does it require the number of agents to be at least three. In terms of the conditions on
the SCF, closure being a trivial requiremémen, the only difference reduces to requiring
Bayesian monotonicity instead of its virtual counterpart.

Proof of Theorem 1. Necessity. Since the necessity of incentive compatibility is well
known? we shall show that virtual monotonicity rsecessary for virtally implementing
an incentive compatible SCF.

Consider a deceptiom such thatf o« % f, and suppos¢ is virtually implementable,
i.e., for everye > 0 there exists and SCF¢ which is implementable and is-close
to f. Thus f€ satisfies incentive eopatibility and Bayesian monotonicity. Choosiag
small enough, it follows that for the given deceptien /€ o « % f€, and by Bayesian
monotonicity of /¢, there existg € N, t; € T; and an SCF such that

Uyoalt)>Ui(f oalt;) while Ui(f|t)) = Ui(yaut). VtieTi. (1)

But this means that whenevégro o % f, there exist € N, t; € T; and a pair of SCFs,
x (incentive compatible) ang satisfying (x); simply choosex = f€. Thus f satisfies
virtual monotonicity.

Sufficiency. Supposef satisfies incentive aopatibility and virtial monotonicity. We
shall construct a canonical mechanisth= ((M;);cn, ) to virtually implementf in
Bayesian equilibrium. Before we describe the strategy sets and the outcome function, we
introduce some additional notation.

For a deceptior such thatf o« % f, a test-agent is any agent for whom condit{eh
holds. Denote byD; the set of deceptions for whichis a test-agent. For each test-agent
and each deceptiane D;, fix two SCFsx* andy satisfying(x) for i of typet;, wherex*
is incentive compatible. Notice that conditi¢n) concerns the SCk only in those states
in which agent is of typec; (;). There is, therefore, no loss of generality in assuming that
y is of the form:

yi(t—i, ) =y (-, 1) forallz_;eT_; and 1 €T;.

Thusy? is constant ovef;.°
If agenti is a test-agent for some, let

C = {(Z?)aeD,- |VO[ eD;, z e {x,a,yf‘}}

Thus, a typical element of the sé} is a list of |D;| components. Each component is
one of the two SCFs irgx) associated with a deceptienfor which agenti is a test-
agent. For notational reasons, we will also find it convenient to construct these sets for
agents who are not test-agents. For eaeino is not a test-agent for any deception fix an
arbitrary deceptio@ and an arbitrary incdive compatible SCE;f‘, and letD; = {a} and

let C; = {x%}.

8 See Duggan (1997). Strictly speaking, what is necessary is the existence of an equivalent SCF that is
incentive compatible, but given the definition of implementation, there is no loss of generality in {akisejf
to be incentive compatible. This should also be understood in the way Theorem 1 is stated.

9 This observation also applies to the definition of Bayesian monotonicity.
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Denote bya € A the uniform probability distribution ovet. Fore € (0, 1), define the
SCFf€ as

ffo=A-eafn+ a+ —Z[

> x (t)}

ozeD

We will now prove thatf€ is Bayesian implementable with the following mechanism:
The message set of agents defined asM; = T; x C; x A x I, where[ is the

set of non-negative integers. Denote a typical message of agent; = (7, c;, a;, ki),

where ¢; = (z{')aecp;, and letm denote a profile of messages. The outcome function

g [liey Mi — Ais defined by the following rules:

(i) If m is such that at least — 1 agents announeg = (x{")qcp, andk; =0,

glm) = A— ) f(7) + +iz[|;l ELG)

aeD;

(i) Otherwise, denoting byt the agent with the lowest index among those who announce
the highest integer,

_ ~ € 1 _ kp € 1 a(n
g(m)—(l_e)f(t)‘i‘i[ma‘i‘kh+1ahj| +%Z|:|Dl| Z Z; (t)j|

ieN aeD;

To prove the theorem, we take the following steps:

