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Abstract

Iterative auctions have many computational advantages over
sealed-bid auctions, but can present new possibilities for
strategic manipulation. We propose a two-stage technique
to make iterative auctions that compute optimal allocations
with myopic best-response bidding strategies more robust to
manipulation. First, introduce proxy bidding agents to con-
strain bidding strategies to (possibly untruthful) myopic best-
response. Second, after the auction terminates adjust the
prices towards those given in the Vickrey auction, a sealed-
bid auction in which truth-revelation is optimal. We present
an application of this methodology toiBundle, an iterative
combinatorial auction which gives optimal allocations for
myopic best-response agents.

Introduction
Many interesting problems involving distributed agents, e.g.
task assignment, distributed scheduling, etc. can be formu-
lated as resource allocation problems, with a set of discrete
items to allocate to agents (Clearwater 1996). A common
goal is to maximize the total value of the allocation over all
agents, while respecting information decentralization, au-
tonomy, and the self-interest of individual agents within a
system. Auctions provide simple and robust mechanisms,
and can compute optimal or near-optimal solutions in inter-
esting problems (Wellmanet al. 1999).

Iterative auctions, in which agents can bid continuously
during an auction as prices are adjusted, have a number
of computational advantages over sealed-bid auctions, in
which agents must submit bids simultaneously in a single
round. Agents can perform incremental computation about
their values for different allocations as prices change (Parkes
1999a), and make new bids in response to bids from other
agents. This is important in problems with hard valuation
problems, consider for example a task allocation problem
with agents that solve local optimization problems to com-
pute the cost of performing additional task given existing
commitments (Sandholm 1993).

Iterative auctions have been designed to solve non-trivial
resource allocation problems, for example for auctions
in multiple identical items (Ausubel 1997), andiBundle
(Parkes 1999b) for the combinatorial resource allocation
problem.
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However, iterative auctions present possibilities for strate-
gic manipulation because information is exchanged between
agents via bids and prices during an auction. A rational
agent with look-ahead can try to manipulate the bids of other
agents and the outcome of an auction, for example withjump
bidsat prices above the current ask price, or by delaying bids
until the auction is about to close. Manipulation is undesir-
able because it reduces the economic efficiency of outcomes,
and because it is inherently complex.

We propose a new method, “proxy agents and price-
adjustment”, to prevent strategic manipulation in iterative
auctions. The method applies to iterative auctions that com-
pute optimal resource allocations incompetitive equilib-
rium.1 We adjust prices retrospectivelyafter an auction ter-
minates towards prices that provide incentives for agents to
bid truthfully.

The goal is to compute the prices that agents would pay in
the Generalized Vickrey Auction (GVA) (Varian & MacKie-
Mason 1995), a sealed-bid auction for combinatorial re-
source allocation problems. The prices in theGVA pro-
vide strong truth-revelation properties; truth-revelation is a
dominant strategy, optimal for a self-interested agent for
all strategies of other agents. When successful, in combi-
nation with proxy bidding agents, the iterative auction re-
tains its computational advantages and inherits the strategy-
proofness of theGVA. The proxy agents bid on behalf of
agents, and constrain bidding strategies to best-response to
prices based on (possibly untruthful) information received
from agents about their values for items.

Our insight is that an interpretation of iterative auc-
tions within primal-dual optimization theory presents a
method,Adjust , to computeminimalcompetitive equilib-
rium prices after an auction terminates, based on bids placed
by agents during the auction, i.e. prices that minimize the
auctioneer’s revenue in equilibrium. Extending recent re-
sults in Bikchandani & Ostroy (1998), we prove thatGVA
prices can always be computed from “enough” minimalCE
prices. A variation,Adjust* , on Adjust closes the gap
between minimalCE prices andGVA prices. We character-
ize necessary and sufficient conditions on agents’ bids and
prices forAdjust* to computeGVA prices, and propose a
dynamic test allows an auctioneer to detect when the auction

1In competitive equilibrium all agents maximize utility with the
final allocation given the final prices, and the auctioneer maximizes
revenue.



has terminated withGVA prices.
We also suggest approximate procedures,Adj-Pivot

andAdj-Pivot* , for Adjust andAdjust* with neg-
ligible computation that work well in practice. The meth-
ods leverage computation already performed by the auction-
eer during the auction, in solving a sequence of winner-
determination problems.

As an application of our framework, we consideriBundle,
an ascending-price combinatorial auction which gives opti-
mal allocations for myopically-rational agents.iBundle and
Adjust compute minimalCE prices in all problems. We
characterize sufficient conditions on agents’ valuation func-
tions for Adjust* to computeGVA prices. Experimental
results verify thatiBundle with price-adjustment computes
minimal CE prices across a suite of hard problems, and of-
ten compute prices which are within 2% ofGVA prices.

