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Abstract

I analyze the equilibria of a game based on the ad auction used by

Google and Yahoo. This auction is closely related to the assign-

ment game studied by Shapley-Shubik, Demange-Gale-Sotomayer and

Roth-Sotomayer. However, due to the special structure of preferences,

the equilibria of the ad auction can be calculated explicitly and some

known results can be sharpened. I provide some empirical evidence

that the Nash equilibria of the position auction describe the basic

properties of the prices observed in Google’s ad auction reasonably

accurately.
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Search engine advertising has become a big business, with the combined
revenue of industry leaders Yahoo and Google exceeding $11 billion in 2005.
Nearly all of these ads are sold via an auction mechanism.

The basic design of the ad auction is fairly simple. An advertiser chooses
a set of keywords that are related to the product it wishes to sell. Each
advertiser states a bid for each keyword that can be interpreted as the amount
that it is willing to pay if a user clicks on its ad.

When a user’s search query matches a keyword, a set of ads is displayed.
These ads are ranked by bids (or a function of bids) and the ad with the
highest bid receives the best position; i.e., the position that is mostly likely
to be clicked on by the user. If the user clicks on an ad, the advertiser is
charged an amount that depends on the bid of the advertiser below it in the
ranking.

Battelle [2005] describes the history of search engines and the auction
advertising model. My goal in this paper is to present a simple game theoretic
model of the ad auction and test the model against the data.

1 A model of position auctions

Consider the problem of assigning agents a = 1, . . . , A to slots s = 1, . . . , S
where agent a’s valuation for slot s is given by uas = vaxs. We number the
slots so that x1 > x2 > · · · > xS. We also set xs = 0 for all s > S and assume
that the number of agents is greater than the number of slots.

This problem is motivated by the ad auctions mentioned above. In these
auctions the agents are advertisers and the slots are positions on a web page.
Higher positions receive more clicks, so xs can be interpreted as the click-
through rate for slot s. The value va > 0 can be interpreted as the expected
profit per click so uas = vaxs indicates the expected profit to advertiser a
from appearing in slot s.

The slots are sold via an auction. Each agent bids an amount ba, with
the slot with the best clickthrough rate being assigned to the agent with the
highest bid, the second-best slot to the agent with the second highest bid,
and so on. Renumbering the agents if necessary, let vs be the value per click
of the agent assigned to slot s. The price agent s faces is the bid of the agent
immediately below him, so ps = bs+1. Hence the net profit that agent a can
expect to make if he acquires slot s is (va − ps)xs = (va − bs+1)xs.

It turns out that these that position auctions have a nice mathemati-
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Position Value Bid Price CTR

1 v1 b1 p1 = b2 x1

2 v2 b2 p2 = b3 x2

3 v3 b3 p3 = b4 x3

4 v4 b4 p4 = b5 x4

5 v5 b5 0 0

Table 1: Bidding for position

cal structure and a strong relationship to existing literature on two-sided
matching models (Roth and Sotomayor [1990]). Edelman et al. [2005] inde-
pendently examine these auctions and develop related results which I describe
below.

2 Nash equilibrium of position auction

Consider Table 1 which depicts the positions, values, bids and payment as-
sociated with an auction with S = 4 available slots. We know that xs > xs+1

by assumption and that bs > bs+1 by the rules of the auction.
If agent 3 wanted to move up by one position, it would have to bid at

least b2, the bid of agent 2. But if agent 2 wanted to move down by one
position it would only have bid at least b4 = p3, the bid of agent 4. We see
that to move to a higher slot you have to beat the bid that the agent who
currently occupies that slot is making; to move to a lower slot you only have
to beat the price that the agent who currently occupies that slot is paying.

Formally, we model the position auction as a simultaneous move game
with complete information. Each agent a simultaneously chooses a bid ba.
The bids are then ordered and the price each agent must pay per click is
determined by the bid of the agent below him in the ranking.

In equilibrium, each agent should prefer his current slot to any other slot,
which motivates the following definition.