Step 1. A strategy profile where for eaghe N and eachy; € T;, f; =t;, ¢; = (x{)aep; and

k; = 0is a Bayesian equilibrium @ . To see this, note that this strategy profile corresponds
to the outcome of rule (i). Moreover, no unilateral deviation from it can trigger rule (ii),
and therefore; andk; have no effect on the outcome. The only way an agent can change
the outcome is by changing his announcement of c;. Sincef is incentive compatible,

and soist? foralli € N anda € D;, reporting a false type is not a profitable deviation for
any agent. By conditiofix) it is not profitable to report a change ép. Nor is it possible

to profit by changing botly andc; because each” is constant with respect tids type.
Thus, as claimed, any such profile is a Bayesian equilibriui.dflote that ag — 0, the
equilibrium outcome converges it

Step 2. There cannot be an equilibriusnthat induces case (ii) in any stateif. Suppose
not. LetT! < T*, T + ¢ be the set of states ifi* in which o induces the integer game
(case (ii)). Lett be the highest integer announced in any staf®/inand leth be the lowest
indexed agent who announde# some state in 7. Let

By hypothesis, this set is non-empty. By construction, ageotttype ¢, by announcing

kj = k, wins the integer game in all states(ip} x T’ , . Since is the lowest indexed agent

who a}nnounceé in 7', if agenth of typer, changes her announcement of the integer to
kj, > k, everything else being the same, she continues to be the winner in precisely the
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same states as before, namgly x T’ . Letoy, (1) = (%n, ¢y an, k). Consider a strategy
o; such thab, (t4) = (i, cn, a;,, k},), where

k), > k, )
Z an(t_p|tn)un(ah. (1. tn)) > Z an(t_p|tn)un(an. (tLy. 1n)) (3)
I_hETih I_hETih
and

D an(plm)un(ag, (Lpotn)) > Y an(tpltm)un(@ (2Ly ). (4)

I_hETLh I_hETLh

The last inequality is possible because of NTI and the fact éhassigns uniform
probability to all outcomes im.
Observe that

Un((o-n: 03) |ta) — Un(c'|tn)
€
=5 Z an(t"p|tn)[un (B, (tps tn)) — un (b, (5. 1)),
t—hETih
- k, 1 A
k;l+1a+k1,1+1ah and b_]g+1a+]€+1ah,

From (2), (3) and (4), it follows that this expression is positive. This contradicts the
hypothesis that the strategy profites a Bayesian equilibrium.

where b’ =

Step 3. There cannot be an equilibrium that, in a state irff*, induces rule (i) of the
outcome functiory where exactly: — 1 agents announeg = (x{)ep; andk; =0, while
agentj announces something else. Suppose this happened andeatater € T*. Then,
anyh # j, of typer,, can announcg, sufficiently high so that he becomes the winner in
all states{t,} x T”, where

7', ={t’, € T_ | there is exactly one= h with k; > 0 orc; # (x,‘?‘)aeDi }.
These are precisely the states involvingwhere o induces a non-unanimous report
within case (i). Letoy, (1) = (&, cn, an, 0) and consider a strategy,, such thab; (t,) =
Ty, ch, ay, k) wherek), is chosen to ensure thatwins the integer game in all states in
{tm} x T, anda,, is chosen to satisfy (4). By changiag(#;) to o} (1), agent: of typez,
can shift some of the probability weight fromto a,, (in states infz,} x 77, ) and gain in
terms of interim utility. This ontradicts thénypothesis that is a Bayesian equilibrium.

Step 4. Finally, we claim that in any equilibrium of; under rule (i) where each agent
announces; = (x]")qep;, andk; = 0, agents do not use a deceptiorfin the sense that
types; announces = o; (t;)) where f o a % f. Suppose not, i.e., there is an equilibrium
under rule (i) in which a deceptiom is used wheref o ¢ % f. Since f satisfies virtual
monotonicity, there exists a test-agéiand two SCFs[* andy{* satisfying(x). Therefore,

type t; of agenti has an incentive to deviate and change the second component of his
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announcement toy?, (x,q/)a/eD,-\{a})a which is a contradiction. Thus, either no deception
is used in equilibrium or the deception being used is suchfhat ~ f. In either case, the
equilibrium outcome isf€. This proves that our mechanism virtually implemeyfits O

3.1. e-Bayesian monotonicity and virtual monotonicity

If an SCF f is virtually implementable, then for every > O there exists an SCF
f€ such thatd(f, f€) < €, and f€ is Bayesian implementable. ThugS must satisfy
the necessary conditions for Bayesian implementation, namely incentive compatibility
and Bayesian monotonicity. By the same argument we used in the necessity part of the
proof of Theorem 1, this yields the following necessary condition for virtual Bayesian
implementation:

An SCF f satisfiese-Bayesian monotonicity if for every deceptionr satisfying that
f % foa, and every > 0, there exist$ € N, t; € T;, an incentive compatible SCF<,
with d(f, f€) <€, and an SCH such that

Ui(yoa | ;) > Ui(foaly) while Ui(f|t)) 2 Ui(vaanlt). Vi eT;.