Incentive Compatible Auctions
In this section, we explain why truth-revelation is optimal
for an agent in the Generalized Vickrey Auction (GVA), and
discuss the consequences of achieving Vickrey prices in an
iterative auction.

TheGVA computes optimal resource allocations even with
strategic self-interested agents.2 It is an incentive compat-
ible auction: an agent’s optimal bidding strategy is truth-
revelation, i.e.bid the exact amount that it values an item, or
bundle of items.TheGVA extends Vickrey’s (1961) seminal
second-price sealed-bid auction, which sells a single item to
the highest bidder for the second-highest price, to auctions
for bundlesof items.

Let G denote the set of items to be auctioned,I denote
the set of agents, andvi(S) denote agenti’s value for bundle
S � G of items. We assume risk-neutral agents with quasi-
linear utilities in money,ui(S; p) = vi(S) � p, for pricep,
and equate optimal strategies with utility-maximization.

The GVA is a direct-revelation mechanism, in which
agents report (possibly untruthful) values for bundles of
items. Let̂vi denote agenti’s reported value, not necessarily
equal to its true value. The auctioneer computes the alloca-
tion S� = (S�

1 ; : : : ; S
�
jIj) that maximizes the total reported

value, where agenti receives bundleS�
i � G.

Agent i payspgva(i) =
P

j 6=i v̂j(S
�i
j ) �

P
j 6=i v̂j(S

�
j ),

whereS�i is the revenue-maximizing allocation with the
bids from all agents except agenti. The GVA prices the
marginal negative effect that an agent’s presence has on the
reported value of the outcome to the other agents.

Definition 1. Dominant strategy. A bidding strategy is dom-
inant if it is optimal for all bidding strategies of other agents.

Truth-revelation, i.e. a bid̂vi = vi, is a dominant
strategy in theGVA. The proof is straightforward: agent
i’s utility, ui(S

�
i ; pgva(i)), given allocationS�

i and price
pgva(i), is ui(S�

i ; pgva(i)) = vi(S
�
i ) � pgva(i) = vi(S

�
i ) +

2The GVA is not robust to manipulation by colluding agents
(Sandholm 1996). Similarly, the methods that we present in this
paper do not prevent collusive manipulation of iterative auctions.

P
j 6=i v̂j(S

�
j ) �

P
j 6=i v̂j(S

�i
j ). Agenti can maximize the

sum of the first two terms by reportinĝvi = vi because this
is precisely the objective function that the auctioneer maxi-
mizes to select allocationS�. The final term is independent
of agenti’s bid.

We will refer to this outcome, i.e. allocation,S� and pay-
mentspgva(i), as theVickrey outcome.

Vickrey Prices in an Iterative Auction

One might think that if an iterative auction implements
the Vickrey outcome with agents that follow myopic best-
response bidding strategies, then myopic best-response
would be a dominant strategy for self-interested agents.
In fact, manipulation remains possible with a non best-
response strategy.

Definition 2. Myopic best-response bidding strategy. Bid to
maximize utility in the current round, taking prices as fixed.

Definition 3. AuctionA myopically implements the Vickrey
outcome if the auction terminates with the Vickrey outcome
for agents that follow myopic best-response bidding strate-
gies.

Let BR(vi; p) denote the best-response bid for agenti
with valuation functionvi, wherep is the current prices in
the auction. Call this atruthful myopic strategy. Also, let
BR(v̂i; p) denote anuntruthful myopic bidding strategyfor
agenti, for some valuation function̂vi 6= vi.

We derive the following result, for agents that are con-
strained to (possibly untruthful) myopic best-response bid-
ding strategies. It is immediate from the incentive properties
of theGVA:

Theorem 1. Truthful myopic bidding is a dominant strat-
egy in an iterative auctionA that myopically-implements the
Vickrey outcome, if all agents are constrained to following a
(possibly untruthful) myopic best-response bidding strategy.

That is, assume agenti must place bids in every round of
the auction that are consistent with a myopic best-response
bidding strategy,BR(v̂i; p), for some valuation function̂vi,
that does not need to equal the agent’s actual valuationvi.
Given this, truth-revelation, i.e. following a best-response
strategy for̂vi = vi, is optimal.

This is weaker than the strategy-proofness of theGVA,
where truthful bidding is dominant in a system withunre-
strictedbidding strategies. Gul & Stacchetti (1997) prove
the following more general result:

Theorem 2.Truthful myopic bidding is a sequentially ratio-
nal best-response to truthful myopic bidding by other agents
in an iterative auctionA that myopically-implements the
Vickrey outcome.

We use proxy bidding agents to force agents to follow
best-response bidding strategies, and leverage Theorem 1.
With this, an iterative auction that myopically implements
the Vickrey outcome inherits the incentive compatibility of
theGVA.
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Proxy Bidding Agents
We introduce semi-autonomous proxy bidding agents at the
auctioneer, through which agents must interact with the auc-
tion. The proxy agents constrain agents’ bidding strategies,
following a best-response bidding strategy based on reported
information about an agent’s valuation function.