Definition 1 A Nash equilibrium set of prices (NE) satisfies

(vs − ps)xs ≥ (vs − pt)xt for t > s (1)

(vs − ps)xs ≥ (vs − pt−1)xt for t < s (2)

where pt = bt+1.
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Note that if an agent changes his bid slightly it normally won’t affect his
position or payment, so there will typically be a range of bids and prices that
satisfy these inequalities. Also note that these inequalities are linear in the
prices. Hence, given (vs) and (xs) we can use a simple linear program to
solve for the maximum and minimum equilibrium revenue attainable by the
auction.

The analysis of the position auction is much simplified by examining a
particular subset of Nash equilibria.

Definition 2 A symmetric Nash equilibrium set of prices (SNE) satisfies

(vs − ps)xs ≥ (vs − pt)xt for all t and s.

Equivalently,
vs(xs − xt) ≥ psxs − ptxt for all t and s.

Note that the inequalities characterizing an SNE are the same as the
inequalities characterizing an NE for t > s.

Forgetting about the auction for a moment, suppose that the prices for
each slot were given exogenously and agents could purchase slots at these
prices. Note that the SNE prices comprise a competitive equilibrium in the
sense that each agent prefers to purchase the slot it is in rather than some
other slot. The SNE prices thus provide supporting prices for the classic
assignment problem, as described in Gale [1960], for example. In section 4 I
describe the relationship between the assignment problem and the position
auction in more detail.

In general, these supporting prices can only be calculated using a linear
program or related algorithm. However, I will show in a series of short
arguments that in this special case, the prices can be computed explicitly via
a simple recursive formula.

Fact 1 (Non-negative surplus) In an SNE vs ≥ ps.

Proof. Using the inequalities defining an SNE,

(vs − ps)xs ≥ (vS+1 − pS+1)xS+1 = 0,

since xS+1 = 0. 2

Fact 2 (Monotone values) In an SNE, vs−1 ≥ vs for all s.
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Proof. By definition of SNE we have

vt(xt − xs) ≥ ptxt − psxs (3)

vs(xs − xt) ≥ psxs − ptxt (4)

Adding these two inequalities gives us

(vt − vs)(xt − xs) ≥ 0,

which shows that (vt) and (xt) must be ordered the same way. 2

Note that since agents with higher values are assigned to better slots, an
SNE is an efficient allocation.

Fact 3 (Monotone prices) In an SNE, ps−1xs−1 > psxs and ps−1 ≥ ps for
all s. If vs > ps then ps−1 > ps

Proof. By definition of SNE we have

(vs − ps)xs ≥ (vs − ps−1)xs−1,

which can be rearranged to give

ps−1xs−1 ≥ psxs + vs(xs−1 − xs) > psxs.

This proves the first part.
To prove the second part we write

ps−1xs−1 ≥ psxs + vs(xs−1 − xs) ≥ psxs + ps(xs−1 − xs) = psxs−1.

Canceling xs−1 we see that ps−1 ≥ ps. If vs > ps, the second inequality is
strict, which proves the last part of the fact. 2

Fact 4 (NE ⊃ SNE) If a set of prices is an SNE it is an NE.

Proof. Since pt−1 ≥ pt,

(vs − ps)xs ≥ (vs − pt)xt ≥ (vs − pt−1)xt.

for all s and t. 2

The reason that the set of symmetric Nash equilibria is interesting is that
it is only necessary to verify the inequalities for one step up or down in order
to verify that the entire set of inequalities is satisfied.
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Fact 5 (One step solution) If a set of bids satisfies the symmetric Nash
equilibria inequalities for s + 1 and s − 1, then it satisfies these inequalities
for all s.

