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1 Introduction

1.1 The Implementation Problem

The implementation problem is the problem of designing a mechanism (game
form) such that the equilibrium outcomes satisfy some criterion of social opti-
mality. Early discussions focused on revelation mechanisms where each agent
reports what he knows to a social planner who chooses an outcome. It was
discovered that the Lindahl rule for allocation of public goods [Samuelson
(1954, 1955)] and the Walrasian rule for allocation of private goods [Hur-
wicz (1972)] are not strategy-proof, i.e., all agents reporting the truth is not
an equilibrium. For quasi-linear public goods environments, Groves (1970)
and Clarke (1971) designed strategy-proof revelation mechanisms. But a
strategy-proof revelation mechanism may, in addition to the truthful equi-
librium, have undesirable untruthful equilibria which can only be eliminated
by using more general message spaces. Groves and Ledyard (1977), Hurwicz
and Schmeidler (1978) and Maskin (1999)! initiated the study of mecha-
nisms with general message spaces. This line of research, which is known as
implementation theory, provides an analytical framework for the design of
institutions. It has been criticized for allowing mechanisms to be arbitrarily
complicated, but much of the complexity is due to the fact that theorems
are proved for very general environments. In many applications the optimal

*We are grateful to Luis Corchén and Sandeep Baliga for helpful comments.
Maskin’s paper was circulated as a working paper in 1977.



mechanisms have turned out to be quite simple.?

1.2 Definitions

The environment is represented by (A, N, ©), where A is the set of feasible
alternatives or outcomes, N = {1,2,...,n} is the set of agents, and © is the
set of possible states of the world. In some applications, the state 6 € ©
specifies endowments and production technologies, so that the set of feasible
alternatives depends on the state of the world. In fact, except for a brief
discussion in Section 2.9, in this survey we will assume the feasible set A is
the same in all states. The agents preferences over outcomes do, however,
depend on the state.

Each agent ¢ € N has a payoff function u; : A x © — R. Thus, if the
outcome is a € A and the state of the world is 6§ € O, then agent i’s payoff is
u;(a,d). His weak preference in state 6 is represented by R; = R;(6), where
for z,y € A,

zRy <= w(z,0)>w(y,0)

The strict part of his preference is denoted P, = P;(#), and indifference is
denoted I; = I;(0) :

The preference profile at state € O is denoted R = R(0) = (R1(0), ..., Rn(0)).
The preference domain is the set of a priori possible preference profiles:

R(©) ={R: R= R(0) for some 0 € O}.

Let R4 be the set which contains all profiles of complete and transitive
preferences over A, the unrestricted domain. Let P4 be the set which contains
all profiles of linear orderings over A (i.e., P, is the subset of R, which
contains all strict preference profiles). The preference domain for agent i is
the set

Ri(0©) = {R; : there is R_; such that (R;, R_;) € R(O)}.

2Earlier surveys of implementation theory include Moore (1992), Palfrey (1992), and
Corchén (1996).




When O is fixed, we simplify by writing R and R; instead of R(©) and
Ri(©).

For any sets X and Y, let X\Y ={z:2 € X, x ¢ Y}, let YX denote the
set of all functions from X to Y, and let 2% denote the set of all subsets of
X. A social choice rule (SCR) is a function F' : © — 24\() (i.e. a non-empty
valued correspondence). The set F(6) is the set of socially optimal (or more
precisely F-optimal) alternatives in state 8 € ©. The image or range of the
SCR F is the set

F(©O©)={a€ A:ac F(0) for some § € O}.

A social choice function (SCF) is a single-valued SCR, i.e., a function f :
0 — A

Some important properties of SCRs are as follows. Ordinality: for all
0,0 € O, if R(A) = R(#') then F(0) = F(0"). Weak Pareto optimality: for
all 0 € © and all a € F(0), there is no b € A such that u;(b,0) > u;(a,0) for
all i € N. Pareto optimality: for all # € © and all a € F'(), thereisno b € A
such that w;(b,0) > wu;(a,0) for all i € N with strict inequality for some i.
Dictatorship: there exists i € N such that for all # € © and all a € F(0),
ui(a,8) > u;(b,0) for all b € A. Unanimity: for all 6 € © and all a € A, if
u;(a,0) > u;(b,0) for all i € N and all b € A then a € F(6).

If Fis an ordinal SCR, then there exists a unique correspondence F' :
R(O) — 24\ satisfying

F(R(0)) = F(0) (1)

for all # € ©. The correspondence F is sometimes convenient to work with,
since it is defined directly on preferences and avoids references to states of
the world.

Given an SCR F, the implementation problem is the problem of finding a
mechanism (or game form) such that the equilibrium outcomes are F-optimal
in each state. A normal form mechanism is denoted I' = (x!_,M;, h) and
consists of a message space M; for each agent i € N, and an outcome function
h:xP M; — A. Let m; € M; denote agent i’s message. All messages are
sent simultaneously, and the chosen outcome is h(my, ...,m,) € A. A message
profile is denoted m = (my,....,m,) € M = X} M;. An extensive form
mechanism is a more complicated object since it allows agents to make choices
sequentially; for a formal definition see Moore and Repullo (1988). The most
common interpretation of the implementation problem is that the mechanism
is designed by a social planner or mechanism designer, who cannot observe
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the true state of the world, but who wants the outcome to be F-optimal in
each state.

Let S-equilibrium be a game theoretic solution concept. For each mech-
anism I' and each state # € ©, the solution concept specifies a set of S-
equilibrium outcomes denoted S(I',0) C A. Let F be an SCR. The mech-
anism ' implements F in S-equilibria, or simply S-implements F, if and
only if S(I',8) = F(6) for all # € ©. Thus, the set of S-equilibrium out-
comes should coincide with the set of F-optimal outcomes in each state. If
such a mechanism exists then F' is implementable in S-equilibria or simply
S-implementable. This notion is also referred to as full implementation. If
S1 and &, are two solution concepts, then I' doubly S; and Ss-implements F'
if and only if S;(I", ) = So(I',0) = F(0) for all 6 € O©.

The mechanism I' weakly S-implements F' if and only if ) # S(T',0) C
F(0) for all # € ©. That is, every S—equilibrium outcome is F-optimal,
but every F-optimal outcome need not be an equilibrium outcome. Weak
implementation is actually subsumed by the theory of full implementation,
since weak implementation of F' is equivalent to full implementation of a
sub-correspondence of F' [Thomson (1996)].?

In general, whether or not an SCR F' is S-implementable depends on the
solution concept S. If solution concept Ss is a refinement of S7, in the sense
that for any I we have So(I", 8) C S (I, 0) for all § € O, then it is not a priori
clear whether it will be easier to satisfy S;(I',0) = F(0) or So(I',8) = F(0)
for all & € ©. However, the literature shows that refinements usually make
things easier. More SCRs can be implemented in undominated Nash equilib-
ria, or in trembling hand perfect equilibria, than in Nash equilibria. Harsanyi
and Selten (1988) argue that game theoretic analysis should lead to an ideal
solution concept which applies universally to all possible games, but experi-
ments show that behavior in fact depends on the nature of the game (even
on “irrelevant” aspects such as the labelling of strategies). Thus, for success-
ful applications of implementation theory, the solution concept should be
appropriate for the mechanism, but it is hard to make this criterion mathe-
matically precise. For an insightful discussion, see Jackson (1992). From a
theoretical point of view, Muench and Walker (1984), de Trenqualye (1998)
and Cabrales (1996) have discussed the problem of how agents come to co-

3Sen (1995) discusses a notion of implementation which requires that F'(6) C S(T', §) for
all § € ©. Thus, all F-optimal outcomes must be equilibrium outcomes, but all equilibrium
outcomes need not be F-optimal. The problem is then to make the set S(T', #) as small as
possible.



ordinate on a particular equilibrium. Cabrales and Ponti (1996) argued that
in mechanisms that rely on the elimination of weakly dominated strategies,
simple learning dynamics may lead to the “wrong” equilibrium. For exper-
iments that test the performance of mechanisms for the provision of public
goods, see Smith (1980), Banks, Ledyard and Porter (1988), Harstad and
Marrese (1981, 1982), Chen and Plott (1996) and Chen and Tang (1997).

The notion of implementing an SCR discussed in this survey is conse-
quentialist: the precise structure of the game form is unimportant as long as
the equilibrium outcomes are F-optimal. However, game forms can be used
use represent rights [Gardenfors (1981), Gaertner, Pattanaik and Suzumura
(1992), Deb (1994), Hammond (1997), Peleg (1998)]. Deb, Pattanaik and
Razzolini (1997) introduce several properties of game forms that correspond
to acceptable rights structures. For example, individual i € N has a say if
there exists at least some circumstance where his message can influence the
outcome. This requirement seems weak, yet there is nothing in the definition
of implementation used in this survey that guarantees that each individual
has a say.?

2 Nash Implementation

We start by assuming that the true state of the world § € © is common
knowledge among the agents. This is the case of complete information.

Given a normal form mechanism I" = (M, h), for any m € M and i € N,
let m_; = {m;}; € M_; = X, M, denote the messages sent by agents
other than . For message profile m = (m_;,m;) € M, the set

h(m_;, M;) = {a € A: a = h(m_;,m}) for some m, € M}

is agent i’s attainable set at message profile m. Agent i’s lower contour set
at (a,0) € Ax O is Li(a,0) = {b € A : ui(a,0) > u;(h,0)}. A message
profile m € M is a (pure strategy) Nash equilibrium at state € © if and
only if h(m_;, M;) C L;(h(m),0) for all i € N. (For now we neglect mixed
strategies: they are discussed in Section 3.7.) The set of Nash equilibria at
state 0 is denoted N'(0) C M, and the set of Nash equilibrium outcomes at
state 0 is denoted h(N'(0)) = {a € A : a = h(m) for some m € N"()}.

4Gaspart (1996, 1997) proposed a stronger notion of equality (or symmetry) of attain-

able sets: all agents, by unilaterally varying their strategies, should be able to attain
identical (or symmetric) sets of outcomes, at least at equilibrium.
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The mechanism I" Nash-implements F' if and only if h(N'(6)) = F(6) for all
0 € 0.

2.1 Monotonicity

If Li(a,0) C Li(a,0') then we say that R;(0") is a monotonic transformation
of R;(0) at alternative a. The SCR F' is monotonic if and only if the following
is true for all a € A and all 6,6 € ©: if a € F(A) and L;(a,0) C L;(a,d') for
alli € N, then a € F(¢'). Thus, if a is optimal in state 6, and when the state
changes from 6 to 6 outcome a does not fall in any agent’s preference ordering
relative to any other alternative, then monotonicity requires that a remains
optimal in state 6. Notice that if R;(8) = R;(¢') then L;(a,0) = L;(a,§') for
all a € A. Therefore, if F' is monotonic then F' is ordinal. But many ordinal
social choice rules are not monotonic.

Whether an SCR, F' is monotonic may depend on the preference domain
R(©). For example, in an exchange economy, the Walrasian correspondence is
not monotonic in general. However, it is monotonic if the agents’ preferences
are restricted in such a way that Walrasian equilibria always occur in the
interior of the feasible set [Hurwicz, Maskin and Postlewaite (1995)]. On the
other hand, the weak Pareto correspondence, defined by F(f) = {a € A :
there is no b € A such that u;(b,0) > u;(a,0) for all i € N}, is monotonic for
any domain.

Since for any mechanism I', the Nash equilibrium outcome correspondence
hoNT : © — A is monotonic, Maskin (1999) could obtain the following result.

Theorem 1 [Maskin (1999)] If the SCR F' is Nash implementable, then F
18 monotonic.

Proof. Suppose I' = (M, h) Nash implements F. Then if a € F(6) there is
m € NY(0) such that a = h(m). Suppose L;(a,8) C Li(a,d) for all i € N.
Then, for all 7 € N,

hi(m_i, Mz) g Li(a, 0) g Li(a, 0,)

Therefore, m € N'(0') and a € h(N'(¢')) = F(¢'). O

Theorem 1 has a partial converse, originally stated by Maskin (1999).
The SCR F satisfies no veto power if for all j € N, all @ € © and all a € A
the following is true: if w;(a,0) > wu;(b,8) for all b € A and all ¢ # j then
a € F(0). In words, this condition says that if at least n — 1 agents prefer
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alternative a to all other alternatives, then a is F-optimal. In economic
environments, no veto power is usually trivially satisfied. However, in other
environments no veto power is not a trivial condition. For example, in voting
over a finite set of alternatives with an unrestricted domain of preferences,
the well-known Borda rule does not satisfy no veto power if the number of
alternatives is greater than the number of voters.