Evidently, this condition imfges virtual monotonicity, since it concerns an SGF,
close tof, rather than some arbitrary SCF. However, the sufficiency part of Theorem 1
implies that in fact the two conditions are equivalent. A direct proof that (for an incentive
compatible SCF) virtual monotonicity impliesBayesian monotonicity is as follows.
Supposef satisfies virtual monotonicity and is incentive compatible.d.& such that
foa# f.Leti,t;, x andy satisfy(x). Definef¢ = (1—¢) f +exandy = (1—¢) f +ey.
We claim thatf¢ and y’ satisfy thee-Bayesian monotonicity condition for agentof
typet;. Since

Ui(y'oa | 1) —Ui(foa|ti) =€[Ui(yoa|t;) —Ui(xoa| )],
it follows from (x) that

Ui(y' oa | ;) > Ui(f o | ;). )
From (%) we also know that

Ui(x]) > Ui ). Vel T,
Thus

A= Ui(f|r]) +eUi(x]t)) = A= Ui (f|t]) + €Ui vy |t). V1] € Th.
Since, f is incentive compatible,

Ui(£18) > Uil fuuco ). ¥if € T
The last two inequalities imply that

Ui(f€[t]) = Ui ey 1), V1 € T (6)

Since f andx are incentive compatible, so j&. From (5) and (6) it now follows that€
andy’ satisfy thee-Bayesian monotonicity conditions for agenf typer;. Thus, virtual
monotonicity implies:-Bayesian monotonicity.
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4. Typediversity

According to Theorem 1, viual monotonicity is a necessary condition for an incentive
compatible SCF to be virtually implemented. It is not possible, therefore, to achieve
virtual Bayesian implementation through aaker condition. However, this condition, like
Bayesian monotonicity, is quite involved, and it is difficult to check whether a given SCF
satisfies it or not. Consequently, it is not easy to see (apart from the necessity result) how
weak the condition is. The aim difis section is to identify &imple condition that is easy
to check, readily interpreted, and that implies that every SCF satisfies virtual monotonicity.
In addition, we show that this condition holds generically in environments. In most
environments, therefore, virtual monotonicity is vacuously satisfied by any incentive
compatible SCF, and virtual implemetitan is as permissive as it can possibly be.

We shall find it convenient in this section to assume that the set of alternatives is finite;
the reader is referred to Section 6 of Abreu and Sen (1991) for extensions to the case where
A is an arbitrary subset of an abstract separable space.

Let A = {a1,...,ax} be the finite set of alternatives. Henceforth, we will find it
convenientto identify a lottery, € A, as a pointin the unit simplex iRX, i.e., x; denotes
the probability assigned by lottesyto alternativek.

Define Ul."(t,») to be the interim utility of agent of typer; for the constant SCF which
assignsy in each state, i.e.,

Uty = Y qili-ilt)uilag, 1).

t_;jeT_;

.....

We will show that any incentive compatible SCF is virtually implementable in Bayesian
Nash equilibrium if the environmésatisfies the following condition:

An environment€ satisfiestype diversity (TD) if there do not exist € N, ¢,/ € T;,
ti #t, B € Ry y andy € R such that

Ui(t;)) = BU; (tl/) + ye,

wheree is the unit vector inRX .