Proof. I give a proof by example. Suppose that the SNE relations hold for
slots 1 and 2 and for slots 2 and 3; we need to show it holds for 1 and 3.
Writing out the condition and using the fact that v1 ≥ v2,

v1(x1 − x2) ≥ p1x1 − p2x2 → v1(x1 − x2) ≥ p1x1 − p2x2

v2(x2 − x3) ≥ p2x2 − p3x3 → v1(x2 − x3) ≥ p2x2 − p3x3

Adding up the left and right columns,

v1(x1 − x3) ≥ p1x1 − p3x3,

as was to be shown. The argument going the other direction is similar. 2

These facts allow us to provide an explicit characterization of equilibrium
prices and bids. Since the agent in position s does not want to move down
one slot:

(vs − ps)xs ≥ (vs − ps+1)xs+1

Since the agent in position s + 1 does not want to move up one slot:

(vs+1 − ps+1)xs+1 ≥ (vs+1 − ps)xs.

Putting these two inequalities together we see:

vs(xs − xs+1) + ps+1xs+1 ≥ psxs ≥ vs+1(xs − xs+1) + ps+1xs+1. (5)

Recalling that ps = bs+1 we can also write these inequalities as:

vs−1(xs−1 − xs) + bs+1xs ≥ bsxs−1 ≥ vs(xs−1 − xs) + bs+1xs. (6)

Defining αs = xs/xs−1 < 1, we have yet another way to write the inequalities:

vs−1(1 − αs) + bs+1αs ≥ bs ≥ vs(1 − αs) + bs+1αs. (7)

The equivalent conditions (5)-(7) show that in equilibrium each agent’s
bid is bounded above and below by a convex combination of the bid of the
agent below him and a value—either his own value or the value of the agent
immediately above him. The (pure strategy) Nash equilibria can be found
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simply by recursively choosing a sequence of bids that satisfy these inequal-
ities.

We can examine the boundary cases by choosing the upper and lower
bounds in inequalities (6). The recursions then become

bU
s xs−1 = vs−1(xs−1 − xs) + bs+1xs (8)

bL
s xs−1 = vs(xs−1 − xs) + bs+1xs (9)

The solution to these recursions are:

bU
s xs−1 =

∑

t≥s

vt−1(xt−1 − xt). (10)

bL
s xs−1 =

∑

t≥s

vt(xt−1 − xt). (11)

The starting values for the recursions follow from the fact that there are
only S positions, so that xs = 0 for s > S. Writing out the lower bound on
the bid for s = S + 1, we have

bL
S+1xS = vS+1(xS − xS+1)

= vS+1xS

so that it is optimal for the first excluded bidder to bid his value. This is
has the same argument as in the usual Vickrey auction. If you are excluded,
then bidding lower than your value is pointless, but if you do happen to be
shown (e.g., because one of the higher bidders drops out) you will make a
profit.

2.1 Logic of the bounds

Of course, any bid in the range described by (5)-(7) is an SNE and hence an
NE bid, but perhaps there are reasons why bidding at one end of the upper
or lower bounds might be particularly attractive to the bidder.

Suppose that I am in position s making a profit of (vs − bs+1)xs. In Nash
equilibrium my bid is optimal given my beliefs about the bids of the other
agents, but I can vary my bid in range specified by (6) without changing my
payments or position.

What is the highest bid I can set so that if I happen to exceed the bid of
the agent above me and I move up by one slot, I am sure to make at make
at least as much profit as I make now?
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The worst case is where I just beat the advertiser above me by a tiny
amount and end up paying my bid, bs, minus a tiny amount. Hence the
breakeven case satisfies the equation

worst case profit moving up = profit now

(vs − b∗s)xs−1 = (vs − bs+1)xs.

Solving for b∗s gives us

b∗sxs−1 = vs(xs−1 − xs) + bs+1xs,

which is the lower-bound recursion, (9).
Alternatively, we can think defensively. If I set my bid too high, I will

squeeze the profit of the player ahead of me so much that he might prefer
to move down to my position. The highest breakeven bid that would not
induce the agent above me to move down is

his profit now = how much he would make in my position (12)

(vs−1 − b∗s)xs−1 = (vs−1 − bs+1)xs. (13)

Solving for b∗s gives us

b∗sxs−1 = vs−1(xs−1 − xs) + bs+1xs,

which is the upper-bound recursion, (8).
As a matter of practice, it seems to me that the first argument is com-

pelling. Even though any bid in the range (5) is a Nash bid, one might argue
that setting that bid so that I make a profit if I move up in the ranking is a
reasonable strategy.