Theorem 2 [Maskin (1999), Repullo (1987), Saijo (1988)] Suppose n > 3.
If the SCR F' satisfies monotonicity and no veto power, then F is Nash
implementable.

Proof. The proof is constructive. Let each agent ¢ € N announce an
outcome, a state of the world, and an integer between 1 and n:

M;=Ax0 x{1,2,...n}

A typical message for agent i is denoted m; = (a’,0',2') € M;. Let the
outcome function be as follows.

Rule 1. 1f (a',60") = (a,0) for all i € N and a € F(), then h(m) = a.

Rule 2. Suppose there exists j € N such that (a*,6") = (a,6) for all
i # j but (a?,0?) # (a,0). Then h(m) = o’ if o/ € Lj(a,0) and h(m) = a
otherwise.

Rule 3. In all other cases, let h(m) = a’ where j = (3, y ') (modn).

We need to show that, for any 0* € ©, h(N*(6*)) = F(0").

Step 1: h(NY(0*)) C F(6*). Suppose m € NY(6*). If either rule 2 or
rule 3 applies to m, then there is j € N such that any agent £ # j can
get his top-ranked alternative, via rule 3, by announcing an integer z* such
that k = (3_ 2%) (modn). Therefore, we must have ug(h(m),0%) > u(z,0%)
for all k£ # j and all x € A, and hence h(m) € F(6") by no veto power. If
instead rule 1 applies, then there exists (a,) such that (a?,6") = (a,6) for
all i € N, and a € F'(f). The attainable set for each agent j is L;(a,8), by
rule 2. Since m € N'(0*), we have L;(a,0) C L;(a,0"). By monotonicity,
a € F(6%). Thus, h(N'(6*)) C F(6%).

Step 2: F(6*) C h(N"(0")). Suppose a € F(0*). If m; = (a,0",1) for all
i € N, then m € NY(6*) and h(m) = a. Thus, F(6*) C h(NY(6*)). O

The mechanism in the proof of Theorem 2 is the canonical mechanism
for Nash implementation. Rule 3 is a modulo game.®

Sa = 3 (mod n) denotes that integers a and 3 are conguent modulo n.
61t is sometimes replaced by an integer game, where each agent i € N announces a
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2.2 Necessary and Sufficient Conditions

The no veto power condition is not necessary for Nash implementation. The
necessary and sufficient condition for Nash implementation with n > 3 was
given by Moore and Repullo (1990). It can be explained by introducing a
modified version of the canonical mechanism. In fact, rules 1 and 3 will
remain essentially unchanged, only rule 2 is modified.

Suppose we want to Nash implement a monotonic SCR F, and a € F(6).
In the canonical mechanism of Section 2.1, there is a “consensus” Nash equi-
librium m € NT(0) where (a’,0") = (a,0) for each i € N. Rule 1 applies to m,
h(m) = a, and rule 2 specifies that agent j’s attainable set at the consensus is
h(m_;, M;) = L;(a,6). Now suppose at some state 6’ # 6, there is j € N and
an “awkward outcome” ¢ € L;(a,0) such that: (i) L;(a,0) C L;(c,0"); (ii) for
each i # j, Li(c,0) = A; (iii) ¢ ¢ F(¢'). (Notice that (ii) and (iii) imply that
F' does not satisfy no veto power.) Since ¢ € h(m_;, M;) there is m} € M;
such that h(m_;, m}) = c. Then, (m_;,m};) € N'(¢') since (i) ¢ is the best
outcome in agent j’s attainable set h(m_;, M;), and (ii) ¢ is the best outcome
in all of A for all other agents. By (iii), ¢ ¢ F(¢'), so h(N*(8")) # F(¢'), con-
tradicting the definition of implementation. We must modify rule 2 to make
sure that the awkward outcome c is not in agent j’s attainable set. Remove
all awkward outcomes from L;(a, 8); several iterations of this procedure may
be necessary [Sjostrom (1991)]. When there are no more iterations to be
made, what remains is some set C;(a,6) C L;(a,0).” In the modified mech-
anism, this set replaces L;(a,#) in rule 2, i.e., C;(a, 0) is agent j’s attainable
set at the “consensus”. By construction, the set Cj(a,#) will have the prop-
erty that ¢ € F(f") whenever the following is true: ¢ € Cj(a,0) C L;(c, ')
and L;(c,0') = A for each i # j. This removes the possibility of undesirable
Nash equilibria. If n > 3, and if F' satisfies unanimity, then F' is Nash im-
plementable if and only if it can be implemented by this modified canonical
mechanism. This leads to the following necessary and sufficient condition
for Nash implementation (assuming unanimity and n > 3): if a € F'(f) and
Ci(a,0) C Li(a,0") for all i € N then a € F(6').

Consider the following two examples of how to construct the C; sets, due

positive integer z¢ € {1,2,...} and the outcome is h(m) = a’ if there exists j € N such
that 27 > 2% for all i # j, and otherwise h(m) is arbitrary.

"If A is infinite, then it is possible (but unlikely) that the algorithm of sequentially
eliminating outcomes in L;(a,6) never terminates. The set C;(a,8) can still be defined,
but not by an algorithm [Sjostrém (1991)].



to Maskin (1985). First suppose N = {1,2,3}, A = {a,b,c}, R(O) = Py,.
The SCR F is defined as follows. For any 0 € ©, a € F(0) if and only if
a majority prefers a to b, b € F(0) if and only if a majority prefers b to a,
and ¢ € F(0) if and only if ¢ is top-ranked in A by all agents. This SCR is
monotonic and satisfies unanimity but not no veto power. Fix 7 € N and
suppose 6 is such that bP;(0)aP;(0)c, and aP;(8)b for all i # j. Then F(6) =
{a}. Now suppose ¢’ is such that bP;(6")cP;(6")a and L;(c,0") = Afor alli # j.
Since L;(a,8) = L;(c,8') = {a,c} but ¢ ¢ F(¢'), ¢ is awkward. Removing
¢, we obtain Cj(a,0) = {a}. (Since a € F(0) whenever L;(a,0) = A for all
i # 7, a is not awkward and there is need to iterate on the procedure.) By
the symmetry of a and b, C;(b,0) = {b} whenever aP;(0)bP;(0)c and bF;(0)a
for all ¢ # j. It can be verified that this takes care of all awkward outcomes,
and that the necessary and sufficient condition for Nash implementation is
satisfied. Thus, F' is Nash implementable. For a second example, consider
any environment (with n > 3) and let ay be a fixed “status quo” alternative
in A. The individually rational SCR, which is defined by F(f) = {a € A :
aR;(0)ay for all i € N}, satisfies monotonicity and unanimity but not no veto
power. If a € F(0) then ag € Lj(a,0) for all j € N.If ¢ € L;(a,0) C L;(c,8)
and L;(c,0") = A for each i # j, then cR;(0")ag for all i € N so ¢ € F(¢).
Therefore there are no awkward outcomes, and so the necessary and sufficient
condition reduces to monotonicity. Thus, F' is Nash implementable.

Danilov (1992) gave an elegant formula for the C; sets for the case where
R(©) = P4. Consider any set X C A. An alternative x € X is essential
for agent i € N in set X if and only if z € F(#) for some 6 such that
Li(z,0) C X. The set of all essential elements for agent ¢ in set X is denoted
Ess(F;i,X). An SCR F is essentially monotonic if and only if for all a € A
and all 0,60" € O the following is true: if a € F(0) and Ess(F};i,L;(a,0)) C
Li(a,8') for all i € N, then a € F(0'). If R(O) = Pa, then it turns out that,
for any 6 € © and a € F(0), Ci(a,0) = Ess(F;i, L;(a,0)).

Theorem 3 [Danilov (1992)] Suppose A is a finite set, n > 3, and R(©) =
Pa. The SCR F is Nash implementable if and only if it is essentially mono-
tonic.

There is no need to make the extra assumption of unanimity in the state-
ment of Theorem 3. Yamato (1992) showed that any SCR which satisfies es-
sential monotonicity and a weak form of unanimity is Nash implementable,
even if the set of alternatives is infinite and the preference domain R(O).



is arbitrary. However, in such environments essential monotonicity is not a
necessary condition for Nash implementation.

2.3 Simplifications of the Canonical Mechanism

The canonical mechanism establishes theoretical limits on what can be achieved.
But it may be impossible in practise for agents to report a complete descrip-
tion of the state of the world [cf. Hayek (1945)], and the modulo game in rule

3 is artificial. It is of interest to see if simpler and more natural mechanisms
for Nash implementation exist.

Since any Nash implementable F' is ordinal, it clearly suffices to let the
agents announce a preference profile R € R(O) rather than a state of the
world 6 € ©. In fact, it suffices if each agent ¢ € N announces a preference
ordering for himself and one for each of his two “neighbors” agents i — 1
and ¢ + 1, where agents 1 and n are considered neighbors [Saijo (1988)].
Indeed, since the attainable sets at consensus outcomes are lower contour
sets, it suffices to let each agent announce an indifference curve for himself
and his two neighbors [McKelvey (1989)]. Given any message process which
“computes” (or “realizes”) an SCR, Williams (1986) considered the problem
of embedding the message process into a mechanism which Nash implements
the SCR. If the original message process encodes information in an efficient
way, then the same will be true for the messages in Williams’ mechanism for
Nash implementation. Williams found necessary and sufficient conditions for
such an embedding to be possible.

Hurwicz (1979a, 1979¢) and Schmeidler (1980) found simple “market
mechanisms” that implement the Walrasian correspondence in m-good ex-
change economies. In these mechanisms, each agent proposes an (m — 1)-
dimensional consumption vector and an (m—1)-dimensional price vector (the
consumption of the mth “numeraire” good is determined by a budget con-
straint). However, these mechanisms did not satisfy the feasibility constraint
h(m) € A for all m € M. A simple, feasible and continuous mechanism for
implementation of the Walrasian correspondence was found by Postlewaite
and Wettstein (1989). Reichelstein and Reiter (1988) show (under certain
smoothness conditions on the outcome function) that the minimal dimension
of the message space M for any mechanism Nash implementing the Walrasian
correspondence is (approximately) n(m — 1) +m/(n — 1), and they exhibit a
feasible mechanism with this dimensionality. In this mechanism each of the
n agents proposes an (m — 1)-dimensional consumption vector. The dimen-

10



sional increase m/(n — 1) comes from the need to also allow announcements
of price variables, however, it is not necessary for each agent to announce an
m — 1 dimensional price vector as in Hurwicz (1979a, 1979c) and Schmeidler
(1980).

Hurwicz (1960, 1972) looked at “proposed outcome” mechanisms with
even smaller message spaces: in an exchange economy, let agent ¢’s message
consist of a proposed net trade for himself, and require that in equilibrium
h(m) = m. No preferences are announced. Such mechanisms were studied
by Sjostrom (1996a) and Saijo, Tatamitani and Yamato (1997), who named
the approach “natural implementation”.® Saijo, Tatamitani and Yamato
(1997) showed that, under some regularity conditions, “proposed outcome”
mechanisms are incompatible with Pareto efficiency. Dutta, Sen and Vohra
(1995) demonstrated how efficiency can be attained if agents can announce
both consumption bundles and prices (i.e., marginal rates of substitution), as
long as the SCR satisfies “local independence”. For natural implementation
in different economic environments, see Shin and Suh (1997) and Yoshihara
(1995).

For implementations of the Lindahl correspondence in economies with
m public goods and one private good using simple mechanisms see Hurwicz
(1979a) and Walker (1981). In Walker’s mechanism each agent announces a
real number for each public good, and the production of the public good is
the sum of these numbers. The dimension of M is therefore nm, the minimal
dimension of any smooth Pareto efficient mechanism in this environment

[Sato (1981), Reichelstein and Reiter (1988)].