Let us first suggest (and reject) a couple of undesirable
approaches to constrain agent strategies:

1. Detect and penalize deviations from a myopic best-
response strategy. This is computationally expensive
because the class of bidding strategies implemented by
BR(v; p) is large, and to detect an invalid strategy we
must prove that no best-response strategy from this class
can implement an agent’s bids.

2. Autonomous proxy bidding agents. Proxy agents that must
receive valuation functions in an initial stage, before bid-
ding autonomouslyin the auction convert the iterative
auction into a sealed-bid auction. This destroys many of
the computational advantages that we outlined in the in-
troduction.

Agenti provides incomplete information,v̂app;i about re-
ported value,̂vi, to its proxy agent. The reported value can
be different from an agent’s true value. Agenti can update
the information̂vapp;i during the auction, but all new infor-
mation must be consistent with previous information. The
proxy agents must always have enough information to place
best-response bids to the current prices in the auction.

With proxy bidding agents we have the following result,
from Theorem 1:

Theorem 3. Introducing myopic best-response proxy agents
to auctionA that myopically-implements the Vickrey out-
come creates auctionProxy(A), where truth-revelation is
a dominant strategy.

This solution retains the computational advantages of it-
erative auctions because agents do not need to provide com-
plete value information up-front. If valuation functions are
large and complex the proxy agents can be implemented at
the client in a secure “wrapper”.

Example: Single item auction. As an example, here is
proxy bidding-agent variation on the English auction, in
which the item is sold to the highest bidder for its bid. The
new derivative auction is a “staged Vickrey auction”. It is
strategically equivalent to the standard Vickrey auction, but
preferable because the optimal outcome is determined with-
out complete information about all agents’ values.

Agent i has a proxy agent that maintains a lower and upper
bound,v̂i andv̂i, on agenti’s (possibly untruthful) valuêvi for the
item. When the ask price is below the lower bound the proxy agent
will bid. When the ask price is above the upper bound the proxy
agent will leave the auction. When the price is between the bounds
the proxy places no bid, and asks the agent for new bounds that
must be consistent with previous bounds, i.e. tighter. The English
auction terminates with the Vickrey price if agents follow truthful
best-response bidding strategies. Hence, by Theorem 3, it is a dom-
inant strategy for agents to provide the proxy agents with true lower
and upper bounds on value.

Adjusting Towards Vickrey Prices
Now onto the second step of our design paradigm, “price-
adjustment”. We present a method to adjust the final prices
in an iterative auction towards the Vickrey prices after an
auction terminates. The method is applicable to auctions
that terminate in competitive equilibrium (CE), such that
the allocation maximizes the utility of all agents at the fi-
nal prices and the auctioneer maximizes its revenue. The
iBundle and English auctions terminate inCE. Indeed,
a fundamental connection between primal-dual optimiza-
tion theory and competitive equilibrium prices allows op-
timal auctions to be designed and analyzed (Bertsekas 1990;
Parkes & Ungar 2000).

We introduceAdjust , a procedure to computemini-
mal CE prices from agents’ bids after an auction terminates.
Minimal CE prices are equilibrium prices that minimize the
auctioneer’s total revenue from all agents in the optimal allo-
cation. The price paid by each agent with minimalCE prices
is always an upper-bound onGVA prices, and equal toGVA
prices when certain conditions hold on agents’ values for
bundles (Bikchandani & Ostroy 1998).

In fact, it is always possible to computeGVA prices with
“enough” minimalCE prices (they are typically not unique),
as the minimum price for each agent over allCE prices.
We propose a slight variation onAdjust , Adjust* , and
prove necessary and sufficient conditions on agents’ bids
and prices forAdjust* to computeGVA prices. Fi-
nally, we introduce approximate proceduresAdj-Pivot
andAdj-Pivot* to adjust prices.

For the rest of the paper we assume that agents follow
myopic best-response bidding strategies.

Minimal Competitive Equilibrium Prices
We can interpret equilibrium conditions within primal-dual
optimization theory (Papadimitriou & Steiglitz 1982). This
provides the key to compute minimalCE prices from agents’
bids and prices after an auction terminates. Complementary
slackness conditions for appropriate primal and dual formu-
lations of the global resource allocation problem are equiv-
alent to equilibrium conditions between an allocation and
prices (Bertsekas 1990; Parkes & Ungar 2000).

Consider an auctionA that terminates in equilibrium, let
pi(S) denote the price for bundleS to agenti, and letS�

i

denote the bundle allocated to agenti. In defining a compet-
itive equilibrium we allow price discrimination, with differ-
ent prices for agents, e.g.pi(S) 6= pj(S) for somei 6= j and
some bundleS. This is the most general case. In compet-
itive equilibrium the prices and allocation must satisfy the
following CS conditions:

(CS-1) Given pricespi(S), allocation S�
i maximizes

agenti’s utility, ui(S�
i ; pi(S

�
i )) = vi(S

�
i ) � pi(S

�
i ) =

maxSfvi(S)� pi(S)g.