3 NE revenue and SNE revenue

Summing equations (10) and (11) over s = 1, . . . S gives us upper and lower
bounds on total revenue in an SNE. If the number of slots S = 3, for example,
the lower and upper bounds are given by

RL = v2(x1 − x2) + 2v3(x2 − x3) + 3v4x3

RU = v1(x1 − x2) + 2v2(x2 − x3) + 3v3x3.
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How do these bounds relate to the bounds for the NE calculated by the
linear programming problems alluded to earlier?

Since the set of NE contains the set of SNEs, one might speculate that the
maximum and minimum revenues are larger and smaller, respectively, than
the SNE maximum and minimum revenue. This is half right: it turns out that
the upper bound for the SNE revenue is the same as the maximum revenue
for the NE, while the lower bound on revenue from the NE is generally less
than the revenue bound for the SNE.

Fact 6 The maximum revenue NE yields the same revenue as the upper
recursive solution to the SNE.

Proof. Let (pN
s ) be the prices associated with the maximum revenue Nash

equilibrium and let (pU
s ) be the prices that solve the upper recursion for the

SNE. Since NE ⊃ SNE, the revenue associated with (pN
s ) must be at least as

large as the revenue associated with (pU
s ).

From the definition of an NE, (1), we have:

pN
s xs ≤ pN

s+1xs+1 + vs(xs − xs+1).

From the definition of the upper-bound recursion, (8), we have:

pU
s xs = pU

s+1xs+1 + vs(xs − xs+1).

The recursions start at s = S. Since xS+1 = 0 we have

pN
S ≤ vS = pU

S .

It follows by inspecting the recursions immediately above that pU
s ≥ pN

s for
all s. Hence the maximum revenue from the SNE is at least as large as the
maximum revenue from the NE, implying that the revenue must be equal. 2

It is easy to construct examples where the minimum revenue NE has less
revenue than the solution to the lower recursion for the SNE; this is not
surprising since the set of inequalities defining the NE strictly contains the
set of inequalities defining the SNE. So we have the general relations:

maximum revenue NE = value of upper recursion of SNE ≥

value of lower recursion of SNE ≥ min revenue NE

with the inequalities being strict except in degenerate cases.
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4 Previous literature

I have already mentioned the recent independent analysis of Edelman et al.
[2005]. They introduce a concept they call “locally envy-free” equilibria
which requires that each player “cannot improve his payoff by exchanging
bids with the player ranked one position above him.” This yields the same
bids as the lower bound of the SNEs described in this paper. They also
introduce the interesting concept of a “Generalized English Auction” and
show that the unique perfect equilibrium of this game is the same as the
locally envy-free outcome.

There is also a much older literature that is closely related to the position
auction problem. Shapley and Shubik [1972] describe an assignment game
in which agents are assigned objects with at most one object being assigned
to an agent. Mathematically, let agent a’s evaluation of object s be given by
uas. The assignment problem asks for the assignment of objects to agents
that maximizes value. This problem can be solved by linear programming or
by other specialized algorithms.

It turns out that an optimal assignment can be decentralized by means
of price mechanism. That is, at an optimal assignment there will exist a set
of numbers (pa), interpretable as the price of the object assigned to agent a,
such that:

uas − pa ≥ uas − pb for all a and b.

Hence at the prices (pa) each agent would weakly prefer the object assigned
to him over any other object.

Comparing this to the definition of the symmetric Nash inequalities, we
see that the definitions are the same with uas = vaxs and pa = ba+1xs.
Hence, the position auction game we have described is simply a competitive
equilibrium of an assignment game that has a special structure for utility.
However, the special structure is particularly natural in this context. In
particular, we can explicitly solve for the largest and smallest competitive
equilibrium due to the special structure of uas.