2.4 Weak Implementation

If F(A) C F(0) for all # € O then F is a subcorrespondence of F, denoted
F C F. To weakly implement the SCR F is equivalent to fully implementing
a non-empty valued subcorrespondence of F. Fix an SCR F, and for all
0 € © define

F*(#)={a€ A:ac F(f) for all § € © such that L;(a,) C L;(a,0) for all i € N}
(2)
8If the requirement that h(m) = m in equilibrium is dropped, then it becomes possible
to “smuggle” information by coding preference information into outcome announcements.
Information smuggling can, however, be ruled out by imposing smoothness conditions on

the outcome function [Hurwicz (1972), Mount and Reiter (1974), Reichelstein and Reiter
(1988)].
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Theorem 4 If F*(0) # () for all 0 € © then F* is a monotonic SCR.

Proof. Suppose a € F*(0) and L;(a,0) C Li(a,8') for all i € N. Suppose 8 €
O is such that L;(a,0') C L;(a,0) for all i € N. Then L;(a,0) C L;(a,8') C
Li(a,0) for all 4. Since a € F*(f) we must have a € F(0). Therefore, a €
F*(¢).0

It is clear that if F*(0) = () for some 6 € O then there does not exist any
monotonic subcorrespondence. Also, if F*(0) # () for all € O then F* is
the maximal monotonic subcorrespondence of F'. Moreover, F' is monotonic
if and only if F* = F. If F*(0) # 0 for all # € © and F* satisfies no veto
power then Theorem 2 implies that F™* is Nash implementable, hence F' is
weakly implementable. Conversely, if F' is weakly Nash-implementable, then
Theorem 1 implies that F' has a monotonic non-empty valued sub correspon-
dence ' C F. Then F C F* so F*(#) # 0 for all § € ©. Thus, Theorems 1,

2 and 4 imply the following.

Theorem 5 If F' can be weakly Nash-implemented then F*(0) # 0 for all
0 € ©. Conversely, if F*(0) # 0 for all 0 € © and F* satisfies no veto
power then F' can be weakly Nash-implemented (and F* is the maximal Nash-
implementable subcorrespondence of F).

2.5 Rich Domains of Preferences

By definition, a € L;(b,6')\L;(b,0) means that
ui(a,0) > u;(b,0) and  w;(a,0) < u;(b,0") (3)

In this case we say a improves with respect to b for agent ¢ as the state
changes from ¢’ to 6. Notice that monotonicity says that if b is F-optimal in
state &', and no alternative improves with respect to b for any agent as the
state changes from @' to 6, then b is also F-optimal in state 6. The following
condition was introduced by Dasgupta, Hammond and Maskin (1979).

Definition Rich domain. Let a,b be any two alternatives in A and 6,6’
any two states in ©. Suppose for all i € N, a ¢ L;(b,0')\Li(b,6) and
b¢ Li(a,0)\L;(a,0'). Then there exists #” € O such that for all i € N,
Li(a, 0) g Li(a, 0”) and Lz(b, (9/) g Lz(b, (9”).
Dasgupta, Hammond and Maskin (1979) found the following result.
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Theorem 6 Suppose f is a monotonic SCF, the domain is rich, and a =
f(0) # f(0') =b. Then there is i € N such that either a € L;(b,0")\L;(b,0)
orb € Li(a,0)\Li(a,8') (or both).

Proof. If not, then there exists 8" € © such that for all i € N, L;(a,0) C
Li(a,0") and L;(b,0") C L;(b,0"). By monotonicity, a = f(0") and b = f(0")
but a # b, a contradiction. [J

If f is monotonic, then it is ordinal. Thus, the social objectives can be
represented by a function f : R(©) — A, satisfying f(R(#)) = f(0) for all

¢ € ©. If the domain is rich, Theorem 6 implies that if a = f(R_;, R;) #

f(R_i, R}) = b, then aR;b and bRja (where at least one preference is strict).
Thus, f is strategy-proof.

2.6 Unrestricted Domain of Strict Preferences

In models of voting over a finite set of alternatives A, it is often assumed that
any strict ranking of the candidates is a priori possible: R(©) = P4. This
domain is rich (as is the unrestricted domain R 4). The SCR F' is dictatorial
on its image if and only if there exists i € N such that a € F(0) implies
ui(a,0) > u;(z,0) for all z € F(O).

Theorem 7 [Muller and Satterthwaite (1977), Dasgupta, Hammond and
Maskin (1979), Roberts (1979)] Suppose the SCF f is Nash-implementable,
A is a finite set, f(O) contains at least three alternatives, and R(©) = Pjy.
Then f is dictatorial on its image.

Proof. By Theorems 1 and 6, the function f : R(©) — A, defined by
f(R(0)) = f(0) for all § € O, is strategy-proof. Now the result follows from
the Gibbard-Satterthwaite theorem [Gibbard (1973), Satterthwaite (1975)].
O

Theorem 7 is false without the hypothesis of single-valuedness. For ex-
ample, the weak Pareto correspondence is monotonic and satisfies no veto
power in any environment, so it can be Nash implemented by Theorem 2
(when n > 3). Theorem 7 is also false without the hypothesis that the image
contains at least three alternatives. Let

N(a,b,0) = #{i € N : u;(a,0) > u;(b,0)}
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denote the number of agents who strictly prefer a to b in state 6. Fix two
alternatives {z,y} C A. The method of majority rule over x and y is defined
by
z  if N(v,y,0) > N(y,z,0)
F(0) = y if N(z,y,0) < N(y,,0)
{z,y} if N(z,y,0) = N(y,z,0)

If n > 3 is odd and R(©) = P4 then F is single valued and monotonic.
On the set A" = {x,y} no veto power is satisfied so this SCF can be Nash
implemented by Theorem 2. ?

In general, however, the results when R(©) = P, are negative. Most
voting rules, such as the Borda and Copeland rules, are not monotonic and
hence cannot be Nash implemented. Finally, if an SCR F satisfies strong
unanimity, in the sense that u;(a, ) > u;(b,0) for all b € A and all i € N im-
plies F(0) = {a}, then monotonicity implies Pareto efficiency.!® Sen (1970)
showed that a condition of minimal liberty is inconsistent with Pareto effi-
ciency in this environment, hence no strongly unanimous SCR which satisfies
minimal liberty can be Nash implemented [Peleg (1998, Theorem 5.1)].

2.7 Economic Environments

If agents have selfish preferences and there exists at least one private good
which is desired by everybody, then no veto power is automatically satisfied
when n > 3, since n — 1 agents can never agree on the best way to dis-
tribute the desirable good. Thus, monotonicity is necessary and sufficient
for implementation when n > 3. When n = 2, monotonicity is necessary
and “almost” sufficient [Moore and Repullo (1990), Dutta and Sen (1991b),
Sj6strom (1991)].

91t is not sufficent to simply ask each agent to vote for either z or y, for then everybody
voting for x (or y) is always a Nash equilibrium when n > 3. Notice also that if indiffer-
ence is allowed or if n is even, then F can still be Nash implemented (by the canonical
mechanism).

OFor suppose u;(a, 0) > u;(b,0) for all i € N but b € F(). Consider the state 8’ where
preferences are as in state 6 except that a has been moved to the top of everybody’s
preference. Then, R;(0') is a monotonic transformation of R;(6) at b for all i so b € F(6)
by monotonicity, but F(') = {a} by unanimity, a contradiction.
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2.7.1 Social choice functions in economic environments

Suppose agents are “selfish” and care only about their own consumption
of private goods (and, in public goods economies, about the level of public
goods). The preference domain is R(0) = R, the set of all preference
orderings such that each agent has a continuous, strictly monotonic and
strictly convex preference ordering on the m-good commodity space R7. 1!
This domain of is rich [Dasgupta, Hammond and Maskin (1979)]. From
Section 2.5, if the SCF f : ©® — A is Nash implementable, then the function
f : R¥ — A defined by f(R(#)) = f(0) is strategy-proof. Unfortunately,
a number of papers have demonstrated the near-impossibility of strategy-
proof social choice in environments with private and/or public goods.'? For
example, in exchange economies with n = 2, strategy-proofness plus Pareto
efficiency implies dictatorship [Hurwicz (1972), Dasgupta, Hammond and
Maskin (1979), Zhou (1991a)]. However, further restrictions on © lead to
more positive results. For example, consider an “Edgeworth box” exchange
economy (n = m = 2) where R(0) = R C R¥, the subset of preferences
in R¥ such that both goods are normal for both agents. Let ¢ be a fixed
“downward sloping line” that passes through the Edgeworth box. For each
0 € O there is a unique Pareto efficient and feasible point on ¢, which we
define to be f(#). Then f : © — A is a Pareto efficient and non-dictatorial
SCF which can be Nash implemented by the mechanism described in Section
2.8.

2.7.2 Social choice correspondences in economic environments

Let the preference domain R(©) = R be as defined in Section 2.7.1. Postle-
waite showed that the Walrasian correspondence W is not monotonic, since
a change in preferences over non-feasible consumption bundles can destroy a
Walrasian equilibrium on the boundary of the feasible set [Hurwicz, Maskin
and Postlewaite (1995)]. The minimal monotonic extension of W, in the
sense of Sen (1995), is the constrained Walrasian correspondence W€ [Hur-

"Since agents are selfish, we can talk about preferences over R’ rather than over
A= xR,

12A small sample includes Ledyard and Roberts (1974), Hurwicz (1972, 1975), Hur-
wicz and Walker (1990), Jackson and Barbera (1995), Green and Laffont (1979), Walker
(1980), Dasgupta, Hammond and Maskin (1979), Zhou, (1991a, 1991b), Satterthwaite and
Sonnenschein (1981).
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wicz, Maskin and Postlewaite (1995)].'* The core correspondence C' and the
indiwidually rational and Pareto efficient correspondence PI are both mono-
tonic. It is known that W¢ C C C PI. In fact, if F' is any monotonic,
Pareto-optimal, individually rational and continuous SCR, and the space of
preferences is sufficiently rich, then W¢ C F [Hurwicz (1979b), Hurwicz,
Maskin and Postlewaite (1995)]. Partial converses to this result, using the
additional hypothesis that attainable sets are convex or starlike, were ob-
tained by Hurwicz (1979¢) and Schmeidler (1982). Thomson (1979) showed
that similar results can be obtained if the condition of individual rational-
ity is replaced a condition of fairness. In the public goods economy, if F' is
any monotonic, Pareto-optimal, individually rational and continuous SCR,
and the space of preferences is sufficiently rich, then L¢ C F, where L° is
the constrained Lindahl correspondence [Hurwicz, Maskin and Postlewaite
(1995)]. Non-monotonic SCRs in economic environments include the Shap-
ley value correspondence and various bargaining solutions that use cardinal
information about preferences.

2.7.3 Preferences that satisfy the single crossing property

In economic applications preference often satisfy a single crossing condition.
In such an environment, monotonicity is rather easy to satisfy, even for single
valued social choice functions, and even when n = 2. Suppose there is
a seller and a buyer, a divisible good and “money”. The feasible set is
A={(q,z): x>0} CR? where q is a transfer of money from the buyer to
the seller and = is the amount of the good delivered from the seller to the
buyer. The state of the world is denoted 6 = (6,,6,) € [0,1] x [0,1] = ©.
The seller’s utility function is u(q, x,0;), with du/dq > 0, du/0x < 0. The
buyer’s utility function is v(q, x, 0y), with Ov/9q < 0, Ov/dx > 0. An increase
in f5 represents an increase in the sellers marginal production cost, and an
increase in 6, represents an increase in the buyers marginal valuation. More
formally, the single crossing condition states that

0 |0u/ox 90 |0v/0x

20, |aujag| ~ 0 ™4 26, |50/0q

Under this assumption, a monotonic transformation can only take place at
a boundary allocation of the form (g,0), i.e., where there is no trade at all.

13The maximal monotonic sub correspondence F* (as defined by (2)) contains all interior
Walrasian equilibria, so F*(6) = () if no interior equilibrium exists.
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An SCR F is monotonic if and only if the following is true: if (g,0) € F(0),
and if the seller’s production cost increases (0, > 0,) or the buyer’s valuation
decreases (0}, < 6;), or both, then (g,0) € F(6').