Condition TD has a simple interpretation: it requires that the interim (cardinal)
preferences over pure alternatives of diéfier types of an agent be different. Note that
this does not require ordinal preferences over pure alternatives to differ across types unless
|A| = 2. Moreover, the condition only conceraosnstant SCFs. This condition appears
in Section 4.2 of Abreu and Matsushima (1992b) as a simple way of ensuring A—M
measurability. In a private values mod&D reduces to the condition that Palfrey and
Srivastava (1989b) caltalue-distinguished types, but unlike their condition, it is fully
operative regardless of the information struetuincluding environments with correlated
and common value¥

Type diversity (TD) has the obvious virtue of being simple and easy to check, especially
compared to virtual monotority or to other conditions in the literature, such as Bayesian

10 For private values environments, TD rules out the possibility that two types differ only in their beliefs.
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monotonicity, A—M measurability or incentiveonsistency. Importantly, it is easy to see
that in the space of preferences opare alternatives, TD is satisfigénericallyif |A| > 3.
In this sense, TD is indeed a very weak conditiopdif > 3.1 It is, therefore, remarkable
that TD is sufficient for virtual implementation of an incentive compatible SCF, as will be
shown.

The following lemma provides a useful implication of TD from the point of view of
implementation.

Lemma 1. Supposean environment £ satisfies TD and NTI. Then there exist constant SCFs
(i (t))reT)ien Suchthat for everyi e N, t;,t/ € T;, t; # 1],

Ui (L)) > Ui (1 (t]) |#).-

Proof. Consider the constant SGFwhich prescribes in each state the lottérassigning
equal probability to each alternative i i.e.,x(t) = (1/K,...,1/K) forall t € T. We

will show that fori € N, 1;,t] € T;, t; # t], there exist constant SCksandx’, close tox,

such that

U;(x|t;) > U; (x/|t,') and U,'(x/|tl-/) > U; (x|tl/) @)

The (interim) indifference curve of agenof typer; throughx (over constant SCFs) is
described by a hyperplang,, in RX

K-1
3™ petin =a},
k=1

where pi(t;) = (Ul."(t,») - Ul-K(ti)), for k =1,...,K — 1. Consider the indifference
hyperplane through of agenti of typer] wherer] # 1;:

K-1
Z pk(t;)xk = ﬁ/,.
k=1

Given NTI, we must havep(;) # 0 and p(t)) # 0. Moreover,p(;) # cp(t)) for a
positive number, as that would mean thdf; (;) = cU;(t)) + ye, violating condition
TD. Thus, eitherp(t;) = cp(t]) wherec < 0 or there does not exist # 0 such that
p(ti) = cp(t)). In the former case, it is easy to see (using NTI) that any point which lies
aboveH must be belowH’ and by choosing two points (one abokieand one below it)
close tox one finds constant SCFs which satisfy (7). In the latter case, it is clear that we
can choose two constant SCFandx’ close tax satisfying (7).

Given (7) we can complete the proof by the same argument as in the lemma in Abreu
and Matsushima (1992a) or Lemma 1 in Abreu and Matsushima (1992b).

H= {(xl,...,xkl) e R

H = {(xl, o xg-1) € RETE

Itis now easy to show that every SCF satisfies virtual monotonicity.

11 There is another reason why the weakness of condition TD relies on there being at least 3 alternatives: if
there are only 2 alternatives and an agent hagerthan 2 types then this condition cannot hold.
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Lemma 2. Suppose an environment £ satisfies TD and NTI. Then every SCF satisfies
virtual monotonicity.

Proof. Suppose the environment satisfies NTI and TD. For any decegtititere exists
i € N andt; € T; such thaty; (¢;) # t;. Given the SCFs(/; (#;)) described in Lemma 1,
define a pair of SCFs; andx, where

vy =1Lit) forall’eT and x()=1[()) forallt' eT.
By construction,x is incentive compatible. Note also thatis a constant SCF. Since,
o (1) # ti,

Ui(yoa | ;) =Ui(li t)t;) > Ui (li (i 1)) | ;) = Ui (x o | 1;).
Moreover,

Ui(x|t]) = Ui(li(5]) | 1)) = Ui (li(0) | ) = Ui (Yo |2})  forall 1] e T;.

Thus, for any deceptiom, andany SCF, conditionx) is satisfied with € N, ¢; € T;, and
SCFsy andx chosen as above.O

Applying Theorem 1, we have the following corollary.

Corollary 1. In an environment satisfying NTI and TD, every incentive compatible SCF is
virtually Bayesian implementable.

This result can also be proved directly by constructing a mechanism based on the
constant SCFs(/;(¢;)). We have constructed such a mechanism without relying on the
notion of deceptions, and it is available upon request.