Demange et al. [1986] construct an auction that determines a competitive
equilibrium. However, the auction they construct is quite different from the
position auction. Roth and Sotomayor [1990], Chapter 8, contains an unified
treatment of these results. Several papers have developed auctions that yield
competitive equilibria for the assignment game; see Bikhchandani and Ostroy
[2006] for a recent survey.
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5 Incentives

We have seen that the optimal bids in the position auction will in general
depend on the bids made by other agents. One might well ask if there is a
way to find another auction structure for which agent a’s optimal bid depends
only on its value. Is it possible to find an auction form that has a dominant
strategy equilibrium? Demange and Gale [1985] show the answer is “yes,”
using a variation on the Hungarian algorithm for the assignment problem.

We can also apply the well-known Vickrey-Clarke-Groves mechanism to
this problem. Leonard [1983] describes this for the general case, but the
VCG mechanism takes a particularly simple form for the special case we are
considering here.

Let us recall the basic structure of the VCG mechanism. Suppose a
central authority is going to choose some outcome z so as to maximize the
sum of the reported utilities of agents a = 1, . . . , A. Let agent a’s true utility
function be denoted by ua(·) and its reported utility function by ra(·).

In order to align incentives, the center announces it will pay each agent
the sum of the utilities reported by the other agents at the utility-maximizing
outcome. Thus the center announces it is going to maximize

ra(z) +
∑

b6=a

rb(z)

while agent a cares about

ua(z) +
∑

b6=a

rb(z).

It is easy to see that in order to maximize its own payoff, agent a will want
to report its true utility function, that is, set ra(·) = ua(·), since this ensures
that the center optimizes exactly what agent a wants it to maximize.

We can reduce the size of the sidepayments by subtracting an amount
from agent a that does not depend on its report. A convenient choice in this
respect is the maximized sum of reported utilities omitting agent a’s report.
Hence the final payoff to agent a becomes

ua(z) +
∑

b6=a

rb(z) − max
y

∑

b6=a

rb(y).

The payment made by agent a can be interpreted as the harm that its pres-
ence imposes on the other agents: that is the difference between what they
get when agent a is present and what they would get if agent a were absent.
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In the context of assigning agents to positions, if agent s − 1 is omitted,
each agent below agent s − 1 will move up one position while agents above
s − 1 are unaffected. Hence the payment that agent s − 1 must make is

VCG payment of agent s − 1 =
∑

t≥s

rt(xt−1 − xt), (14)

where rt is the reported value of agent t. In the dominant strategy VCG
equilibrium, each agent t will announce rt = vt, so

equilibrium VCG payment of agent s − 1 =
∑

t≥s

vt(xt−1 − xt). (15)

Comparing this to expression (11) this is easily seen to be the same as the
lower bound for the symmetric Nash equilibria.

This relationship is true in general, even for arbitrary uas. Demange and
Gale [1985] show that the best (i.e., lowest cost) equilibrium for the buyers in
the competitive equilibrium for the assignment problem is that given by the
VCG mechanism. See Roth and Sotomayor [1990] for a detailed development
of this theory, and Bikhchandani and Ostroy [2006] for a recent survey of
related results. Edelman et al. [2005] also recognize the close connection
between the VCG outcome and the equilibrium concept that they use (locally
envy-free equilibria).

6 Bounds on values

Returning to the symmetric Nash equilibrium analysis, it is possible to derive
useful bounds on the unobserved values of the agents by using the observed
equilibrium prices.

Let ps = bs+1 be the equilibrium price paid by agent s in a particular
symmetric Nash (or competitive) equilibrium. Then we must have:

(vs − ps)xs ≥ (vs − pt)xt.

Rearranging this we have

vs(xs − xt) ≥ psxs − ptxt.

Dividing by xs − xt and remembering that the sense of the inequality is
reversed when xs < xt, we have

min
t>s

psxs − ptxt

xs − xt

≥ vs ≥ max
t<s

psxs − ptxt

xs − xt

.



6 BOUNDS ON VALUES 13

Furthermore, we know from Fact 5 that the max and the min are attained
at the neighboring positions, so we can write

ps−1xs−1 − psxs

xs−1 − xs

≥ vs ≥
psxs − ps+1xs+1

xs − xs+1

These inequalities have a nice interpretation: the ratios are simply the incre-
mental cost of moving up or down one position.