(CS-2) Given prices pi(S), allocation S
� =

(S�
1 ; : : : ; S

�
jIj) maximizes the auctioneer’s revenue

over allfeasibleallocations.

A feasible allocation sells each item to at most one agent,
and allocates at most one bundle to each agent.
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The following result follows immediately from strong du-
ality and thecomplementary slackness theorem(Papadim-
itriou & Steiglitz 1982) of linear programming:

Theorem 4. In an auction that terminates in competi-
tive equilibrium, minimal prices that satisfy complementary
slackness with the final allocation are minimal competitive
equilibrium prices.

This allows the computation of minimalCE prices after
an auction terminates, based on bids placed by agents. Re-
duce prices while: (CS-1) agents continue to maximize util-
ity with allocationS�

i ; (CS-2) allocationS� continues to
maximize revenue.

Adjust. ProcedureAdjust computes minimalCE prices
from agents’ bids when an auction terminates in competitive
equilibrium. Assume that agents placeexclusive-or(XOR)
bids, such that they demand at most one bundle.3 Let I�

denote the set of agents in the optimal allocation,P̂ denote
agents’ prices (initialized topi(S)), andV � denote the rev-
enue of the final allocation. We will compute the values of
second-best allocations. An allocationS�i is asecond-best
allocation if it maximizes revenue for the auctioneer with-
out allocating a bundle to agenti, i.e. it is the second-best
allocation without agenti. Let V �i(P̂ ) denote the revenue
from this allocation, computed at priceŝP .

Adjust computes a price discount�i to each agenti
in the final allocation, such that agenti receives final price
p
i
(S�

i ) = pi(S
�
i )��i.

Adjust:
for each i 2 I� f

�i = minfV � � V �i(P̂ ); pi(S
�
i )g;

V � = V � ��i;
P̂i = maxfP̂i ��i; 0g; 4 g

Adjust selects each agent in the final allocation in turn,
reducing its price for every bundle by the amount that the
value of the optimal allocation exceeds the value of the best
allocation without that agent.5 The maximization problem,
to solveV �i(P̂ ) in each iteration, isNP -hard (Rothkopf,
Pekeč, & Harstad 1998) in bundle auctions.6 Later we intro-
duce an efficient approximate procedureAdj-Pivot .

Note that price reductions to each agent in the allocation
are considered incrementally and not independently, prices
P̂ are adjusted according to�i before reducing prices to
agentj.

3This is without loss of generality becauseXOR is a completely
expressive bid language. The procedure can be extended to other
bid languages, e.g. additive-or bids through the introduction of a
dummy agent for each price bid.

4OperationP̂i = maxfP̂i ��i; 0g indicates that pricepi(S)
to agenti is reduced tomaxfpi(S)��i; 0g.

5A simple optimization is possible. If�i � pi(S
�

i ) and agent
j > i is not in the revenue-maximizing allocation without agenti
then�j = 0.

6It can be solved in average-case polynomial time in some hard
problems with efficient search algorithms; see Sandholm (1999)
for example.

Proposition. ProcedureAdjust maintainsCE prices.
Proof. Adjust maintains (CS-1). Prices to agents not in

the allocation are left unchanged. Agenti in allocationS�

continues to maximize utility with bundleS�
i at new prices

pi(S) � �i; its price is reduced by�i on bundleS�
i , and

by�i or less on all other bundles. By the lemma,Adjust
maintains (CS-2) because it explicitly computes the maxi-
mum value of all allocations without agenti, and reduces
agenti’s prices by no more than the difference betweenV �

and this value.

Lemma. An allocation with more revenue to the auctioneer
thanS� as prices are reduced to agenti must exclude agent
i, since all prices to agenti are reduced by the same amount
(or until they are zero).

We derive a sufficient condition on agents’ bids and prices
for Adjust to compute minimalCE prices.

Assumption A. (i) Every agentj in allocationS� bids at
price pj(S

�i
j ) for bundles allocated in all second-best al-

locationsS�i; and (ii) Every agentj not in allocationS�

bids at pricepj(S
�i
j ) = vj(S

�i
j ) for bundles allocated in

all second-best allocationsS�i.

Intuitively, when Assumption A holds, no bundles in
second-best allocations are priced too high. If agentj re-
ceives bundleS�i

j in a second-best allocation, it had better
have bid the price of that bundle, else the price can be re-
duced (maintaining (CS-1)). In turn, this can allow agenti
to pay a lower price but still maximize revenue with the final
allocationS�

i .

Theorem 5. ProcedureAdjust computesminimal CE
prices if agents’ bids and prices satisfy Assumption A.

