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Abstract

Imagine a resource allocation scenario in which the interested
parties can, at a cost, individually research ways of using the
resource to be allocated, potentially increasing the valuethey
would achieve from obtaining it. Each agent has a private
model of its research process and obtains a private realiza-
tion of its improvement in value, if any. From a social per-
spective it is optimal to coordinate research in a way that
strikes the right tradeoff between value and cost, ultimately
allocating the resource to one party– thus this is a problem
of multi-agent metadeliberation. We provide a reduction of
computing the optimal deliberation-allocation policy to com-
puting Gittins indices in multi-armed bandit worlds, and ap-
ply a modification of thedynamic-VCGmechanism to yield
truthful participation in anex postequilibrium. Our mecha-
nism achieves equilibrium implementation of the optimal pol-
icy even when agents have the capacity to deliberate about
other agents’ valuations, and thus addresses the problem of
strategic deliberation.

Introduction

Imagine a group of firms competing for the allocation of a
new technology. Each firm may initially have some estimate
of how valuable the technology is to its business, and be able
to learn new ways of using the technology for greater profit
through research. If such research were costless and instan-
taneous, the socially optimal plan would have all firms re-
search the technology in all ways possible, at which point it
would be allocated to the firm with highest value. But in re-
ality performing such research will come at a cost. To max-
imize expected social welfare an optimal tradeoff should be
struck between value and cost, with firms following a coor-
dinated research policy. In addition to gathering information
from the outside world, participants may improve their val-
ues for the resource by performing some costly computation,
for instance finding better business plans involving the re-
source. We adopt the general termdeliberationfor any such
value-improving process, and we consider the social plan-
ner’smetadeliberationproblem—deciding when and how to
perform deliberation (including when to stop and allocate
the resource.)
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The main contributions of this paper lie, first, in describing
a method of reducing such deliberation-allocation problems
to themulti-armed banditproblem (see, e.g., (Gittins 1989)),
thus providing a computationally efficient way of determin-
ing optimal policies. This is non-trivial because the local
problem of each agent (or firm) includes two actions in each
state—deliberation and allocation—and is thus not modeled
as a simple Markov chain. Our setting is that of a multi-
agent system with private information and self-interest. The
second contribution is in applying recent work indynamic
mechanism design(Bergemann & Valimaki 2006) to achieve
equilibrium implementation in the face of selfish, strategic
parties. Our solution provides ametadeliberation auction, in
which agents will choose to reveal private information about
their deliberation processes and also to voluntarily perform
deliberation as and when specified by the optimal solution.

In an extension, we allow agents to have deliberation
processes for the value of other agents for the resource.
This borrows from the earlier model of Larson and Sand-
holm (2005), in which agents have costly deliberation pro-
cesses and can perform “strategic deliberation” about the
value of other agents. But whereas they exclude solutions
in which the mechanism is actively involved in coordinating
the deliberation of agents, we allow for this and obtain pos-
itive results where they have impossibility results. In partic-
ular, when the optimal policy calls for one agent to perform
research on behalf of another, we can achieve this. In our
mechanism an agent is paid for increasing (via its delibera-
tion process) the value of the item to another agent, and thus
enjoys the beneficial results of the deliberation it performs.

Related work. On the policy computation side, the most
important result for our purposes is that of Gittins and
Jones (1974), who showed that the multi-armed bandit prob-
lem has a solution with complexity that grows linearly in the
number of arms (we describe the result in some detail later
on). Glazebrook (1979) extended this result to “stoppable”
bandits, where execution of the system can be halted for a fi-
nal reward. Our multi-agent deliberation-allocation problem
falls within his framework and our reduction to the bandits
problem is a special case of his reduction. This noted, we
provide a new proof that elucidates the reduction and lever-
ages the special structure in our environment.



Cavallo et al. (2006) proposed a dynamic mechanism suit-
able to this kind of environment, in which each agent’s local
problem is modeled as a Markov decision process (MDP),
with the MDPs coupled by joint actions. Bergemann and
Välimaki (2006) independently proposed thedynamic-VCG
mechanism, providing stronger participation properties than
the Cavallo et al. solution.1

Also strongly related is Weitzman’s (1979) foundational re-
sult on optimal search among a set of alternatives, where
the exact value of an alternative is revealed for a cost. Like
Gittins, Weitzman develops an index policy for his search
problem; however, his problem is different in that it is stop-
pable (like ours and that of Glazebrook) and can be applied
to an undiscounted setting. Bergemann and Välimäki (2002)
look at the problem of information acquisition by bidders in
a single-item auction, and show that when such acquisition
is one-shot and simultaneous among the group, the Vick-
rey auction provides the rightex anteincentives. Larson
(2006) and Cremer et al. (2007) use Weitzman’s result to
form an optimal-search auction model with sequential infor-
mation acquisition, but also assume that a buyer’s acquisi-
tion process is instantaneous (not multi time-stepped, with
incremental information). Parkes (2005) studied the role
of auction design given participants that have costly or lim-
ited value refinement capabilities, especially the tradeoff be-
tween sealed bid and iterative designs, but does not provide
an optimal design.