We can recursively apply these inequalities to write

v1 ≥
p1x1 − p2x2

x1 − x2
≥ (16)

v2 ≥
p2x2 − p3x3

x2 − x3
≥ (17)

...

vS ≥ pS (18)

This shows that the incremental costs must decrease as we move to lower
positions. This observation has three important implications.

1. The inequalities give an observable necessary condition for a the ex-
istence of a pure strategy Nash equilibrium, namely, that each of the
intervals be non-empty. The conditions are also sufficient in that if the
intervals are non-empty, we can find a set of values that are consistent
with equilibrium.

2. The inequalities also yield simple bidding rule for the agents: if your
value exceeds the marginal cost of moving up a position, then bid
higher, stopping when this no longer is true.

3. Finally the inequalities motivate the following intuitive characterization
of SNE: the marginal cost of a click must increase as you move to
higher positions. Why? Because if it ever decreased, there would be an
advertiser who passed up cheap clicks in order to purchase expensive
ones.

We can also do the same calculations for the NE inequalities which yields:

min
t>s

psxs − pt−1xt

xs − xt

≥ vs ≥ max
t<s

psxs − ptxt

xs − xt

. (19)

Note that the upper bounds for the NE (for t > s) are looser than for the
SNE and that they now involve the entire set of bids, not just the neighboring
bids.
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Figure 1: Expenditure profile for SNE.

7 Geometric interpretation

Figure 1 shows the clickthrough rates xs on the horizontal axes and SNE
expenditure psxs = bs+1xs on the vertical axis. We refer to this graph as
the expenditure profile. The slope of the line segments connecting each ver-
tex are the marginal costs described in the previous section which we have
shown must bound the agents’ values. According to the above discussion, if
the observed choices are an SNE, this graph must be an increasing, convex
function.

The profit accruing to agent s is πs = vsxs − psxs. Hence the iso-profit
lines are given by psxs = vsxs −πs, which are straight lines with slope vs and
vertical intercept of −πs. A profit-maximizing bidder wants to choose that
position which has the lowest associated profit, as shown in Figure 1. The
range of values associated with equilibrium are simply the range of slopes of
the supporting hyperplanes at each point.

This diagram also can be used to illustrate the construction of the SNE
using the recursive solution outlined earlier. Suppose that there are 3 slots
and we are given four values. Since we know that p3 = v4 from the boundary
condition for the lower recursion, we draw a line with slope v4 connecting
the points (0, 0) and (x3, v4x3). Next draw a line with slope of v3 starting at
(x3, v4x3). The value of this line at x2 will be v4x3 + v3(x2 − x3), which is
exactly the lower recursion. Continuing in this way traces out the equilibrium
expenditure profile.

We can also illustrate the NE bounds using the same sort of diagram.
The lower bounds on Figure 2 shows the the SNE bounds, along with the
NE bounds from inequalities (19). For the NE, the lower bounds are the
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Figure 2: Expenditure profile for NE and SNE.

same, while the upper bounds are looser (steeper) than the SNE.

8 Applications to ad auctions

Up until now we have described the abstract strategic structure of the posi-
tion auction. In order to apply this to the actual ad auction used by Google,
we have to add some refinements.

Google actually ranks the ads by the product of a measurement of ad
quality and advertiser bid, rather than just the bid alone.1 We assume that
the observed clickthrough rate for advertiser a in position s is the product of
this “quality effect” es, and a “position effect,” xs. Letting zs be advertiser
s’s observed clickthrough rate, we write zs = esxs.

Advertisers are ordered by esbs and each advertiser pays the minimum
amount that is necessary to retain his position. Let qst be the amount that
advertiser s would need to pay to be in position t. By construction we have

qstes = bt+1et+1.

Solving for qst we have
qst = bt+1et+1/es. (20)

Nash equilibrium requires that each agent prefer his position to any other
position, recognizing that the cost and clickthrough rate of the other position
depends on his ad quality:

(vs − qss)esxs ≥ (vs − qst)esxt.