To illustrate TD, or its implications drawn out in Lemma 1, see Fig. 1, drawn for
the case of three pure alternatives, with alternativéanked above:1, which in turn is
ranked aboveg (for all three types, the direction of preference increases towa)d3 his
figure is very similar to one that could be drawn to illustrate the power of virtual Nash
implementation in the complete information case. We can illustrate TD in this figure only
because condition TD concerns preferences ogastant SCFs. If an SCF is not constant,
in principle the final outcome it prescribessubject to deceptions, and an agent will find
difficulties evaluating such SCFs because tasr®ulli utility or the findlottery prescribed
change from state to state. Preferences over constant SCFs do not encounter this difficulty,
and the surprising fact is that imposing a condition on preferences over constant SCFs
alone turns out to be so powerful, as shown in Corollary 1.

Conditions TD and NTI imply that every SCF is A-M measurable; see Abreu
and Matsushima (1992b, Section 4.2), andbdlse related condition of interim value
distinguished types in Palfrey and Srivastg1993, Definition 6.3). It is also easy to see
that if TD and NTI are satisfied, the SCF = (1/n) ),y i (t;), wherel; (t;) satisfy the
inequalities in the statement of Lemma 1, has the property that truth-telling is the only
Bayesian equilibrium of the direct mechanism f6t. This implies that, under TD and
NTI, every SCF is incentive consistent, andition which plays a crucial role in Duggan’s
(1997) sufficiency result.
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as

ay

Fig. 1. Type diversity.

5. An example

We now consider an important example (Example 3 in Palfrey and Srivastava, 1989b)
to show the permissiveness of our conditions and to clarify the comparison between our
results and related results in the literature. Palfrey and Srivastava use this example to
show the difficulties that may arise in an environment with common values. There are two
alternativesA = {a, b} and three agents. Each agent has two possible types{z,, 15}
and each type is drawn independently witlir,) = ¢ for all i andg? > 0.5. Agents have
identical preferences, given by

wi(a, ) = 1 if atleast two agents are of typg
S0 otherwise;
w; (b, 1) = 1 if at least two agents are of typg

0 otherwise.
For each agent, the corresponding interutilities for the constat SCFs assigning
alternatives: andb are:

Ui(ta) =1—¢2, U} (ta) = 42,

Uttp) =(L—q)? Ul =1-(1-¢g)>

Sinceg? > 0.5, this implies thaU,.”(t,») > Uf(1;) for all i andy; € T;; ordinal preferences
do not vary across types.

Consider the “majoritarian” SCE;*, which choosea when at least two agents are of
typez, andb when at least two agents are of type This SCF does not satisfy Bayesian



R. Serrano, R. Vohra / Games and Economic Behavior 50 (2005) 312-331 327

monotonicity. To see this consider the deceptiefns;) = ¢, for all i and¢;. Of course,
x*oa s x*. Sincex*oa(t) =b forall ¢ andUl.b(t,-) > Uf(;) for all i ands; € T;, there
does not exisy such thatU;(yoa | t;) > U;(x* o | 1;) for anyi and¢;. As Palfrey and
Srivastava (1989b) show, this SCF is not implementable in undominated Bayesian Nash
equilibrium either. It can also be checked that in this environment, only constant SCFs
satisfy A—-M measurability or incentive consistency.

We show now thaevery SCF satisfies virtual monotonicity in this example. To begin
with, consider the majoritarian SCF. Let

A=01-¢)°<1/2
and definex as
x(t) = (A = Mx* + rz(0)

wherez makes the choice least preferred by the majority, @), = a if x*(t) = b and
2(t) =bif x*(t) =a.

The SCFx*, choosing always the best alterivat yields a utility of 1 in each state,
while z, choosing the worst alternative, yields 0 in each state. Thysglds a utility of
(1—2) in each state, and the interim utility of each agent of each type is thergferg),
ie.,

Ui(x|ty) =Ui(x|tp) = (1 —2) foralli.

Notice thatx chooses the best alternative with probability 1 and the worst one with
probability A. Consider a unilateral deception from truth-telling by agerithis does not
change the outcome ifis not pivotal. But in each state wheirés pivotal, this causes the
outcome to be the best one with probabilityind the worst one with probabilitd — 1).
Sincel < 1/2, this results in an interim utility less thad — A). Thus,x is incentive
compatible.