Proof. By contradiction. Assume that pricesp
i
(S�

i ) com-
puted inAdjust are not minimal and Assumption A holds.
If the prices are not minimal, then it must be possible to
reduce the pricep

j
(S�

j ) to some agent,j, and still main-
tain (CS-1) and (CS-2). Therefore, there are some prices to
agentsi 6= j that reduce the valueV �j(P̂ ) of the second-
best allocation without agentj, so that the pricep

j
(S�

j ) can
be reduced without violating (CS-2).

However, Assumption A (i), any decrease in the price of
bundleS�j

k to some agentk in the optimal allocation and
second-best allocationS�j must be mirrored in a decrease
in the price ofS�

k to maintain (CS-1); and (ii), any decrease
in the price of bundleS�j

k to some agentk not in the opti-
mal allocation but in the second-best allocationS�j violates
(CS-1) because the agent has positive utility for that bundle
but receivesS�

k = ;.

Computing GVA Prices

In fact, it is always possible to computeGVA prices from
“enough” minimal CE prices. MinimalCE prices are of-
ten not unique, the sametotal revenue to the auctioneer can
be achieved with different distributions of revenue across
agents. We use this result to derive procedureAdjust*
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and to prove necessary and sufficient conditions for comput-
ing GVA prices in an auction. Letp

i
(S�

i ) denote a minimal
CE price to agenti for bundleS�

i .

Theorem 6. For agentj in the optimal allocation, the min-
imal pricemin p

j
(S�

j ) over all minimalCE pricesp
j
(S�

j )

equals theGVA price.
Proof. The proof is constructive, usingAdjust with

alternative orders for selecting agentsi 2 I�. First, ob-
serve thatpi(S) = vi(S) trivially satisfy (CS-1), and
also Assumption A with best-response agents. Hence,
Adjust will compute minimalCE prices by Theorem 5.
Now, let j denote the first agent selected inAdjust .
�j = minfV � � V�j(P̂ ); pj(S

�
j )g = minf

P
i vi(S

�
i ) �P

i6=j vi(S
�j
i ); vj(S

�
j )g =

P
i vi(S

�
i ) �

P
i6=j vi(S

�j
i ).

Hence, p
j
(S�

j ) = vj(S
�
j ) � �j =

P
i 6=j vi(S

�j
i ) �

P
i6=j vi(S

�
i ) = pgva(j). Therefore, the pricep

j
(S�

j ) for
bundleS�

j to agentj equals itsGVA price in at least when
agentj 2 I� is selected first inAdjust . Finally,pgva(j) =
pmin;i(S

�
j ) = min p

j
(S�

j ), over all minimalCE prices.

Adjust*. This leads to procedureAdjust* , a slight vari-
ation onAdjust that computes price discounts for each
agent independently:

Adjust*:
for each i 2 I�

�i = minfV � � V �i(P̂ ); pi(S
�
i )g;

Although adjusted priceŝpi(S�
i ) = pi(S

�
i )��i may not

be CE prices, the prices are strictly closer toGVA prices.
Assumption B characterizes conditions on agents’ bids and
prices that, together with Assumption A, are necessary and
sufficient forAdjust* to computeGVA prices after an auc-
tion terminates.

Assumption B. When there is more than one agent in the
optimal allocation, an agentj in the optimal allocation but
not in a second-best allocationS�i for some agenti 6= j
bids pj(S�

j ) = vj(S
�
j ) for the bundleS�

j it receives in the
optimal allocation.

In other words, every agent in the optimal allocation must
bid its value for the bundle that it receives, unless it remains
in the revenue-maximizing allocations as bids from the other
agents in the optimal allocation are ignored in turn.

Here is some intuition for the rule. Consider two agents,
1 and 2, that receive a bundle in the final allocation, and
suppose that agent 2 bids less than its value for its bundle
S�
2 in the allocation. Suppose, in addition, that bids from

agents3 and 4 maximize revenue in the second-best alloca-
tion as agent 1’s prices are reduced. Agent 1’s prices can
be reduced further and still achieve more revenue than the
bids from agents 3 and 4 if agent 2 bids more for bundle
S�
2 . In procedureAdjust to compute minimalCE prices

this effect is neutral because the price decrease is received
in only a single agent, but inAdjust* the price decrease is
received by all agents in the optimal allocation.

Theorem 7. Assumptions A and B are necessary and suffi-

cient conditions on agents’ bids and prices forAdjust* to
computeGVA prices.

Proof. [Sufficient.] The proof follows from Theorem 6,
show that Assumptions A and B imply thatAdjust* com-
putes the same price to each agent in the optimal allocation
as when the agents bid at pricespi(S) = vi(S).