The setting
Members of a setI of n agents ({1, 2, . . . , n}) compete for
allocation of a resource. Each agenti ∈ I has an initial
value for the resource, and can refine its value repeatedly via
costly “deliberation”. To keep things simple we will initially
assume that each agent has only one such deliberation pro-
cess, and moreover that no agent has a deliberation process
about the value of any other agent.

Each agenti has an MDP modelMi = (Si, Ai, τi, vi, ci)
for how its valuation for the resource will change subject to
deliberation. Si is i’s local state space. The action space
Ai = {αi, βi}, whereαi allocates the resource toi andβi is
deliberation byi. We usevi(si) ≥ 0 to denote the value an
agent would obtain from being allocated the resource (per-
forming no additional deliberation) in statesi ∈ Si. ci ≥ 0
is the cost each agenti incurs every time it performs its de-
liberation action. For simplicity we assumeci is constant,
though our results hold as long asci is a bounded function
of i’s state. States evolve according to a (possibly nondeter-
ministic) transition function,τi(si, ai) ∈ Si, defined so that
τi(si, αi) = φi, whereφi ∈ Si is a specialabsorbingstate
from which no additional actions are available. Agents have
a common discount factorγ, where0 ≤ γ < 1.

A set of further assumptions placed on this framework de-

1More recently, Cavallo et al. (2007) have generalized these
methods, providing mechanisms that allow for agent arrivals and
departures, and also periods of inaccessibility. Also related is Ieong
et al.(2007).

fines adomain. In our setting, researching new uses may
yield a greater value for the resource, but agents won’t for-
get previously known uses, so the following is natural:

Assumption 1 (Uncertainly improvable values). Agent
valuations never decrease:vi(τi(si, βi)) ≥ vi(si), ∀si ∈
Si.

Consider the agent MDP represented in Figure 1. If the
agent deliberates once, with probability 0.33 its valuation
for the resource (i.e., the value it would obtain if allocated)
will increase from 0 to 3, and with probability 0.67 it will
increase only to 1. If a second deliberation action is taken
and the current value is 1, with equal probability the valua-
tion will stay the same or increase to 4; if the current value
is 3, it will increase to 4 with certainty.
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Figure 1: Example of an agent’s MDP model of how its valua-
tion for the resource would change upon deliberation, labeled with
transition probabilities and instantaneous rewards (in bold). The
agent’s cost of deliberation is 1.1.

We make the following additional assumptions:

Assumption 2. Agent deliberation processes are indepen-
dent of each other.

Assumption 3. Agents cannot deliberate prior to the begin-
ning of the mechanism.

Assumption 4. Only one action can be taken per time-step
(i.e., multiple agents cannot deliberate concurrently).

Assumption 2 is already implicit in our setup, with agent
transitions and rewards functions of onlylocalstates, and ac-
tions for one agent causing transitions only in its own MDP.
Assumption 3 can be motivated by considering that the re-
source is “revealed” only at the beginning of the mechanism.
Finally, Assumption 4 is without loss of generality when the
discount factor is high enough because it would be socially
optimal to deliberate sequentially in that case anyway.

Combining the agent problems, we have a multi-agent MDP
(see Boutilier (1996))M = (S, A, τ, v, c) in which S =
S1 × . . . × Sn × {0, 1} and A = A1 ∪ A2 ∪ . . . ∪ An,
with τ(s, a) = (s1, . . . , τi(si, a), . . . , sn, 0) if a = βi and
τ(s, a) = (s1, . . . , φi, . . . , sn, 1) if a = αi, i.e. the final
bit in the state (denotedΛ(s) ∈ {0, 1}) indicates whether or
not the resource has been allocated. Notationv andc denote
a valuation profile(v1, . . . , vn) and cost profile(c1, . . . , cn)
respectively.2 Given this, we define reward functionr(s, a)

2We assume that each agent has a correct model for its local



for the multi-agent MDP as
∑

i∈I ri(s, a), with, ∀i ∈ I, s ∈
S, a ∈ A:

ri(s, a) =

{

0 if Λ(s) = 1, or a /∈ {αi, βi}
vi(si) if Λ(s) = 0 anda = αi

−ci if Λ(s) = 0 anda = βi,

This captures the essential aspect of the problem: the pro-
cess “stops” once the resource has been allocated, and upon
allocation the agent that receives the item obtains the value
associated with its current state.