In fact, the argument of the previous paragraph can be extended to shoanghat
deceptione applied tox results in some agent receiving an interim utility strictly less
than(1 — A):

If a(t) # ¢t for somer, then there existssuchthat U;(x o |#5) < (1—A4). (8)

Of course, in each stateu; (x o o, ) < 1 — A. To prove (8), it suffices to show that there
existsi andz, with ¢; = 1, such thatv o «(¢) # x(¢). There are two cases to consider.

Case 1. Suppose there existssuch thai; (1) = 4. If for some j # i, a;(t;) = tq, this
implies that forr such that; =, andt; =1,, tx =15,

xoa(t)=(1—Na+rb while x(r)=(1—1)b+ ra.
If «;(t4) =1, for both j # i, then fors such that; =7, andt; =1, for j #i, we have
xoa(t)=A—-2b+xra whie x(@)=(1—-Xa-+Arb.

Thus, in eithercaséd/;(x o | 1) <1— A.
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Case 2. Supposer is such that all agents report truthfully when they are of typ&hen,
there existsj such thatr; (1,) = 1,. Consideri # j and the state wheret; =1, t; =1,
tr = t,. Sincew; (1) = tp,

xoa(t)=A—-2b+xra whie x(@)=(1—-MAa-+ b,
andU;(xoa |fp) <1—A.
Definey to be the constant SCF which prescrilbeéa each state. Clearly, for ea¢h
Uil =4%  Uilp) =1— (1 —g)%

Sincey is constant, this means that for any deceptioand any type;, yo,; ) () = y(¢)
for all ¢. In particular,

Ui(yoa |t =1—(1—g)*=(1—1).
This, along with (8), implies that there exigtsuch that
Ui(yoa|ty) > Ui(x o | 1p). 9)
Recall thatU; (x|t,) = Ui (x|t5) = (1 — 1) =1 — (1 — ¢)? > ¢2. Thus,
Ui(x1ta) 2 Ui Yoy 1 1)  and Ui (x|tp) 2 Ui Yay ) | 5)-

Given (9), this implies that andy satisfy our condition, for any deception

In fact, a slight modification of the arguments above shows that for any deception
one can choose to bex = (1 — B)x* + Bz for g > 0 arbitrarily small (together with the
samey, where the test-agent is always a typechosen as above).

Since for every deceptian, x* 5 x* o «, the desired preference reversal has been found
andx* satisfies virtual monotonicity. Moreover, since we have found a preference reversal
for every deception, it follows that every SCRhis example satisfies virtual monotonicity.
Since the environment clearly satisfies NTI, it follows from Theorem 1 that every incentive
compatible SCF is virtually Bayesian implementable.

Checking for virtual monotonicity may sometimes be cumbersome. It may then be
easier to check that the environment satisfies TD. Actually, this environment does not.
However, TD is easily satisfied if we modify this example to have a third alternativer
instance, suppose (c,7) =0 for alli and allz € T and the preferences overandb are
the same as before. Note that

Ul(ty) =1—¢2, Ub(t,) = 42, US(ty) =0,
Utty)=(1—q)%,  Ulwp)=1-1-¢q)?%  Uf(ty)=0.

Clearly, TD is now satisfied. Thus, Corollary 1 applies to this modified example; any
incentive compatible SCF is virtually implementable. Since TD holds, every SCF satisfies
A—M measurability and incentive consistency in this environment with three alternatives.
However, the results of Abreu and Matsushima (1992b) and Duggan (1997) cannot be
applied to any non-constant SCF even then. Abreu and Matsushima (1992b) use an
assumption (their Assumption 2) which requires that in each statextbest preferences

(over lotteries) of the agents are differemthich is clearly not the case in the present
example. Duggan’s (1997) sufficiency theorem uses a weaker version of best element
private values. This too fails in the present example.
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It is of interest to note that even in this modified example, the majoritarian SCF cannot
be implemented in undominated Nash equililoni it can be checked that it does not satisfy
the necessary condition identified by Palfrey and Srivastava (1989b). Of course, exact
Bayesian implementation of a non-constant SCF remains impossible; ordinal preferences
over the alternatives remain identical for all types of all agents even after the new alternative
is added, and only constant SCFs satisfy Bayesian monotonicity.