2.8 Two Person Implementation

In the canonical mechanism for Nash implementation with n > 3, rule 2
singles out a unique deviator from the “consensus”. This method does not
work if n = 2. Suppose n = 2 and consider a message profile m where agent
1 claims the state is § and agent 2 claims the state is ' # 6. Since there
is no way of identifying a unique deviator from a “consensus”, the outcome
h(m) must simultaneously guarantee that agent 2 has no incentive to claim
the state is 6 if the true state is @ and that agent 1 has no incentive to claim
the state is @ if the true state is 6. Implementability requires the existence
of such an outcome for any pair of states (6, 6').

In economic environments, the outcome “zero consumption for all” will
generally satisfy the requirement, so a consensus can be supported by pun-
ishing both agents in case of disagreement. A consequence of this is that
in two-person economic environments, monotonicity is a necessary and suf-
ficient condition for Nash implementation if we restrict attention to SCRs
that never recommend zero consumption to any agent. To illustrate, con-
sider a two-person, m-good exchange economy. The feasible set is A =
{a = (a1,a2) € RI™: a3 4+ ay < w}, where a; € R is agent 4’s consumption
vector, and w the aggregate endowment vector. Assume R(©) = R as
described in Section 2.7.1. Suppose F' is a monotonic SCR, with F(©) C
A = {a€ A:a; #0, ay # 0}. Since F is ordinal, we may assume it is
defined directly on R¥. Consider the following mechanism. Each agent
i € {1,2} announces an outcome a' = (a},a4) € A° and a preference profile
R' = (R, R}) € R”. Let h;(m) denote agent i’s consumption. Set h;(m) = a;
if my = my and o' € F(RY), or if Ri = R/, R # R} and o/Rla’. Otherwise,
set h;(m) = 0. It is easy to check that this mechanism Nash implements F.

For necessary and sufficient conditions for two-person Nash implementa-
tion in general environments, see Moore and Repullo (1990), Dutta and Sen
(1991b), and Sjostrom (1991). For the unrestricted domain it is in general
impossible to secure an outcome which unambiguously punishes both agents
in case of disagreement, and the result is negative.

Theorem 8 (Maskin (1999), Hurwicz and Schmeidler (1978)) Suppose
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F is a weakly Pareto optimal SCR, n =2, and R(©) = Ra. Then, F is dic-
tatorial.

2.9 Unknown Feasible Set

Consider an m-good exchange economy. In state 8 € ©, agent ¢’s endowment
vector is w;(#) € R and the aggregate endowment is w(f) = wi(0) + ... +
wy(0) € R and the feasible set is

A0) = {x € R : Zn:mz < w(&)}.

=1

Here x; € R’ is agent 4’s consumption vector and = = (z1,...,x,). If the
message space M and the outcome function h do not depend directly on the
state of the world, then feasibility requires that h(m) € A() for all m € M.
This requirement is exceedingly strong when A depends on # in a non-trivial
way. Hurwicz, Maskin and Postlewaite (1995) solved this problem by assum-
ing that agents can report endowment vectors as part of their messages, and
that exaggeration of the endowment is impossible. Postlewaite and Wettstein
(1989), Tian (1989) and Hong (1995) considered implementation of the Wal-
rasian correspondence when endowments are unknown to the planner. Hong
(1995) also allowed for unknown production sets.

3 Other Equilibrium Concepts

In this section, we maintain the assumption that the true state of the world
is common knowledge among the agents, but we consider solution concepts
other than Nash equilibrium.

3.1 Undominated Nash Equilibrium

As we have seen, in some environments Nash implementation is difficult, es-
pecially for social choice functions. However, under a number of refinements
of Nash equilibrium, almost any ordinal SCR or SCF can be implemented.
Message m; € M; is a weakly dominated strategy in state § € © for
agent ¢ € N if and only if there exists m] € M; such that u;(h(m_;,m;),0) >
u;i(h(m_;,m;),0) forallm_, € M_;, and u;(h(m_;,m}),8) > w;(h(m_;, m;),0)
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for some m_; € M_;. A Nash equilibrium is an undominated Nash equilibrium
if and only if no player uses a weakly dominated strategy.

An SCR F satisfies preference reversal if and only if the following is true
for all ordered pairs (0, §') € © x O : if F(§') # F(0) then there exists an
agent ¢ € N and outcomes b and ¢ in A such that cR;(0)b and bP;(#')c. If F
satisfies preference reversal then F is clearly ordinal.'*

Theorem 9 [Palfrey and Srivastava (1991)] Suppose n > 3. If the SCR F
satisfies preference reversal and no veto power then F is implementable in
undominated Nash equilibrium.

Proof. Since F'is ordinal, we may without loss of generality assume F' is de-
fined directly of the set of possible preference profiles; that is, F': x [ R; —
A where R; is agent ¢’s preference domain. We prove the result under a mild
strenghtening of preference reversal, called value distinction: for all i € N
and all ordered pairs (R;, R}) € R; X R;, if R, # R; then there exists out-
comes b and ¢ in A such that c¢R;b and bP/c. For the proof without this
condition, see Palfrey and Srivastava (1991).
Consider the following mechanism. Agent i’s message space is

Mi=AXRI X+ XR,XR; X ZXZXZ

where Z is the set of all positive integers. A typical message for agent i
is m; = (a',R',r", 2", ¢",v') € M;, where a’ € A is an outcome, R’ =
(R}, R, ..., R},) € x7_R; is a statement about the preference profile, ' € R;
is an “extra” statement about agent i’s own preference, and (zi,Ci,yi) are
three integers. Let P; denote the asymmetric part of the announced R;'- and
p' the asymmetric part of the announced r'. The outcome function is as
follows.
Rule 1. If there exists j € N such that (a’, R") = (a, R) for all ¢ # j, and
a € F(R), then h(m) = a.
Rule 2. If Rule 1 does not apply then: (a) if there is j € N such that
7 =0"7_, 2F) mod(2n) set
h(m) = d’
4But not every ordinal SCR satisfies preference reversal. For example, suppose F is
ordinal, and © includes a state " where all agents are indifferent over all outcomes in A.

Suppose F(0") # F(0) for some 6 € ©. Then, it is impossible that bP;(6")c for some i € N
and some b, c € A, so preference reversal is violated.
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(b) if there is j € N such that n+j =(3_,_, 2*) mod(2n) and 7/ > (7! set

L A
(m) = a1 if @/t lpiai 1

(c) if there is j € N such that n + j =(>_;_, 2F) mod(2n) and 77 < (7" set

i1 if i1 Rl gt
h(m) = { a if a R]a

@t if gf T pPlgi-l
j

Notice that rule 1 includes the case of a consensus, (a', R') = (a, R) for
all i, as well as the case where a single agent j differs from the rest. Rule
2a is a modulo game similar to rule 3 of the canonical mechanism for Nash
implementation. Rule 2b chooses agent j’s most preferred outcome among
a’~! and a’T! according to preferences 1/, and rule 2c chooses agent j’s most
preferred outcome among a’~! and a/*! according to preferences R;

Notice that references to agents j — 1 and j + 1 are always “modulo n”.
That is, if j = 1 then agent j — 1 is agent n; if j = n then agent j + 1 is
agent 1.

Let R* = (R3,...,R;) denote the true preference profile. Let U'(R*)
denote the set of undominated Nash equilibria when the preference profile is
R*. The proof consists of several steps.

Step 1. If m; is undominated for agent j then 77 = R%. Indeed, r/ only
appears in rule 2b, where “truthfully” announcing 7/ = R} is always at least
as good as any false announcement. By value distinction there exists a/~!
and a’*! such that the preference is strict.

Step 2. If m; is undominated for agent j then R;: = R}. For, if Rg # R}
then (since 77 = R} by step 1) if n+ 5 =(3";_, 2¥) mod(2n), agent j always
weakly prefers rule 2b to rule 2c, and by value distinction there exists a’/~*
and a’*! such that this preference is strict. But increasing 77 increases the
chance of rule 2b at the expense of rule 2c, without any other consequence,
so m; cannot be undominated.

Step 3. If m is a Nash equilibrium then either (a’, R") = (a, R) for all
i € N and a € F(R), or there is j such that for all i # j, h(m)R}a for
all a € A. This follows from rule 2a (the same argument was used in the
canonical mechanism for Nash implementation).

Step 4. h(UY(R*)) C F(R*). For, if m € UT(R*), then by steps 1 and
2, Rj: =7l = R} for all j. By step 3 , either rule 1 applies, in which case
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(a', R") = (a, R*) for all i € N and h(m) = a € F(R*), or else h(m) € F(R*)
by no veto power.

Step 5. F(R*) € h(UT(R*)). Each agent j announcing (R?,r’) = (R*, R})
“truthfully” and o/ = a € F(R*) (and three arbitrary integers) is an undom-
inated Nash equilibrium. (Notice that as long as agent j sets Rg = rJ, there
is no possibility that 47 can change the outcome).

Steps 4 and 5 imply h(U'(R*)) = F(R*). Since R* is arbitrary, F' is
implemented. []

Theorem 9 is a general possibility result for implementation of ordinal
SCRs. A similar possibility result was obtained for trembling hand perfect
Nash equilibria by Sjostrom (1991). If agents have strict preferences over an
underlying finite set of basic alternatives, and lotteries over basic alternatives
are feasible, then a sufficient condition for F' to be implementable in trem-
bling hand perfect equilibria is that F' satisfies no veto power as well as its
“converse”: if all but one agent agrees on which alternative is the worst, then
this alternative is not F-optimal. For example, if F'is Condorcet consistent
(in the sense that Condorcet winners are always F-optimal but Condorcet
losers are never F-optimal) then F' satisfies the sufficient condition.

A mechanism is bounded if and only if (i) each dominated strategy is
dominated by some undominated strategy, and (ii) each agent i € N has
a best response to any message profile m_; € M_; [Jackson (1992)]. The
mechanism used by Sjostrom (1991) for trembling hand perfect Nash im-
plementation uses a finite message space, hence it is bounded. Palfrey and
Srivastava’s (1991) mechanism for undominated Nash implementation con-
tains infinite sequences of strategies dominating each other, hence it is not
bounded. This is illustrated by step 2 of the proof of Theorem 9. However,
in economic environments any SCR which satisfies preference reversal can
be implemented in undominated Nash equilibria by a bounded mechanism
which does not use integer or modulo games [Jackson, Palfrey and Srivastava
(1994), Sjostrom (1994)]. Jackson, Palfrey and Srivastava (1994) showed that
an SCR can be implemented in undominated Nash equilibria by a bounded
mechanism if it is “chained”.

Theorem 9 assumes n > 3. In economic environments, or more gener-
ally environments where there exists an outcome which is always the worst
possible outcome for each agent, the case n = 2 is not more difficult than
the case n > 3. We illustrate this with Jackson, Palfrey and Srivastava’s
(1994) simple mechanism for bounded implementation of an ordinal SCF
f in a two-person, m-good exchange economy, assuming value distinction.
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(Their bounded mechanism for the case n > 3 is similar.) Sjostrom’s (1994)
mechanism is in the same spirit but works only for n > 3.

The feasible set is A = {a = (a1,a9) € Rim taptag < w}, where a; €
R’ is agent 4’s consumption vector, and w > 0 the aggregate endowment
vector. Assume R(©) = R¥ as described in Section 2.7.1. Suppose f is
an ordinal SCF with f(R¥) C {a € A:a; # 0,as # 0}. Since f is ordinal,
we may let f;(R) denote agent j’s f-optimal consumption vector when the
preference profile is R € RY. Each agent i € {1,2} announces either a
preference profile RY = (RY,R,) € R¥, or a pair of outcomes (a’,b’) €
A x A (where a' = (ai,a}) and b = (b%,b5)). Let hj(m) denote agent j’s
consumption.

Rule 1. Suppose both agents announce a preference profile. If Rj- #+ Rj:,
then h;(m) = 0. If R = RY, then h;i(m) = f;(R?). |

Rule 2 Suppose agent ¢ announces a preference profile R* and agent j
announces outcomes (a/,b’). Then, hj(m) = 0. If a? Pb then hi(m) = al,
otherwise h;(m) = b..