Consider decision policyπ, where π(s) ∈ A
is the action prescribed in states. We write
V π

i (s0) =
∑

∞

t=0
γt

E[ri(s
t, π(st))], ∀s0 ∈ S,

where st = τ(st−1, π(st−1)) for t > 0. We write
V π(s) =

∑

i∈I V π
i (s), ∀s ∈ S. Let π∗ denote the socially

optimal policy, i.e.,π∗ = argmaxπ∈Π V π(s), ∀s ∈ S,
whereΠ is the space of all action policies. We will at times
consider a policyπ∗

i : Si → A that is optimal for agent
i, i.e., π∗

i = arg maxπ∈Π V π
i (s), ∀s ∈ S. We useV ∗(s)

as shorthand forV π∗

(s), andV ∗

i (si) for V
π∗

i

i (s). Letting
Π−i denote the policies that never choose deliberation or
allocation fori (as thoughi were not present in the system),
we write π∗

−i = arg maxπ∈Π−i
V π
−i(s), andV ∗

−i(s−i) as

shorthand forV
π∗

−i

−i (s). We also define,∀s ∈ S, a ∈ A:

Q(s, a) =
X

i∈I

ri(si, a) + γE[V ∗(τ (s, a))],

Qi(si, a) = ri(si, a) + γE[V ∗
i (τ (si, a))], and

Q−i(s−i, a) =
X

j∈I\{i}

rj(sj , a) + γE[V ∗
−i(τ (s−i, a))]

This formulation is quite general and allows, for exam-
ple, for the local states to represent “information states”in
the sense of models of optimal Bayesian learning (Bellman
& Kalaba 1959), as well as performance profile trees of
the form proposed by Larson and Sandholm for normative
metadeliberation (2001) (with the added restriction that val-
ues cannot decrease).

We consider procedures in which agents report state and
MDP information to a “center,” such as an auctioneer. The
center executes a deliberation-allocation policy, in eachpe-
riod either suggesting to some agent that it take a deliber-
ation action or allocating the resource (and ending the pro-
cess). Agents areself-interestedand may subvert the pro-
cess by misreporting information or by not following a de-
liberation action suggested by the center. Before presenting
our solutions, we give a brief background on the methods
we leverage for efficiently computing optimal policies and
managing the self-interest of agents.

Background: Policies for multi-armed bandits
In multi-armed bandit (MAB) problems, there is a set of
n reward-generating Markov processes,{1, . . . , n}, and ex-
actly one process can be activated every time-step. The re-
ward that a processi generates if activated at timet is a func-
tion only of its statest

i at t (and not of any other process’s

deliberation process; from this the multi-agent MDP is alsocorrect.

state). Ifi is chosen att, a rewardri(s
t
i) is obtained and suc-

cessor statest+1

i is reached (perhaps non-deterministically)
according tost

i; for all j 6= i, st+1

j = st
j and no reward is

generated att.

Theorem 1. (Gittins & Jones 1974; Gittins 1989)Given
Markov chains{1, . . . , n}, joint state spaceS = S1 × . . .×
Sn, discount factor0 ≤ γ < 1, and an infinite time-horizon,
there exists a functionν : S1 ∪ . . . ∪ Sn → R such that the
optimal policyπ∗(s) = arg maxi ν(si), ∀s ∈ S.

So the complexity of computing an optimal policy is linear
in the number of processes. In contrast, general multi-agent
MDP problems scale exponentially in the number of agents
because of the size of the joint state space. Such a function
ν has come to be called the “Gittins index.” Several methods
for computing Gittins indices are known.3

But our problem is not quite a bandits problem. If our agents
are considered the arms of the MAB problem, each arm
hastwo local actions—allocate and deliberate—and is not
a Markov chain. There is also special structure to our prob-
lem: if an allocation actionαi is taken then the whole sys-
tem stops. Glazebrook (1979) considered a similar setting,
in which the local MDP for each arm could be reduced to
a Markov chain by pre-solving for the optimal local pol-
icy, supposing that the arm was activated in every time-step.
This approach also applies here: his “condition (b)” is our
uncertainly improvable values (UIV) condition, which will
allow us to prune away one action from every state of an
agent’s local MDP, yielding Markov chains. We thus reduce
the problem to a multi-armed bandit, which is then solvable
via Gittins indices. We offer an independent proof of Glaze-
brook’s result, exposing additional structure of the problem
when this UIV property holds; Glazebrook’s proof is for a
more general condition, later shown to be implied by his
condition (b).