6. Concluding remarks
We conclude with a few remarks that apply to both Theorem 1 and Corollary 1.

Remark 1. Theorem 1 and the discussion in Section 5 show that, in some environments,
virtual implementation in Bayesian equilibrium is more permissive than virtual imple-
mentation in iterative undominated strategies or exact implementation in undominated
Bayesian equilibrium.

Remark 2. In environments violating TD, virtual implementation may be impossible,
through a general violation of virtual monotonicity. For instance, this is the case in
Example 1 of Serrano and Vohra (2001), where only constant SCFs are virtually
implementable in Bayesiargailibrium, even though the set ofcentive comptible SCFs
contains many non-constant ones. In fact, in the environment described in that example,
implementation is also impossible in other solution concepts: only constant SCFs satisfy
the necessary condition for undominated Bagesmplementation identified by Palfrey

and Srivastava (1989b), and the necessary itiondor perfect Bayesian implementation
identified by Brusco (1995). Non-constant SCFs in that example also escape the sufficient
conditions for implementation in seque equilibrium used in Baliga (1999) and in
Bergin and Sen (1998).

Remark 3. In this paper we have used the traditional notion of implementability which
ignores mixed strategies and imposes no restrictions on the nature of the mechanism. If
one were allowed to use small transfers, and one were to insist on ‘regular mechanisms’
and virtual Bayesian implementation using mixed strategies, virtual monotonicity is
not sufficient; A-M measurability then becomes necessary, as shown by Abreu and
Matsushima (1992h).

Remark 4. Our mechanism makes a use of the integgane that is a bit different from the
usual. In the traditional mechanisms, théeiper game cannot be triggered in equilibrium
because (given some version of the no-vebaspr assumption) different agents would
attempt to get different alternatives. Our manlsm works even if all agents have identical
preferences (as in the example in Sectiondn)duse the set of SCFs achievable by a winner
of the integer game is ‘open’: a higher integer shifts more of the probability weight from
a to the chosen outcome i. Of course, this makes essential use of NTI and the fact that
virtual rather than exact implementation is being sought.
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The integer game used in our mechanism can be replaced by a modulo game, thereby
making the mechanism compact. Howeves itdt clear to us whether it can be replaced by
afinite modulo game. Dutta and Sen (1994) showleel necessity of infinite mechanisms
for exact Bayesian implementation even in finite environments. (While the example used
by Dutta and Sen, 1994 does not satisfy TD, it can be modified by adding a third alternative
which yields 0 utility to each agent in each state to satisfy TD. It is easy to check that their
result continues to apply to this modified example.) Yet TD implies A—M measurability,
and under A—M’s conditions, virtual impinentation can be accomplished through a
regular mechanism. Clarifying this aspect of the theory should be the object of further
research.

Remark 5. Given the very positive results reported in this paper, one may wonder how
much they depend on the expected utility assumption. To the extent that this is just an
approximation of more realistic preferences, it would be desirable that the assumption of
expected utility be not a crucial one for the theory. Indeed, it is not. One can easily see that
all our conclusions extend to preferences over lotteries that have lower contour sets that
are not nested in two different environments (many monotonic preferences in the sense of
first-order stochastic dominance will satisfy this). Reflection on Fig. 1 should suffice to
convince the reader of this asgen: the relevant indifferece surfaces yielding non-nested
lower contour sets in the interior of the probability simplex is completely independent from
having a map of parallel straight lines (see Abreu and Sen, 1991 for a similar observation
in the context of virtual Nash implementation).

Remark 6. A connection of our analysis with subgame perfect implementation is of
interest. Note that virtual monotonicity differs from Bayesian monotonicity much like
the necessary condition for subgame perfegilementation (Moore and Repullo, 1988;
Abreu and Sen, 1990) differs from Maskin monotonicity: while the latter requires
preference reversals around the SCF, the former can be satisfied by reversals over arbitrary
pairs (provided they are connected to the Sfjfa suitable sequence). It remains as an
open question whether a similar condition danfound for implementation with dynamic
mechanisms in incomplete information environments.
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