Rule 8. In all other cases, hi(m) = hy(m) = 0.

Suppose the true preference profile is R* = (R}, R3). It is a dominated
strategy to announce outcomes, since that always gives zero consumption.
Announcing R! = R} “truthfully” dominates lying, since the only effect lying
can have is to give agent i an inferior allocation under rule 2. (As long as value
distinction holds, there exists a’ and ¢/ such that the preference is strict).
But, if agent j is announcing preferences, any best response for agent ¢ must
involve matching agent j’s announcement R; about agent j’s preferences (to
avoid getting zero). Thus, in the unique undominated Nash equilibrium both
agents announce the true preference profile, so this mechanism implements
f. The most disturbing property of this mechanism is that agent i’s only
reason to announce R! = R} truthfully is that it will give him a preferred
outcome in case agent j # i plays the dominated strategy of announcing
outcomes. At the undominated Nash equilibrium, if agent ¢ were to change
his report to R! # R} this would not affect his own consumption at all, but
he would reduce agent j’s consumption to zero.

3.2 Iterated Elimination of Dominated Strategies

The iterated removal of weakly dominated strategies was considered by Far-
quharson (1969) and Moulin (1979) in their analyses of dominance solvable
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voting schemes. Abreu and Matsushima (1994) have shown that, in an envi-
ronment where the feasible set consists of lotteries over a set of basic alter-
natives, any ordinal SCR can be implemented using the iterated elimination
of weakly dominated strategies, if the social planner can use “small fines”.
Like Jackson, Palfrey and Srivastava (1994) and Sjostrém (1994), Abreu and
Matsushima avoid integer and modulo games. In the Abreu and Matsushima
mechanism, it does not matter in which order dominated strategies are elim-
inated. The same is true for the dominance solvable mechanism in Sjostréom
(1994), where agents only report a preference ordering for themselves and
two “neighbors”. In Jackson, Palfrey and Srivastava’s (1994) bounded mech-
anism described at the end of Section 3.1, once outcomes are eliminated,
making a false claim about your own preference is no longer a weakly domi-
nated strategy. Hence, the order of elimination matters. A drawback of the
Abreu-Matsushima type mechanism is that it requires many rounds of elim-
ination of dominated strategies [Glazer and Rosenthal (1992)]. Sjostrém’s
(1994) mechanism only requires two rounds (first, elimination of false an-
nouncement of own preference, second, elimination of false announcement
of neighbors’ preferences). However, in contrast to Abreu and Matsushima
(1994), Sjostrom (1994) uses “large punishments”.

3.3 Strong Nash Equilibrium

A Nash equilibrium is strong if and only if no group S C N has a joint devia-
tion which makes all agents in S better off. Formally, if J C N is a non-empty
subset of agents and m a message profile, then write m = (m;, m_;), where
my = {m;}jes € XjegM; and m_; = {m;};¢; € X;¢sM;. Message profile
m* € M is a strong Nash equilibrium for the mechanism I' in state 6 if and
only if, for any subgroup J C N and any joint deviation m; € X, c;M;,
there is ¢ € J such that w;(h(m*),0) > u;(h(m* ;,m,),0). Maskin (1979,
1985) showed that monotonicity is a necessary condition for strong Nash
implementation. Moulin and Peleg (1982) studied strong Nash implemen-
tation using the notion of effectivity functions. A necessary and sufficient
condition for strong implementation, called condition =, was given by Dutta
and Sen (1991). Suh (1995) provides an algorithm for checking condition
.15 For economic environments, Dutta and Sen (1991) show that an SCR
is implementable in strong Nash equilibrium if it satisfies Pareto optimality,

15Suh (1995) also corrects a mistake in Dutta and Sen’s condition 4.
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an interiority condition, and a version of monotonicity. For example, the
Walrasian correspondence can be implemented in strong Nash equilibrium
as long as Walrasian equilibria do not occur on the boundary of the feasible
set.

3.4 Implementation using Extensive Form Mechanisms

An SCR F is implementable in subgame perfect equilibrium if and only if
there exists an extensive form mechanism such that in each state § € ©, the
set of subgame perfect equilibrium outcomes equals F'(6). [See Moore and
Repullo (1988) for formal definitions.]

To illustrate the power of subgame perfect implementation, we consider
the following example due to Moore and Repullo (1988). As illustrated in
the figure, there are two agents, two goods and two states of the world,
© = {C,L}. In state C both players have Cobb-Douglas preferences (solid
indifference curves), while in state L both agents have Leontief preferences
(dotted indifference curves). The f-optimal outcomes are f(C) and f(L).
Observe that agent 2’s Leontief preferences are a monotonic transformation
of his Cobb-Douglas preferences at f(C). But f(C) # f(L), hence f is not
monotonic. By Theorem 1, f is not Nash implementable. Moore and Repullo
then considered the following stage mechanism.

Stage 1. Agent 1 announces L, in which case f(L) is chosen and the game
ends; or he announces C, in which case we go to stage two.

Stage 2. Agent 2 can “agree” | in which case f(C) is chosen and the game
ends; or he can “challenge”, in which case we go to stage three.

Stage 3. Agent 1 chooses between = and y.

Suppose the state is C. If we reach stage 3, then agent 1 will choose x.
Thus, if we reach stage 2 agent 2 will in effect choose between f(C') and z.
He prefers f(C). Thus, at stage 1 agent 1 will know that agent 2 will not
challenge the announcement C. Since he prefers f(C) to f(L), player one
will announce C. Thus, the unique subgame perfect equilibrium outcome
in state C' is f(C). But suppose the state is L. In this case agent 1 will
choose y if the game reaches stage 3. Since agent 2 prefers y to f(C), he will
challenge if the game reaches stage 2. Since agent 1 prefers f(L) to y, he
will announce L at stage 1. Thus, the unique subgame perfect equilibrium
outcome in state L is f(L). Thus, the mechanism implements f in subgame
perfect equilibria. Note that stage three is never reached in equilibrium.

Moore and Repullo (1988) gave a partial characterization of subgame
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perfect implementable SCRs. Their result was improved on by Abreu and
Sen (1990).

Definition Property o. There exists aset B C A, containing the range of F,
such that for all @ € A and all pairs (0,0") € ©x 0O, if a € F(0) but a ¢
F(0') then there exists a sequence of outcomes ag = a, ay, ..., as, arq
in A and a sequence of agents j(0),j(1),...,7(¢) in N such that: (i)

Uj(g)(ag_H, 9,) > Uj(e) (ag, 9,)
(ii) for k = 0,1, ..., £,

Wjk)(any 0) > wjr)(arir, 0)

(iii) for & = 0,1,...,¢, in state §' outcome a; is not the top-ranked
outcome in B for agent j(k)

(iv) if in state €', a,,q is the top-ranked outcome in B for each agent
i # j(k), then either £ =0 or j(¢ — 1) # j(¢).

Theorem 10 [Moore and Repullo (1988), Abreu and Sen (1990)] If the SCR
F' is implementable in subgame perfect equilibrium, then it satisfies property
a. Conversely, if n > 3 and the SCR F satisfies property  and no veto
power, then F' is implementable in subgame perfect equilibrium.

It is interesting to compare the sufficiency part of Theorem 10 with The-
orems 2 and 9. An SCR F satisfies monotonicity if and only if, whenever
a € F(0) but a ¢ F(#'), there exists an agent j € N and an outcome b € A
such that aR;(0)b and bP;(0')a. That is, someone’s preferences reverse over
a and some other outcome b. An SCR F satisfies preference reversal if and
only if, whenever a € F () but a ¢ F(¢'), there exists an agent j € N and
two outcomes b,c € A such that cR;(0)b and bP;(f")c. That is, someone’s
preferences reverse over two arbitrary outcomes b and ¢. An SCR F satisfies
condition « if and only if, whenever a € F(0) but a ¢ F(6'), there exists
an agent j = j(f) € N and two outcomes b,c¢ € A such that cR;(0)b and
bP;(0")c, and in addition b and ¢ are connected to a by the sequence of out-
comes described in the definition of property o, where b = a,; and ¢ = ay.
It is clear that condition « is (much) weaker than monotonicity but stronger
than preference reversal.

Vartiainen (1999) found a condition, called condition (3, which is both
necessary and sufficient for subgame-perfect implementation. If agents have
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strict preferences over an underlying finite set of basic alternatives and lotter-
ies are possible, then all Condorcet consistent voting rules satisfy condition (3
but all scoring rules (such as the Borda rule) violate it. Moore and Repullo
(1988) showed that in an economic environment with quasi-linear prefer-
ences, O a finite set, and n > 3, any SCF can be implemented in subgame
perfect equilibria using a finite game of perfect information (i.e., a sequential
mechanism with no simultaneous moves). Finite games of perfect informa-
tion can be solved using backward induction. Herrero and Srivastava (1990)
derived a necessary and sufficient condition for an SCR to be implementable
via backward induction using a finite game of perfect information.

Sequential mechanisms have been used by a number of authors in various
social choice problems. See Farquharson (1969) and Moulin (1979) for appli-
cations to voting models, and Jackson and Moulin (1992) for public goods
models.

3.5 Virtual Implementation

The problem of virtual implementation was first studied by Abreu and Sen
(1991) and Matsushima (1988). Let B be a finite set of “basic alterna-
tives”, and let the set of feasible outcomes be A = A(B), the set of all
probability distributions over B. The elements of A(B) are called lotteries.
Let d(a,b) denote the Euclidean distance between lotteries a,b € A(B). If
F:0 — A(B) and G : © — A(B) are two SCRs, then F' and G are e-close
if and only if for all # € O there exists a bijection ay : F(f) — G(6) such
that d(a,ag(a)) < € for all a € F(0). An SCR F is virtually Nash imple-
mentable if and only if for all £ > 0 there exists an SCR G which is Nash
implementable and e-close to F. If F' is virtually implemented, then the social
planner accepts a strictly positive probability that the equilibrium outcome
is some undesirable element of B. However, this probability can be made
arbitrarily small.

Suppose for all § € O, no agent is indifferent over all alternatives in B,
and preferences over lotteries satisfy the von Neumann-Morgenstern axioms.
Let A°(B) denote the subset of A(B) which consists of all lotteries that give
strictly positive probability to all elements of B. If n > 3, then any ordinal
SCR G satisfying G(0) C A°(B) is Nash implementable. To see this, suppose
for a moment the set of feasible outcomes is A = A%(B). Then, G satisfies no
veto power because no agent has a most preferred outcome in A°(B). Second,
G is monotonic. For suppose a € G(0) but a ¢ G(#'). Since G is ordinal,
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there is i € N such that R;(6) # R;(#'). But then, since indifference surfaces
of von Neumann-Morgenstern utility functions are hyperplanes, it is easy to
see that R;(#') cannot be a monotonic transformation of R;(0) at a € A°(B).
Thus, G is monotonic. By Theorem 2, G is Nash implementable when the
feasible set is A°(B). But then G : © — A%(B) is also Nash implementable
when the feasible set is extended to include all alternatives in A(B), since
when designing a mechanism to implement G, we can always just disregard
the elements of A(B)\A%(B).

Now, suppose F' is an ordinal SCR F' which sometimes recommends lot-
teries that give zero probability to some outcome(s), so the image of F is
not contained in A%(B). Then F is not necessarily monotonic, because a
monotonic transformation of preferences can take place on a face of A(B),
i.e.,, at a € A(B)\A"(B). However, it is clear that F' can be approximated
arbitrarily closely by an ordinal SCR G such that G(©) C A°(B). Since any
such G is Nash implementable by the above argument, we conclude that any
ordinal F': © — A(B) is virtually implementable.

Theorem 11 [Abreu and Sen (1991), Matsushima (1988)] Suppose n > 3,
and let B be a finite set of “basic alternatives”. Suppose for all 6 € O, no
agent is indifferent over all alternatives in B, and preferences over A(B)
satisfy the von Neumann-Morgenstern axioms. Then any ordinal SCR F :
© — A(B) is virtually Nash implementable.