[Necessary.] By contradiction. (Case 1) AssumeGVA
prices andnotAssumption A. Consider agentj in allocation
S� that does not bid at pricepj(S

�i
j ) for a bundleS�i

j that
it receives in second-best allocation without an agenti 6= j.
Now, agenti can receive a larger discount by reducing the
pricepj(S

�i
j ) to agentj, still maintaining (CS-1) for agent

j. Similarly for an agentj not in allocationS� that does
not bid at pricepj(S

�i
j ) = vj(S

�i
j ) for a bundleS�i

j that
it receives in second-best allocation without agenti 6= j.
The proof of (Case 2), assumingGVA andnot Assumption
B is similar, consider an agentj in the optimal allocation
that is not in some second-best allocation and does not bid
pj(S

�
j ) = vj(S

�
j ) for its optimal allocation.

This leads to a test that allows an auctioneer to determine
whetherAdjust* computesGVA prices.The Vickrey-Test
is sufficient but not necessary forGVA prices.7

Vickrey-Test. ProcedureAdjust* computesGVA prices
if agents’ bids and prices satisfy: (1) all second-best allo-
cations can be computed from agents’ bids; (2) every agent
in the optimal allocation is in every second-best allocation
if there is more than one agent in the optimal allocation.

Property (1) implies Assumption A, and Property (2) im-
plies Assumption B. Assumption B also holds if agents in
the optimal allocation bidpj(S�

j ) = vj(S
�
j ), but there is no

easy way for the auctioneer to detect this.

Example: Computing GVA Prices Consider a problem
with three agents,I = f1; 2; 3g and two items,G =
fA;Bg. The agents have the following values for bundles:
v1 = f30; 0; 30g, v2 = f0; 40; 40g andv3 = f0; 20; 40g,
for bundlesA, B, and AB. The optimal allocation is
S
� = (A;B; ;), i.e. with items are allocated to agents 1

and 2. The Vickrey prices arepgva;1 = 40 � 40 = 0 and
pgva;2 = 50� 30 = 20. We consider adjusting prices in two
scenarios. In both cases initial prices are competitive equi-
librium prices, and best-response bids satisfy Assumption
A with the prices. Adjust computes minimalCE prices
in both scenarios, whileAdjust* computesGVA prices in
Scenario 2.

(Scenario 1) Prices arep1 = f25; 0; 25g,p2 = f0; 25; 25g
and p3 = f0; 20; 40g. Adjust computes minimalCE
prices: p

1
(A) = 25 � (50 � 40) = 15 andp

2
= 25 �

(40 � 40) = 25; or p
2
(B) = 25 � (50 � 45) = 20 and

p
1
(A) = 25� (45�40) = 20. The result depends on which

agent is selected first.Adjust* computeŝp1(A) = 15 and
p̂2(B) = 20. Agent 2 pays itsGVA price because agent 1 is

7Furthermore,GVA prices are approximately computed when
an agent in the optimal allocation “almost” bids for a bundle in a
second-best allocation, or is “almost” in every second-best alloca-
tion.
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in the second-best allocation without bids from agent 2, but
agent 1 pays above itsGVA price.

(Scenario 2) Now, assume prices to agent 2 arep2 =
f0; 40; 40g. The prices and agents’ best-response bids
now satisfy Assumption B, because agent 2 bids its value
p2(B) = v2(B) for item 2. In this caseAdjust com-
putes: p

1
(A) = 0 and p

2
(B) = 40, or p

2
(B) = 20

and p
1
(A) = 20. Adjust* computesp̂1(A) = 0 and

p̂2(B) = 20, equal toGVA prices.

A Fast and Approximate Method
ProcedureAdj-Pivot is a fast approximation toAdjust ,
that leverages computation already performed by the auc-
tioneer to solve the winner-determination problem in each
round of the auction. Experimental results show that it
works well in practice.

Adj-Pivot uses an approximate formulation of
Adjust as a linear program, where the value ofV �i(P̂ ) is
computed as the maximum value over all provisional alloca-
tions during the auction. These arepivotalallocations, likely
to represent allocations with high value.Adj-Pivot com-
putesmax

P
i�i such that̂pi(S) = maxf0; pi(S) � �ig

for all agents,�i = 0 for agents not in the optimal alloca-
tion, and the revenue from the optimal allocation maximizes
revenue over the set of pivotal allocations at pricesp̂i(S).

Similarly, Adj-Pivot* approximatesAdjust . The
price discount�i is computed for each agent independently:
computemax�j such that̂pj(S) = maxf0; pj(S) ��jg,
and the revenue from the optimal allocation maximizes rev-
enue over all pivotal allocations.

Preprocessing.
As described, the price adjust procedures compute adjusted
prices from individual prices to each agent. In an auc-
tion without price discrimination, in which each bundles
are priced the same to all agents, the first step is to con-
struct prices for each agent. Simply replicate the prices, i.e.
pi(S) = p(S). Preprocessing can then be optionally ap-
plied, to adjust prices towards prices that satisfy Assumption
A, such that agenti would bid for all bundles with a positive
price. To give a simple example, we can reduce prices to an
agent not in the final allocation to the prices in the last round
in which the agent placed bids.