Background: Dynamic mechanism design
Mechanism designaddresses the problems posed by self-
interest by adjusting agent payoffs, viatransfer payments,
such that each agent’s utility is maximized exactly when so-
cial utility is maximized. We adopt the framework ofdy-
namic mechanism design, which is applicable to sequential
decision-making settings in which agents obtain new infor-
mation over time (see Parkes (2007) for a recent survey).
The following steps occur in each period: the agents report
claims about private information; the center takes or pro-
poses actions; the agents take actions; the center makes pay-
ments to the agents. This process is repeated over and over
until an allocation is finally made.

The dynamic-VCG mechanism(Bergemann & Valimaki
2006) provides the basis for our solution and is defined for
“private” multi-agent MDP models such as ours in which
local agent rewards and transitions are independent of the

3For instance, Katehakis and Veinott (1987) provide a way of
defining a “restart-in-si” MDP for each processi, in any statesi,
the value of which is equivalent to the Gittins index for the process
in that state.



states of other agents when one conditions on actions by the
center. Dynamic-VCG is defined as follows: at every time-
stept, the socially optimal decision according to reported
joint statest and reported MDP models is chosen, and each
agenti is payed:Q∗

−i(s
t
−i, π

∗(st)) − V ∗

−i(s
t
−i). Intuitively,

at each time-step each agent must pay (reversing the signs
in this equation) the center a quantity equal to the extent to
which its current report inhibits other agents from obtaining
value in the present and in the future.

A within-period ex post Nash equilibriumis one in which,
at every time-step, for any joint state, every agent maxi-
mizes utility by playing its equilibrium strategy when oth-
ers do (now and in the future). A mechanism isincentive-
compatiblein this equilibrium if agents are best off report-
ing private information truthfully and acting according tothe
center’s prescriptions when others do (whatever their private
information), andindividual rational (IR)if expected payoff
is non-negative to an agent playing the equilibrium strategy
when others do.

Theorem 2. (Bergemann & Valimaki 2006)The dynamic-
VCG mechanism for private multi-agent MDPs is optimal,
incentive compatible, and IR in a within-period ex post Nash
equilibrium, and never runs a deficit.4

Results: Efficient Computation
Our computational approach is to reduce each agent’s local
MDP to a local Markov Chain (MC) by pruning one of the
allocate/deliberate actions in each state, which will thenal-
low for an index policy that is optimal also for the unpruned
MDPs. Recalling the MDP model for a single agent depicted
in Figure 1; Figure 2 portrays the same MDP after the prun-
ing away of actions that would not be optimalin a world in
which the agent existed alone.
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Figure 2: MDP world model from Figure 1 for a single agenti,
after pruning of actions that would not be optimal in a world with
no other agents.γ = 0.95, ci = 1.1.

Definition 1 (Efficiently MC-prunable). A domain is effi-
ciently MC-prunable if and only if, for any agenti, for any
agent MDP models, any action that would not be optimal in
a world with no agents other thani is not socially-optimal
in the multi-agent MDP problem, i.e.,

∀i ∈ I,∀ai ∈ {αi, βi},∀s ∈ S, ai /∈ π∗
i (si) ⇒ ai /∈ π∗(s) (1)

We will, for our domain, establish this property and subse-
quently the validity of the following procedure:

4See Cavallo et al.(2007) for a simple proof.

• Convert each agent’s MDP model into a Markov chain
by determining the policy that would be optimal if no
other agents were present.

• Perform the deliberation-allocation process, computing
an index for each agent MC at every time-period, always
activating an MC with highest index.

The following lemma shows that to test for efficient MC-
prunability in our domain, we can restrict our analysis to the
pruning of deliberation actions.
Lemma 1. A domain is efficiently MC-prunable if and only
if

∀i ∈ I, ∀s ∈ S, βi ∈ π∗(s) ⇒ βi ∈ π∗

i (si) (2)

Proof. Considering the contrapositive of (1), efficient MC-
prunability requires that (2) and the following hold:

∀i ∈ I, ∀s ∈ S, αi ∈ π∗(s) ⇒ αi ∈ π∗

i (si) (3)

It turns out that (3) holds for any domain. Observe that
Q(s, a) ≥ Qi(si, a), ∀a ∈ A, asπ∗ is optimized over pol-
icy spaceΠ, andπ∗

i ∈ Π. Assume thatαi ∈ π∗(s) and,
for contradiction, thatαi /∈ π∗

i (s), i.e., thatQ(s, αi) ≥
Q(s, a), ∀a ∈ A, andQi(s, βi) > Qi(s, αi). We have:

Q(s, αi) ≥ Q(s, βi) ≥ Qi(si, βi) > Qi(si, αi) = Q(s, αi),

a contradiction.