Our derivation of Theorem 11 does not do justice to the work of Abreu
and Sen (1991) and Matsushima (1988), since their mechanisms are better
behaved than the canonical mechanism used to prove Theorem 2. Abreu
and Sen (1991) show that their Nash equilibria are strict, so they satisfy
stringent requirements such as trembling hand perfection. In addition, the
Abreu and Sen (1991) and Matsushima (1988) mechanisms are bounded.
Abreu and Matsushima (1992) showed that any ordinal SCR can be virtually
implemented using iterated elimination of strictly dominated strategies, if the
social planner can impose “small fines”. However, the number of rounds of
elimination of strategies may be quite large.
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3.6 Double Implementation
3.6.1 Nash and undominated Nash equilibrium

In the canonical mechanism for Nash implementation, if a is the worst out-
come in A for agent ¢ € N then agent ¢ has no good reason to participate in
a consensus which leads to outcome a. Indeed, announcing a' = a is a weakly
dominated strategy for agent 7. Thus the canonical mechanism may have
Nash equilibria where the agents use weakly dominated strategies. However,
Yamato (1999) constructed a version of the modified canonical mechanism
with the property that any Nash equilibrium is an undominated Nash equi-
librium. Yamato’s construction shows that if n > 3, then any Nash im-
plementable SCR is doubly implementable in Nash and undominated Nash
equilibrium. If n = 2 then the set of doubly implementable SCRs is strictly
smaller than the set of Nash implementable SCRs. However, Yamato (1999)
found conditions under which the two sets coincide even for n = 2.

3.6.2 Nash and strong Nash equilibrium

Double implementation in Nash and strong Nash equilibrium was considered
by Maskin (1985), Schmeidler (1980), Corchén and Wilkie (1991), Shin and
Suh (1997) and others. A necessary and sufficient condition for double im-
plementation in Nash and strong Nash equilibrium was given by Suh (1997).
He showed that the Walrasian SCR in an exchange economy, and the Lin-
dahl SCR in a public goods economy, are doubly implementable. Double
implementation in Nash and strong Nash equilibrium is the appropriate so-
lution concept when the social planner is not sure about whether the agents
will collude. If the planner has specific information about who can form a
coalition and who cannot, a different notion of implementation is required.
Suh (1996) gave a characterization result which applies to this situation.

3.7 Mixed Strategies

In most of the implementation literature, only the pure strategy equilibria of
the mechanism are verified to be F-optimal, leaving open the possibility that

28



there may be non-F-optimal mixed-strategy!® equilibria.!” In particular, in
the proof of Theorem 2 we did not establish that all mixed strategy Nash
equilibria are F-optimal. In fact they need not be. To see the problem,
consider a mixed strategy Nash equilibrium (uy, ..., z1,,) in state 6 for which
one possible realization is m such that for some j € N, 6 € ©, and a € F(0),

(a*,0") = (a,0) for all i # j (4)

but (a’,67) # (a,6). If m were the only realization of (uy, ..., it,,), then since
at m each agent i # j can induce his favorite alternative a’ he must already
be getting his favorite alternative. No veto power would then guarantee
h(m) € F(0). But if there are other possible realizations of y_;, then player
i might suffer by trying to induce a’. Suppose, for example, that m’, is
another realization in which mj = (¢',d’) for all k # i, where o’ € F(¢').
Assume furthermore that

ui(a', 0') > ui(d',0') > ui(a, d) (5)

Then, although agent ¢ can induce a’ when others play m_;, formula (5)
and rule 2 of the canonical mechanism imply that he cannot induce a’ when
others play m’ ,. Indeed, if he tries to do so, the outcome will be a’, which
may be a much worse outcome for him that a (the outcome that, from (5)
and rule 2, he would get by sticking to m;). Hence, if m is a realization of a
mixed strategy equilibrium of the canonical mechanism, (4) does not suffice
to imply that each player ¢ is getting his favorite alternative. And so we
cannot infer that h(m) is F-optimal. Nevertheless, the canonical mechanism
can be readily modified to take account of mixed strategies.

Suppose that n > 3. The modified canonical mechanism is defined as
follows. Let each agent 4 announce an outcome a’, a state 6, a mapping o' :
0" x A" — A from profiles of announced states and outcomes to outcomes,
and an integer 2. That is, his message space is

M,=Ax 0O x A®°"A" x 7

Let the outcome function be defined as follows:

16 A mixed strategy for player i is a probability distribution ju; over his set of pure
strategies M;.

1"Exceptions include Abreu and Matsushima (1992), Jackson, Palfrey and Srivastava
(1994), Sjostrom (1994).
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Rule 1. If (a’,0",a%) = (a,0,a) for all i € N and «(, ...,0,a, ...,a) =a €
F(0), then h(m) = a. In words, if players are unanimous in their proposal
of an alternative, state, and mapping, and their proposed alternative a is
prescribed by their proposed mapping o and F-optimal given their proposed
state 6, then the outcome is a.

Rule 2. Suppose there exists j € N such that (a’,0",a%) = (a,0,a) for
all i # 7, and a(9, ...,0,a,...,a) = a € F(0), but (a/,6’,a9) # (a,0,a). Then
h(m) = o?(0,....,07,...,0,a,....d7,...,a) if 7(0,....0°,....0,a,..,d°,...,a) €
L;(a,0), and h(m) = a otherwise. That is, suppose that all agents but j pro-
pose the same alternative a, state #, and mapping « and that a is prescribed
by a and is F-optimal in state 6. Then agent j gets the alternative prescribed
by his proposed mapping o/ (evaluated at (6, ...,¢”, ...,0,a, ...,a’, ..., a), where
¢’ and a/ occur in the jth positions) provided that he does not prefer it to a
at the state 6 which the other agents have announced.

Rule 3. In all other cases let h(m) = o/(#",...,0", a', ...,a™) where j =
max{i : 2 = maxy, z°}. That is, the outcome is determined by the proposed
mapping of the agent whose index is the highest among those announcing
the maximal integer.

If F' is monotonic and satisfies no veto power, then this modified mecha-
nism implements F' even when we take account of mixed strategies [Maskin
(1999)]. The reason for having agent i report a mapping o' rather than just
a fixed outcome is to avoid the sort of difficulty noted above. After all, which
outcome is best for an agent to propose will in general depend on the states
and outcomes that the other agents propose. But if the other agents are
using mixed strategies, then a player may not be able to forecast (except
probabilistically) what these proposals will be. Allowing him to propose a
function enables him, in effect, to propose a contingent outcome.

Maskin and Moore (1999) show that the extensive form mechanisms con-
sidered by Moore and Repullo (1987) and Abreu and Sen (1990) to attain
subgame perfect implementation can also be suitably modified for mixed
strategies. We conjecture that analogous modifications can be made for
mechanisms corresponding to most of the other solution concepts that have
been considered in the literature.

3.8 Renegotiation

So far we have been assuming implicitly that the mechanism I' is immutable.
In this section, however, we shall allow for the possibility that agents might
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choose to renegotiate it. Papers on implementation theory are often written
as though there were an exogenous planner who simply imposes the mech-
anism on the agents. But this is not the only possible interpretation of
the implementation setting. The agents might choose the mechanism them-
selves, in which case we can think of the mechanism as a “constitution”, or a
“contract” that the agents have signed. Suppose that when this contract is
executed (i.e., when the mechanism is played) it results in a Pareto-inefficient
outcome. Presumably, if the contract has been properly designed, this could
not occur in equilibrium: agents would not deliberately design an inefficient
contract. But inefficient outcomes might be incorporated in contracts as
“punishments” for deviations from equilibrium. However, if a deviation from
equilibrium has occurred, why should agents accept the corresponding out-
come given that it is inefficient? Why can’t they agree to “tear up” their
contract (abandon the mechanism) and sign a new one resulting in a Pareto-
superior outcome? In other words, why can’t they renegotiate? Studying
renegotiation is thus motivated by the idea that agents cannot commit them-
selves to choosing an outcome a when they could all do better with outcome
b. Renegotiation acts as a constraint because if punishment is renegotiated,
it may no longer serve as an effective deterrent to deviation from equilibrium.

Consider the following example [drawn from Maskin and Moore (1999)].
Let N = {1,2}, © = {6,0'}, and A = {a,b,c}. Agent 1 always prefers a to
¢ to b. Agent 2 has preferences cP(0)aPs(0)b in state 6 and bP(0")aPy(0')c
in state 6. Let f be the SCF such that f(f) = a and f(¢') = b. If we leave
aside the issue of renegotiation for the moment, there is a simple mechanism
that Nash implements f, namely, agent 2 chooses between a and b. He will
have an incentive to choose a in state 6 (since aP,(0)b) and b in state 6’
(since bP»(0")a) and so f will be implemented. But what if he happened to
choose b in state 6 7 Since b is Pareto-dominated by a and ¢, agents will be
motivated to renegotiate. If, in fact, b were renegotiated to a, there would be
no problem since whether agent 2 chose a or b in state 6, the final outcome
would be a = f(6). However, if b were renegotiated to ¢ in state 6, then.agent
2 would intentionally choose b in state €, anticipating the renegotiation to
c. Then b would not serve to punish agent 2 for deviating from the choice
he is supposed to make in state €, and the simple mechanism would no
longer work. Moreover, from Theorem 12 below, no other mechanism can
implement f either. Thus renegotiation can indeed constrain the SCRs that
are implementable. But the example also makes clear that whether or not
f is implementable depends on the precise nature of renegotiation (if b is
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renegotiated to a, implementation is possible; if b is renegotiated to ¢, it is
not). Thus, rather than speaking merely of the “implementation of f” we
should speak of the “implementation of f for a given renegotiation process”.

In this section the feasible set is A = A(B), the set of all probability
distributions over a set of basic alternatives B. We identify degenerate prob-
ability distributions that assign probability one to some basic alternative b
with the alternative b itself. The renegotiation process can be expressed as a
function r : B x © — B, where r(b, ) is the (basic) alternative to which the
agents would renegotiate in state 6 € © if the fall-back outcome (i.e., the out-
come prescribed by the mechanism) is b € B. Following Maskin and Moore
(1999), assume renegotiation is efficient (for all b and 6, r(b,0) is Pareto
efficient in state 0) and individually rational (for all b and 6, (b, 0)R;(6)b for
all 7). For each 6 € O, define a function 7y : B — B by re(b) = 7(0,b).
Let z € A, assume for the moment that B is a finite set, and let z(b) denote
the probability that the lottery = assigns to outcome b € B. Extend ry to
lotteries in the following way: let r9(x) € A be the lottery which assigns
probability > x(a) to basic alternative b € B, where the sum is over the set
{a : rg(a) = b}. For B an infinite set, define ry(x) in the obvious analogous
way. Thus we now have ryg : A — A, for all § € O. Finally, given a mecha-
nism I' = (M, h) and a state 6 € O, let ry o h denote the composition of ry
and h. That is, for any m € M, (rgoh)(m) = rg(h(m)). The composition
rgoh : M — A describes the de facto outcome function in state 6, since any
basic outcome prescribed by the mechanism will be renegotiated according to
rg. Notice that if the outcome h(m) is a non-degenerate randomization over
B, then renegotiation takes place after the uncertainty inherent in h(m) has
been resolved and the mechanism has prescribed a basic alternative in B.
Let S((M,rg o h),0) denote the set of S-equilibrium outcomes in state 6,
when the outcome function A has been replaced by ry o h. The mechanism
' = (M, h) is said to S-implement the SCR F' for renegotiation function r if

8Other assumptions on the renegotiation process have been considered. Jackson and
Palfrey (1998) assume that in each state 6 any agent can veto the outcome of the mech-
anism and enforce a “status quo” alternative a(6). Thus, r(b,8) = b if bR;(#)a(6) for
all ¢ € N, and r(b,0) = a(f) otherwise. In an exchange economy, the status quo may
be the endowment point: in this case the constrained Walrasian correspondence turns
out not to be implementable. Sjostrom (1999) assumes disagreement point monotonicity
(each agent prefers to renegotiate from a fall-back outcome that is better for him), while
Sjostrém (1996b) considers a situation where commodities can be destroyed but (re-)trade
of commodities that are not destroyed cannot be prevented.
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and only if S((M,rgoh),0) = F(0) for all § € ©. In this section we restrict
our attention to SCRs F' that are “essentially single-valued” in the sense that
for all 0, if a € F(0) then F(0) = {b € A:0bl;(f)a for all i € N}.