1See http://services.google.com/awp/en_us/breeze/5310/index.html.
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Figure 3: Examples of data and fits.

Substituting (20) into this expression and simplifying we have

(esvs − bs+1es+1)xs ≥ (esvs − bt+1et+1)xt.

Letting ps = bs+1es+1 and pt = bt+1et+1 gives us

(esvs − ps)xs ≥ (esvs − pt)xt.

We can now apply the same logic used in (16–18) to give us

e1v1 ≥
p1x1 − p2x2

x1 − x2
≥ (21)

e2v2 ≥
p2x2 − p3x3

x2 − x3
≥ (22)

...

eSvS ≥ pS. (23)

These are the testable inequalities implied by the symmetric Nash equilib-
rium model.

Finally, we also have to mention the case of “non-fully sold pages” which
are auctions where the number of ads displayed on the right-hand side is
fewer than 8. In this case, the bottom ad on the page pays a reserve price
which is currently set at 5 cents.



9 INFORMATION REQUIREMENTS 17

9 Information requirements

We have focused on the set of Nash equilibria of the position auction game.
This is, of course, a full-information solution concept, and one might ask how
likely it is that advertisers know what they need to know to implement a full
information equilibrium.

Of course, one could hardly expect advertisers to be completely informed
about all relevant variables. However, it is very easy to experiment with
bidding strategies in real-world ad auctions. Google reports click and im-
pression data on an hour-by-hour basis and a few days of experimentation
can yield pretty good estimates of the number of clicks received for different
bids. Furthermore, Google itself offers a “Traffic Estimator” that provides an
estimate of the number of clicks per day and the cost per day associated with
the advertiser’s choice of keywords. Finally, third-party companies known as
“Search Engine Managers (SEMs)” offer a variety of services related to man-
aging bids.

The availability of such tools and services, along with the ease of experi-
mentation, suggest that the full-information assumption is a reasonable first
approximation. As we will see below, the Nash equilibrium model seems to
fit the observed choices well.

10 Empirical analysis

Given a set of position effects, quality effects, and bids we can plot xt versus
expenditure btxt and see if this expenditure profile is increasing and convex.
It turns out that this often is true. If the graph is not increasing and convex,
we can ask for a perturbation of the data that does exhibit these properties.

The question is, what to perturb? The natural variable to perturb is the
ad quality, es, since this is the most difficult variable for the advertisers to
observe and thus has the most associated uncertainty. Let (dses) be the value
of the perturbed ad quality where (ds) is a set of multipliers indicating how
much each ad quality needs to be perturbed to satisfy the Nash inequalities
(21−23). Since the prices ps are linear functions of es, we can also think of
the perturbations as applying to the prices.

This model motivates the following quadratic programming problem: choose
the perturbations (ds) to be as close as possible to 1 (in terms of squared
error) constrained by the requirement that the SNE inequalities given in
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Figure 4: Distribution of mean absolute deviations.

(21−23) are satisfied.
Explicitly, the quadratic programming problem is

min
d

∑

s

(ds − 1)2

such that
ds−1ps−1xs−1 − dspsxs

(xs−1 − xs)
≥

dspsxs − ds+1ps+1xs+1

(xs − xs+1)
.

Since the constraints are linear in (ds), this is a simple quadratic program-
ming problem which can be easily solved by standard methods. This minimal
perturbation calculation can be given a statistical interpretation; see Varian
[1985]. However, we do not pursue the details of this interpretation here.

Figure 3 shows some examples of expenditure profiles using the actual
data along with the best fitting increasing, convex relationship. (The nu-
meric values on the axes have been removed since this analysis is based on
proprietary data.)

It can be seen that the general shape of the expenditure profile tends to
be increasing and convex as the theory predicts. Furthermore, it often rather
flat at least in positions 3-8. One explanation for the increased expenditure
on positions 1 and 2 on the right-hand side is that Google will promote ads
in these slots to the top-of-page position under certain conditions. Thus
advertisers may want to bid extra to get to right-hand side positions 1 and
2, hoping to be promoted to a top spot.