Application: iBundle
iBundle (Parkes 1999b; Parkes & Ungar 2000) is an
ascending-price combinatorial auction in which agents can
bid directly for bundles of items. It generalizes the English
auction to the combinatorial resource allocation problem.
Bundles are priced explicitly, and prices are increased when-
ever agents’ bids are unsuccessful at the current prices. The
auctioneer selects a provisional allocation in each round of
the auction to maximize revenue, given the bids received.

iBundle computes optimal resource allocations, and ter-
minates in competitive equilibrium, with agents that follow
myopic best-response bidding strategies, i.e. bid for all bun-
dles that maximize utility in each round given the prices.

We present an application of the price-adjustment tech-
nique to variationiBundle(3) that maintains price discrim-
ination throughout the auction.8 It is trivial to prove that
iBundle(3) terminates with bids and prices that satisfy As-
sumption A, because agents bid for all priced bundles. By
Theorem 5,iBundle with Adjust computes minimalCE
prices.

Theorem 8. iBundle(3) with Adjust and myopic best-
response proxy agents computes the minimalCE prices in
combinatorial resource allocation problems.

We have the following key result, that follows from The-
orems 3 and 7.

Theorem 9. iBundle(3) with Adjust* and myopic
best-response proxy agents is incentive-compatible and
allocatively-efficient in combinatorial resource allocation
problems in which Assumption B holds when the auction ter-
minates.

The Vickrey-testallows an auctioneer to be sure that
iBundle computesGVA prices. In addition, we can char-
acterize properties on agents’ valuation functionsvi(S) in
which Assumption B will hold. As an example, Assump-
tion B holds in these problems: in the assignment problem
with unit-demands; with multiple identical items and sub-
additive valuation functions (i.e. decreasing returns); and in
problems with linear-additive valuation functions in items.
In all of these problems agents in the optimal allocation will
remain in all second-best allocations.

Experimental Results
We present experimental results foriBundle(3) with
Adjust* andAdj-Pivot* , comparing its performance
with the GVA in a number of hard problems. The problems
are PS 1–12 from (Parkes 1999b), and also problems Decay,
Weighted-random (WR), Random and Uniform in Sand-
holm (1999). Each problem set defines a distribution over
agents’ values for bundles of items. Implementation details
for iBundle, e.g. the algorithm for winner-determination in
each round, are as described in (Parkes & Ungar 2000). A
standard Simplex algorithm computes adjusted prices with
Adj-Pivot* .

The distanceD(pi(S�
i ); pgva(i)) between pricespi(S�

i )
and GVA prices is measured with anL1 norm, asP

i jpi(Si) � pgva(i)j=
P

i vi(Si), i.e. the sum absolute dif-
ference between the price charged to each agent and itsGVA
price normalized by the total value of the allocation over all
agents.9 We compute the average distance over problem in-
stances in whichiBundle computes the optimal allocation,
which approaches 100% of problems as the bid increment
gets small. It is not clear how to measure distance toGVA

8iBundle auction has three variations, that differ in their price-
update rules. In this paper we useiBundle both to refer to the
family of auctions in general, and also to variationiBundle(3) in
particular.

9An L1 norm is appropriate because minimalCE prices is com-
puted with a linear additive measure over the auctioneer’s price to
each agent in the allocation.
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Figure 1:Average performance ofiBundle with price-adjustment
Adjust* andPri-Adjust* in problems PS 1–12. The num-
ber of rounds to termination is varied by adjusting the minimal bid
increment.

prices in problems in which the auction’s allocation is sub-
optimal and different from theGVA.

Figure 1 plots the distance to theGVA prices iniBundle,
before and after price-adjustment usingAdjust* and
Adj-Pivot* , averaged over 25 trials each of problems
PS 1–12. We raniBundle with different bid increments to
vary the number of rounds to termination, and average per-
formance across problem sets by normalizing the number
of rounds to termination according to the minimal number
of rounds in whichiBundle achieves 100% allocative effi-
ciency. For comparison, we also plot the performance of
minimal CE prices.

The average distance between minimalCE prices andGVA
prices across these problems is 5.3%. For small bid incre-
mentsiBundle computes prices to within 6.5% of theGVA
prices, withAdjust to within 5.5% (not plotted), and with
Adjust* andAdj-Pivot* to within 5.2%. Notice that
the prices continue to adjust towards the minCE prices for
bid increments smaller than those required for 100% alloca-
tive efficiency, corresponding to normalized rounds to ter-
mination> 1.

We also compute the fraction of all problems in which
D(pi; pgva(i)) < 2%, to test the proportion of problems in
which prices are approximately Vickrey.CE prices are equal
to GVA prices in approximately 57% of problem instances.
iBundle computesGVA prices in around 38% of problem in-
stances, compared to approaching 57% withAdjust* and
Adj-Pivot* . Clearly, the results verify thatAdjust*
computes minimalCE prices when Assumption A holds, as
it will in iBundle.