Much of implementation theory with renegotiation has been developed
for its application to bilateral contracts. With n = 2, a simple set of condi-
tions are necessary for implementation regardless of the refinement of Nash
equilibrium that is adopted as the solution concept.

Theorem 12 [Maskin and Moore (1999)] The two-agent SCR F' can be im-
plemented in Nash equilibrium (or any refinement of Nash equilibrium) for

renegotiation function v only if there exists a random function a : © x O — A
such that, for all 6 € ©,

ro(a(8,0)) € F(6) (i)
and for all 0,0" € O,
ro(a(0,0))Ri(0)rg(a(d’,d)) (ii)
and
ro(@@(6,0)) R (6)ro((6, ) (i)

If a(6,0) is the (random) equilibrium outcome of a mechanism in state
0, then condition (i) ensures that the renegotiated outcome is F-optimal;
condition (ii) ensures that agent 1 will not wish to deviate and act as though
the state were 6'; and (iii) ensures that agent 2 will not wish to act as though
the state were '

The reason for introducing randomizations over basic alternatives in The-
orem 12 and the following results is to enhance the possibility of punishing
agents for deviating from equilibrium. By assumption, agents will always
renegotiate to a Pareto-efficient alternative. Thus, if agent 1 is to be pun-
ished for a deviation (i.e., if his utility is to be reduced below the equilibrium
level), then agent 2 must, in effect, be rewarded for this deviation (i.e., his
utility must be raised above the equilibrium), once renegotiation is taken into
account. But as we noted in Section 2.8, in a two-agent setting determining
which agent has deviated may not be possible, so it may be desirable to
punish both agents. However, this cannot be done if one agent is always re-
warded when the other is punished.!® That is were randomization comes in.

Introducing a third party might make it possible to simultaneously punish both original
parties in an efficient way by transferring resources to the third party. But it is sometimes
argued that the third party will always collude with one of the original parties, in effect
bringing us back to the case of n = 2.
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Although, for each realization b € B of the random variable a € A, ry(b) is
Pareto optimal, the random variable r4(a) need not be Pareto optimal (if the
Pareto frontier in utility space is not linear). Hence, deliberately introducing
randomization is a way to create mutual punishments despite the constraint
of renegotiation.

In the case of a linear Pareto frontier?® randomization does not help. In
that case, the conditions of Theorem 12 become sufficient for implementa-
tion.

Theorem 13 [Maskin and Moore (1999)] Suppose that the Pareto frontier
is linear for all 0 € ©. Then the two-agent F' can be implemented in Nash
equilibrium (or any refinement thereof) for renegotiation function r if there
exists a random function @ : © x O — A satisfying conditions (i), (ii) and
(11i) of Theorem 12.

The conclusion that F'is implementable for any refinement of Nash equi-
librium follows from the fact that, under the hypothesis of Theorem 13,
a mechanism in effect induces a two-person zero sum game (renegotiation
ensures that outcomes are Pareto efficient, and the linearity of the Pareto
frontier means that payoffs sum to a constant). Hence all refinements of Nash
equilibrium are equivalent.

With “quasi-linear preferences”, the Pareto frontier is linear. In this case
Segal and Whinston (1998) have shown that Theorem 13 can be reexpressed
in terms of first-order conditions.?!

Theorem 14 [Segal and Whinston (1998)] Assume (i) N = {1,2}; (ii) the
set of alternatives is

A={(z,y1,92) : x € X, (y1,12) € R?, and y1 +yo = 0}

where X is a compact interval in R; (iii) © = [0, 0] is a compact interval in
R; and (iv) in each state 0 € ©, each agent i’s post-renegotiation preferences
take the form: for all (z,y1,ys) € A,

ui(re(xu Y1, y2)7 0) - vi(x7 0) + Yi

20Formally, the frontier is linear in state @ if, for all b, b’ € B that are both Pareto optimal
in state 6, the lottery Ab+ (1 — A)¥’ is also Pareto optimal, where A is the probability of b.
2INotice that their feasible set is different from what we otherwise assume in this section.
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where v; is Ct. If the SCR F : © — A is implementable in Nash equilibrium
(or any refinement) for renegotiation function r, then there exists T : © — X
such that, for all 8 € © and all i € N,

9 ov;

w;(F(0),0) = 0

(2(t), 1) dt +ui(F(0),0) (6)

Furthermore, if there is i € N such that gegl (x,0) > 0 for all z € X
and all O € O, then the existence of & satisfying (6) is sufficient for F'’s

implementability by a mechanism where only agent i sends a message.

Notice that as [ is essentially single valued, we may abuse notation and
write u;(F(0),6) in (6).

When the Pareto frontier is not linear, then it becomes possible to punish
both agents for deviations from equilibrium. We obtain the following result
for implementation in subgame-perfect equilibrium.

Theorem 15 (Maskin and Moore (1999)) The two-agent SCR F' can be
implemented in subgame-perfect equilibrium with renegotiation function r if
there exists a random function a: © — A such that
(1) for all 0 € ©, r(a(0),0) € F(0);
(i) for all 0,0" € © such that 7(a ( ),0') ¢ F(@') there exists an agent k and
a pair of random alternatives b(0,6'), &(6,6') in A such that

)

r(b(0,0"), 0) Re(0)r(2(0,6'),6)

and

r(&(0,6"),0" ) Pu(0")r(b(6,6),6');

(iii) if Z C A is the union of all a(f) for 6 € © together with all b(0,6') and
c(0,0") for 6,0" € ©, then no alternative z € Z is mazimal for any agent i in
any state 0 € © even after renegotiation (that is, there exists some d'(0) € A
such that d'(0)P;(0)r(z,0)); and

(iv) there exists some random alternative € € A such that, for any agent i
and any state 0 € O, every alternative in Z is strictly preferred to € after

renegotiation (that is, r(z,0)P;(0)r(€,0) for all z € Z).

The definition of implementation with renegotiation suggests that charac-
terization results should be r-translations of those for implementation when
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renegotiation is ruled out. That is, for each result without renegotiation, we
can apply r to obtain the corresponding result with renegotiation. This is
particularly clear if Nash equilibrium is the solution concept. From Theorems
1 and 2 we know that monotonicity is the key to Nash implementation. By
analogy, we would expect that some form of “renegotiation-monotonicity”
should be the key when renegotiation is admitted. More precisely, we say
that the SCR F' is renegotiation monotonic for renegotiation function r pro-
vided that, for all @ € © and all x € F'(6) there is a € A such that r(a,§) = z,
and if L;(r(a,0),0) C Li(r(a,0'),0") for all i € N then r(a,0') € F(0').

Theorem 16 (Maskin and Moore (1999)) The SCR F' can be implemented
in Nash equilibrium with renegotiation function r only if F' satisfies renegoti-
ation monotonicity for r. Conversely, if n > 3 and no alternative is maximal
in A for two or more agents, then F is implementable in Nash equilibrium
with renegotiation function r if F' satisfies renegotiation monotonicity for r.

Sjostrom (1999) shows that in economic environments with n > 3, any
Pareto-optimal and ordinal SCR can be implemented in undominated Nash
equilibrium for any renegotiation function satisfying some very weak prop-
erties (the same mechanism can be used for any renegotiation function sat-
isfying these properties). Moreover, any undominated Nash equilibrium is
coalition-proof, so that collusion is not necessarily a problem when n > 3
(cf. footnote 19). Baliga and Brusco (1996) demonstrate that a very wide
class of n-agent (n > 3) SCRs can be implemented in strong subgame-perfect
equilibrium for reasonable renegotiation functions. There is also a literature
on renegotiation that takes the view that the renegotiation process itself can
be regulated by the original mechanism or contract [see Aghion, Dewatripont
and Rey (1994) and Rubinstein and Wolinsky (1992)].

3.9 The Planner as a Player

Suppose the mechanism I' is designed by a social planner who cannot observe
the true state of the world, but who would like the set of equilibrium outcomes
to coincide with the set of F-optimal outcomes in each state. The canonical
mechanism for Nash implementation can be given the following intuitive
explanation. Rule 1 states that if there is a consensus among the agents on
state 6 and outcome a € F(f), then a is chosen by the planner. By Rule
2, agent j’s attainable set at the consensus outcome is the lower contour
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set L;(a,0). Intuitively, agent j can “object” and attain any outcome a’/ €
L;(a,8). Monotonicity is the condition that makes such objections effective.
For if ¢ # 6 is the true state and a ¢ F(6'), then by monotonicity some
agent j strictly prefers to deviate from the consensus with an objection a’ €
Li(a,0)\L;j(a,0"). Agent j would have no reason to propose a’ in state
since a’ € Lj(a,0), but he does have such an incentive in state 6’ since
a’ ¢ Lj(a,d'). Following the logic of Farrell (1993) and Grossman and Perry
(1986), this objection may convince the social planner that 6 is not the true
state (and therefore that a is not the right outcome), although it may not
convince the planner that the true state must be 6’ (there may be some third
state 6" where the agent also would have an incentive to propose a’/). Worse,
even if the objection should convince the planner that the state is &', she
does not actually want to choose a’ unless it should happen that a’ € F(¢').
Thus, there is a commitment problem for the planner in the sense that she
may want to deviate ex post from the rules she herself has laid down, much
like the agents renegotiated outcomes in Section 3.8.

Corchén, Wilkie and Chakravorty (1997) discuss the planner’s commit-
ment problem under the assumption that the mechanism is operated by a
“mindless servant” who is not a player. Baliga, Corchén and Sjostrom (1997)
assume the planner herself operates the mechanism. She gets payoff ug(a, )
from alternative a in state 6, and the SCR F' she wants to implement is given
by

F(0) = arg maxug(a, d) (7)

acA

for all & € ©. Since the planner has no commitment power, after receiving the
agents’ messages she must choose an alternative a which maximizes ug(a, 6)
given her beliefs about 6. Baliga, Corchén and Sjostrom (1997) found neces-
sary and sufficient conditions for implementation, assuming the planner’s be-
liefs must satisfy restrictions similar to those in Farrell (1993) and Grossman
and Perry (1986). Although there is no simple relationship between these
conditions and standard conditions such as monotonicity, in many cases re-
moving the planner’s commitment power makes the implementation problem
much more difficult.

If the planner can commit, then explicitly allowing her to participate as
a player in the game expands the set of implementable social choice rules.
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Consider a utilitarian social planner, with

up(a,d) = Z u;(a,0)

The SCR F' she wants to implement is the utilitarian SCR which is not
ordinal, since multiplying some u; by a scalar can change the utilitarian opti-
mum. If the planner does not play, then F' cannot be implemented using any
non-cooperative solution concept (it cannot even be virtually implemented).
But suppose we let the social planner (who has no information about )
participate as a player by sending a message.”? Let the solution concept
be Bayesian-Nash equilibrium. In the expanded set of players, a preference
reversal condition is trivially satisfied, since by definition the planner has
different ordinal preferences in any two states that have different utilitarian
optima. The utilitarian optimum can now be implemented for “generic” prior
beliefs over © [Baliga and Sjostrom (1999)].

4 Bayesian Implementation

Now we drop the assumption that each agent knows the true state of the
world and consider the case of incomplete information. If the true state is 6,
but agent j thinks it can be any of a number of states, then agent j will need
to predict how the other agents would behave in all those states that he con-
siders possible. This links the states together, and we can no longer consider
each state separately. The basic solution concept for incomplete information
environments is Bayesian Nash equilibrium. Bayesian Nash implementation
in economic environments with non-ezclusive?® information was studied by
Postlewaite and Schmeidler (1986) and Palfrey and Srivastava (1987). Pal-
frey and Srivastava (1989a), Mookherjee and Reichelstein (1990) and Jackson
(1991) proved more general results for environments where the agents may
have exclusive information. Blume and Easley (1990) showed that the Wal-
rasian correspondence can be Bayesian Nash implemented if information is
non-exclusive but not otherwise.

2Hurwicz (1979b) implemented the Walrasian and Lindahl SCRs under the assumption
that there is an “auctioneer” whose payoff function agrees with the social choice rule as
in equation (7). However, he assumed the auctioneer knew the state of the world.