I examined the bids for a random sample of 2425 auctions involving at
least 5 ads each on a particular day. Solving the quadratic programming
problems yields a set of minimal perturbations for each auction required to
make that auction satisfy the SNE inequalities. For each auction I define the
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Psn raw LB raw UB pert LB pert UB price

1 1.19 ∞ 1.19 ∞ 0.48
2 1.29 2.26 1.15 2.26 0.60
3 0.60 1.66 1.19 1.48 0.48
4 0.72 0.30 0.60 0.61 0.23
5 1.68 1.79 1.47 1.49 0.40
6 0.23 0.84 0.34 0.74 0.07
7 1.32 0.83 1.08 1.19 0.24
8 0.05 1.63 0.05 1.33 0.21

Table 2: Bounds on values

mean absolution deviation to be
∑S

s=1 |ds − 1|/S, where S is the number of
advertisers in the auction.

Figure 4 depicts a histogram of mean absolute deviations necessary to
satisfy the SNE inequalities; as it can be seen the deviations tend to be quite
small, with the average absolute deviation of the perturbations being 5.8
percent and the median being 4.8 percent. Very few of the mean absolute
deviations are larger than 10 percent. I conclude that relatively small per-
turbations are required to make the observations consistent with the SNE
models. Since the NE inequalities are weaker than the SNE inequalities, the
required perturbation for consistency with Nash equilibrium would be even
smaller.

We can use the procedure for estimating the bounds on v described in
section 6 to determine empirically the relationship between the bids and the
values. For example, Table 2 shows the “raw” upper and lower bounds on
values for a particular keyword calculated by using the observed incremen-
tal cost along with the upper and lower bounds on value calculated using
the perturbed values from the quadratic program. The last column is the
price of the click. In this example, the lower bounds sometimes exceed the
upper bounds for the raw data, but the perturbed data satisfy the bounds
by construction. The prices are not necessarily monotone due to the quality
adjustment but the price times quality adjustment (not shown) is always
monotone.

As can be seen from the table, the estimated value of a click to these
bidders appears to be somewhere around a dollar and the advertisers are
paying around fifty cents a click.
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Appendix: Bayes-Nash equilibrium

I have argued that the full information assumption that underlies Nash equi-
librium is not implausible in this institutional setting. However, it is also of
interest to examine the Bayes-Nash equilibria, which would be appropriate
in a game with substantially less information.

As it turns out the analysis is a straightforward variation of the classical
analysis of a simple auction. To see this, let us first review the classical
analysis. Let v be the value of a particular bidder, P (v) the probability that
he wins the auction, and p(v) his expected payment. The bidder’s objective
is to maximize expected surplus S(v) = vP (v)− p(v).

In the position auction context, we let P(1)(v) be the probability that the
player has the highest bid, P(2)(v) the probability that the player with value
v has the second-highest bid and so on. If there are 3 positions, the surplus
becomes

S(v) = v[P1(v)x1 + P2(v)x2 + P3(v)x3] − p(v).

The first term is the expected surplus to a bidder with value v, recognizing
that it gets x1 clicks if it ends up in the first position, x2 clicks if it ends up
in the second position, and so on, with each click being worth v. In a simple
auction, the value of coming in second is zero. In a position auction, the
value of coming in second is vx2.

Define H(v) = P1(v)x1 + P2(v)x2 + P3(v)x3 and write the surplus as

S(v) = vH(v) − p(v).

It is not hard to see that H(v) has the relevant properties of a CDF. It
is monotone, since it is a weighted sum of monotone functions. Furthermore
if vL and vU are the upper and lower bounds on v, H(vL) = 0 and H(vU) =
x1 = a constant.

All of the standard properties of a simple auction carry over to the po-
sition auction, including revenue neutrality, the derivation of the optimal
reserve price, and so on. Hence the Bayes-Nash equilibrium of a position
auction is a straightforward generalization of the Bayes-Nash equilibrium of
a simple auction.
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