The minimalCE prices are close toGVA prices (average
distance< 2:5%) in problems 4–8, in which the agents in
the optimal allocation also tend to be in the second-best al-
locations. In contrast, the minimalCE prices differ from the
GVA payments by more than 5% in problems PS 1, 3, 9, 11
and 12, which are characterized by optimal allocations that
are very different from second-best allocations, and agents
with complementary demands for bundles.

As expected, an application of the Vickrey-Test over all
problems confirmed no false positives, a specificity of 100%,
but some false negatives, a sensitivity of 56%. The out-
come was always approximately Vickrey when indicated by
the Vickrey-Test, but Vickrey-outcomes went undetected in

some problems.
It is noteworthy that the approximate method

Adj-Pivot* is as effective asAdjust* for small
bid increments. We useAdj-Pivot* in the harder
problems plotted in Figure 2.
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Figure 2: Performance of iBundle with price-adjustment
Adj-Pivot* problem sets from Sandholm (1999). The bid in-
crement iniBundle is adjusted to give different run times.

Figure 2 illustrates the performance ofiBundle with
Adj-Pivot* in Decay, WR, Random, and Uniform,
with problem sizes selected to give reasonable winner-
determination computation times. In Decay we set Sand-
holm’s � parameter to 0.85. We plot the distance to
GVA prices against the relative run time ofiBundle with
Adj-Pivot* to the time to compute winner-determination
and agent prices in theGVA.10 The minimal bid increment is
varied to adjust the number of rounds iniBundle, and with
the values used allocative efficiency varies between 93% and
100%.

Adj-Pivot* computes prices closer toGVA prices than
the minimalCE prices in Decay and Random, and minimal
CE prices are equal toGVA prices in WR (where there is
typically a single agent in the final allocation). Prices re-
main quite far fromGVA prices in the Uniform problem set
because second-best allocations are typically quite different
from optimal allocations, and Assumption B often fails.

Related Work
There have been a number of recent proposals to achieve
incentive-compatibility and allocative efficiency with less

10We do not focus on the auctioneer’s winner-determination time
in this paper, but note thatTgva is 362s, 9.1s, 1791s, and 138s
(on a 450MHz Pentium) for problems (a – d), i.e. the run time
for iBundle in WR is small despite the considerable slow-down in
comparison with theGVA.
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computation than theGVA, focusing on sealed-bid auctions
in special cases (Lehmannet al. 1999; Kfir-Dahavet al.
1998; Nisan & Ronen 1999).

For iterative auctions in particular, previous work has fo-
cused on careful control of prices during an auction, so that
the auction terminates withGVA prices. Positive results ex-
ist only for special cases (Demangeet al. 1986; Gul &
Stacchetti 1997; Ausubel 1997).iBundle(3) with Adjust*
solves all of these problems because Assumption B holds
with myopic best-response bids.

Bikchandani & Ostroy (1998) provides additional moti-
vation and background for our work, formulating linear pro-
grams for combinatorial resource allocation problems and
relating primal and dual solutions to competitive equilibrium
outcomes. Wurman & Wellman (1999) provide useful back-
ground on equilibrium prices in bundle auctions.

Milgrom (1999) presents examples of strategic-
manipulation in simultaneous ascending-price auctions on
individual items, and identifies the search for strategy-proof
iterative combinatorial auctions as an important open
problem.

Conclusions
We have proposed a new method, “proxy agents and price
adjustment”, to make iterative auctions more robust to strate-
gic manipulation. This is important given the computational
advantages of iterative auctions over sealed-bid auctions for
bidding agents, because of dynamic price-discovery coupled
with incremental computation on agents’ values for different
items or bundles of items.

The method introduces proxy bidding agents and ad-
justs the final prices in an iterative auction towards Vickrey
prices. We characterize necessary and sufficient conditions
on agents’ bids and prices to obtain dominant strategy truth-
revelation without a sealed-bid auction, describe a dynamic
test for an auctioneer to detect a Vickrey outcome, and relate
the conditions to agents’ valuation functions.

We proposed both an optimal procedureAdjust* and
an approximate procedureAdj-Pivot* to reduce prices
after the auction terminates. TheAdj-Pivot* approxima-
tion is both fast and effective. An interesting open empirical
problem is to understand the level of approximation toGVA
prices that is “good enough” to prevent most opportunities
for strategic manipulation.

Finally, this work suggests a method to design an iterative
Generalized Vickrey Auction: keep the auction open until
every agent in the optimal allocation is also in all revenue-
maximizing allocations without bids from each agent in the
optimal allocation, or bids its value. It might be useful to
keepiBundle open for longer, past the first round in which a
competitive equilibrium outcome is computed, and increase
the prices for bundles. Paradoxically, higher prices when
iBundle terminates will allow lower adjusted prices.
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