23Information is non-exclusive if each agent’s information can be inferred with certainty
by pooling the other n — 1 agents’ information.
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4.1 Definitions

A generic state of the world is denoted 8 = (64, ...,0,), where 0, is agent
i’s type. Let ©; denote the finite set of possible types for agent i, and let
O =07 X ... x O,. Agent ¢ knows his own type #; but may be unsure about
0 i=(01,....,0; 1,0;11,...,0,). Agent i’s payoff depends only on his own type
and the final outcome (private values). Thus, if the outcome is a € A
and the state of the world is 0 = (61, ...,6,) € O, then we will write agent
i’s payoff as w;(a,6;) rather than w;(a,d). Suppose there exists a common
prior distribution on O, denoted p. Conditional on knowing his own type 6;,
agent i’s posterior distribution over ©_; = x;4,0; is denoted p(- | 6;). It
can be deduced from p using Bayes rule for any #; which occurs with positive
probability. If g : © ; — A is any function, and §; € ©;, then the expectation
of u;(g(0_;),0;) conditional on 6; is denoted

E{ui(g(0-:),0:) | 6:y = > p(0i | 0:)ui(g(6-),05)

0_;,€0_;

A strategy profile in the mechanism I' = (M, h) is denoted o = (074, ..., 0,,),
where for each i, o; : ©; — M, is a function which specifies the messages sent
by agent i’s different types. The message profile sent at state 6 is denoted
o(0) = (01(01), -..,0,(0,)), and the message profile sent by agents other than
i in state 0 = (0_;,0;) is denoted

O-—i(e—i) = (01((91), ceny O-i—l(ei—l)u (Ti+1(0i+1)7 ceey O'n((gn))

Let X denote the set of possible strategy profiles. Strategy profile o € ¥
is a Bayesian Nash Equilibrium if and only if for all + € N and all 6; € O,

E{ui(h(a(0),0:) | 0:} > E{u;(h(oi(0),m}),0:) | 0:}

for all m, € M;. All expectations are with respect to 6_; conditional on 6,.
Let BNE" C ¥ denote the set of Bayesian Nash Equilibria for mechanism
I.

A social choice set (SCS) is a collection F' = {f1, fy, ...} of social choice
functions, i.e. a subset of A®. We identify the SCF f with the SCS F' = {f}.
Define the composition hoo : © — A by (hoo)(0) = h(o(6)). The mechanism
I' = (M, h) implements the SCS F' in Bayesian Nash equilibrium if and only
if (i) for all f € F, there is 0 € BNE" such that hoo = f, and (i) for all
o0 € BNE" thereis f € F such that hoo = f
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A set ©' C © is a common knowledge event if and only if §' = (0" ,,0.) €

©" and 0 = (0 4,0;) ¢ © implies, for all i € N, p(0_; | 6;) = 0. An SCS
F satisfies closure if and only if the following is true: for any two common
knowledge events ©1, O, that partition © and any pair fi, fo € F, we have

f € F where f is defined by

. f1(0) if (91 € @1
10) = { £(0) if 0, € O,

Closure is a necessary property for Bayesian Nash implementation of an
SCS.?* In complete information environments, it is without loss of generality
to consider implementation of an SCR rather than an SCS because Bayesian
Nash implementation is equivalent to Nash implementation and any SCS
which satisfies closure is equivalent to an SCR [Jackson (1991)]. This is not
the case in incomplete information environments, however.

4.2 Incentive Compatibility
An SCR f is incentive compatible if and only if for alli € N and all 6,, 0, € ©;,
E{ui(f(0-:,0:),0:) | 0:} = E{wi(f(0-:,07),0) | 0:}

A SCS F is incentive compatible if and only if each f € F' is incentive
compatible.

Theorem 17 If the SCS F s implementable in Bayesian Nash equilibria,
then F is incentive compatible.

24GQuppose A = {a,b}, where a is “a prize to Adam” and b is “a prize to Bob”, and
© = {6,6'}. The social planner’s preferences are not separable across states and are not
compatible with any SCR, but are represented by the SCS F = {f1, f2}, where f1(0) =
f2(8') = a, f1(8') = f2(#) = b. That is, to give the prize to Adam in state 6§ and to Bob
in state 8’ is an optimal plan, and to give the prize to Bob in state § and to Adam in
state @’ is also optimal, but giving the prize to the same person in both states is not an
optimal plan [cf. Diamond (1967)]. If the true state is common knowledge then F' cannot
be implemented since closure is violated. Intuitively, any mechanism that implements F
would have both a and b as equilibrium outcomes in both states, but then there would be
no way to guarantee that the outcomes in the two states would be different, as required
by both f; and fs.
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Proof. To get a contradiction, suppose I' = (M, h) implements F , but some
f € F is not incentive compatible. Then there is ¢ € N and 6;,0; € ©; such
that

E{ui(f(0),05) | 0:} < E{ui(f(0-:,0),0:) | 0:} (8)
where 6 = (0_;,0;). Suppose ¢ € BNE" and h oo = f. If agent 4’s type 6;
uses the equilibrium strategy o;(6;), his expected payoff is

E{ui(h(0(0)),0:) | 0:} = E{ui(f(0),0:) | 0} (9)

If instead he were to send the message m, = 0,(0;), he would get
Efui(h(o-i(0-4),0:(6:)) [ 0)} = E{wi(f(0-,67),6:) | 6:}  (10)

But equations (8), (9) and (10) contradict the definition of Bayesian Nash
equilibrium. [J

The mechanism I' is a revelation mechanism if and only if M; = ©; for
all © € N. In a revelation mechanism, a message is simply an announce-
ment of ones own type. Theorem 17 implies the revelation principle: if F
is implementable, then for each f & F', truth telling is a Bayesian Nash
equilibrium for the revelation mechanism (M, h) where h = f and M; = ©;
for each i € N [Dasgupta, Hammond and Maskin (1979), Myerson (1979),
Harris and Townsend (1981)]. However, the revelation mechanism will in
general also have undesirable untruthful Bayesian Nash equilibria, in which
case the revelation mechanism does not fully implement f [Postlewaite and
Schmeidler (1986), Repullo (1986)]. We now consider the problem of (full)

implementation.

4.3 Bayesian Monotonicity

A deception for agent i is a function «; : O, — ©;. A deception a =

(o, ..., o) consists of a deception «; for each agent i. Let a(0) = (a1(601), ..., @, (6,))
and a_;(0_;) = (a1(01), ...,;i_1(0;-1), @ix1(0ix1), -y an(0y)). A deception o

is compatible if and only if p(a(6)) > 0 for all 6 such that p(6) > 0.

Definition Bayesian monotonicity. For all f € F', and all compatible de-
ceptions « such that f o« ¢ F, there exists i € N, 0, € ©; and a
function y : © — A such that

E{ui(£(0),0:) [ 0:} = E{ui(y(0),0:) | 0:} (11)
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for all §; € ©; and
B {uwi(f(al6-,0))),0)) | 0} < E{ualy(e(0-:,67)),6;) | 033 (12)
for some ¢, € O;.

This definition is due to Palfrey and Srivastava (1989a) and is weaker
than the version given by Jackson (1991), who did not require deceptions
to be compatible. A related condition called selective elimination was used
by Mookherjee and Reichelstein (1990). They showed how mechanisms for
full implementation can be built from incentive compatible revelation mech-
anisms by adding messages in order to eliminate undesirable equilibria.

The proof of Theorem 1 shows that with complete information, unde-
sirable Nash equilibria always exist if the SCR is not monotonic. Bayesian
monotonicity generalizes monotonicity to the case of incomplete information
[Postlewaite and Schmeidler (1986), Palfrey and Srivastava (1989a), Jackson
(1991)]. With incomplete information, undesirable Bayesian Nash equilibria
always exist if the SCS is not Bayesian monotonic.

Theorem 18 If the SCS Fis implementable in Bayesian Nash equilibrium,
then F' 1s Bayesian monotonic.

Proof. Suppose the mechanism I' = (M, h) implements F' in Bayesian Nash
equilibrium. For each f € F there is ¢ € BNET such that ho o = f. Let «
be a deception such that foo ¢ F. Now, 0o € ¥ is a strategy profile such
that in state 8 € O the agents behave as they would under o if their types
were (), i.e. they “deceptively” send message profile (oo «)(8) = o(a(6)).
Since ho (coa) = foa ¢ F, it follows that 0 o« ¢ BNET. Therefore, some
type 6, € ©; must have a message m/ € M; such that

E{ui(h(o(e(9))), 6;) | 03} < B {ui(h(oi(a—i(0-:)),m;),0;) | 0} (13)

Let y : © — A be defined by y(0) = h(o_;(0_;),m}). Note that y(8) is
independent of #;, and

Now (11) follows from the definition of Bayesian Nash equilibrium, and (12)
follows from (13). O
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Thus, the three conditions of closure, Bayesian monotonicity and incen-
tive compatibility are necessary for Bayesian Nash implementation. Jackson
(1991) showed that in economic environments with at least three agents, these
three conditions are also sufficient. Earlier, Palfrey and Srivastava (1989a)
had shown that closure, Bayesian monotonicity, and a slightly stronger ver-
sion of incentive compatibility are sufficient conditions in economic envi-
ronments.?> For general environments, Jackson (1991) shows that closure,
Bayesian monotonicity and a condition called monotonicity-no-veto together
are sufficient for implementation with n > 3.

As is the case in complete information environments, equilibrium refine-
ments makes it possible to dispense with the monotonicity condition. Palfrey
and Srivastava (1989b) showed that any incentive-compatible SCF can be im-
plemented in undominated Bayesian Nash equilibrium if n > 3 and agents
are never indifferent across all alternatives. Abreu and Matsushima consid-
ered an incomplete information version of the model described in Section 3.5,
where A is the set of lotteries over a finite set of basic alternatives. They
showed that an SCF can be virtually implemented using iterated elimination
of undominated strategies if and only if it satisfies incentive compatibility
and a weak measurability condition. Virtual Bayesian Nash implementation
was studied by Duggan (1997) and Serrano and Vohra (1999). Baliga (1999),
Bergin and Sen (1997) and Brusco (1995) studied Bayesian implementation
using sequential mechanisms.

4.4 Non-Parametric, Robust and Fault Tolerant Im-
plementation

In general, the Bayesian implementation literature implicitly assumes that
the mechanism designer has knowledge about the common prior distribution
p. As argued by Jackson and Moulin (1992) this requirement is very strong.
The requirement is relaxed by Choi and Kim (1996), who construct a mech-
anism for non-parametric implementation in undominated Bayesian-Nash
equilibrium in a public goods economy. They assume types are indepen-
dent and agents share a common prior p but the mechanism designer does

25Postlewaite and Schmeidler (1986) showed that closure and Bayesian monotonicity are
sufficient for implementation in economic environments with non-exclusive information if
n > 3. This follows from the fact that in such environments, incentive compatibility is a
vacuous condition.
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not necessarily know p. Each agent is asked to announce his own beliefs as
well as the beliefs of a “neighbor”. The mechanism is designed in such a
way that all agents announce their true beliefs at equilibrium. Duggan and
Roberts (1997) introduced a notion of robust implementation, where the so-
cial planner is assumed to have a point estimate of the agents’ prior p, but
implementation is robust against small mis-specifications in this estimate.

A different kind of robustness was introduced by Corchén and Ortuiio-
Ortin (1995), who assumed agents are divided into local communities, each
with at least three members. The social planner knows that information is
complete within a community, but she does not necessarily know what agents
in one community believe about members of other communities. Implementa-
tion should be robust against different possible inter-community information
structures. Yamato (1994) showed that an SCR is robustly implementable
in this sense if and only if it is Nash implementable.

Eliaz (2000) introduced fault tolerant implementation. The idea is that
mechanisms ought not to break down if there are a few “faulty” agents who
do not understand the rules of the game or make mistakes. Suppose neither
the social planner nor the (non-faulty) agents know which agent (if any) is
faulty, but all other aspects of the state are known to the (non-faulty) agents.
Eliaz defines a Nash equilibrium to be k-fault tolerant if it is robust against
deviations by at most k faulty players and gives necessary and sufficient
conditions for implementation when k < %n — 1.
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