In the full version of this paper, we use the above character-
ization to prove the following lemma.
Lemma 2. All uncertainly improvable values domains are
efficiently MC-prunable.

This enables a “without loss” reduction from local MDPs
to local MCs. The remaining challenge is that the Gittins
index policy is only optimal for problems with an infinite
time-horizon. This issue can be handled whenγ < 1 by
replacing the one-time reward ofvi(si) in a statesi in which
agenti is allocated the item with a reward of(1 − γ)vi(si)
received per period in perpetuity. It is then a simple matter
to show that the optimal MAB policy will always continue
to activate agenti’s MC after it first does so wheni is in
an “allocation state”. Thus the resulting policy is valid for
the original problem with absorbing states. Returning to our
example, Figure 3 displays the infinite horizon, pruned MC
for the problem earlier depicted in Figure 2.
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Figure 3:Agent-optimal Markov chain from Figure 2 after expan-
sion to an infinite-horizon.

Theorem 3. Given Assumptions 1–4, the deliberation-
allocation policy defined by activating, at every time-stept,
the pruned, locally-optimal Markov chain of an agent with
the highest Gittins index is optimal.



Results: Handling Selfish Agents
We now combine the index-policy solution to the multi-
agent metadeliberation problem with the dynamic-VCG
mechanism to obtain ourmetadeliberation auction, in which
the center chooses actions based on private information that
agents report. Note that, in the case of a deliberation action,
“chooses” means “suggests to the agents”; for an allocation
action, the center simply executes it.

Mechanism 1 (Metadeliberation auction). .

• Each agenti computes its locally optimal, infinite-
horizon Markov chainM∗

i , and reports to the center
claimsM̂∗

i andŝ0
i aboutM∗

i and initial local states0
i .

• At every time-stept (with agents in true statest), while
the resource has not yet been allocated:

1. The agenti activated in the previous time-step reports
a claim ŝt

i about its current state.5

2. The center chooses the action specified by activation
of an agenti∗ with highest Gittins index.

3. Agenti∗ pays the center:

(1 − γ)V ∗

−i∗(ŝ
t
−i∗) if deliberation was performed,

V ∗

−i∗(ŝt
−i∗) if the item was allocated

Theorem 4. Given Assumptions 1–4, Mechanism 1 is opti-
mal, incentive compatible, and IR in a within-period ex post
Nash equilibrium, and never runs a deficit.

Proof. The result follows from Theorems 1, 2, and 3. The
dynamic-VCG mechanism requires that each agenti pay
the center an amount equal to the negative externality its
presence imposes on the other agents att, i.e.,V ∗

−i(ŝ
t
−i) −

Q∗

−i(ŝ
t
−i, π

∗(ŝt)). In our setting, for the agent who deliber-
ates att this is equal to the cost to the other agents of having
to wait one time-step to implement the policy that would be
optimal for them, i.e.,(1−γ)V ∗

−i∗(ŝ
t
−i∗); for all other agents

it is 0. When the item is allocated to an agent, that agent im-
poses an externality equal to the total value agents could get
from the current state forward if he were not present.

This provides the result we want: each agent will first prune
away its suboptimal local actions, and then truthfully re-
port its (pruned) MC to the center. From that point forward,
the center will suggest deliberation actions according to the
optimal deliberation-allocation policy, collecting a payment
from the agent that deliberates. Agents will choose to follow
these suggestions and truthfully report new local states, and
the center will eventually allocate the resource. At that point
the agent will consume the resource with no further deliber-
ation, by optimality of the deliberation-allocation policy.

Example 1 Consider the execution of Mechanism 1 on the
example in Figure 4 (for simplicity we’ve switched to a more

5Technically, at every time-step each agent must have a chance
to report a new claim about its Markov chain model and current
state, but this presentation is consistent with the equilibrium be-
havior (the same applies to Mechanism 2).

concise representation, omitting allocation nodes). The opti-
mal policy has agent 1 deliberate first; if his value increases
to 1010 he is then allocated the resource. Otherwise the opti-
mal policy has agent 2 deliberate for 10 time-steps and then
allocates to him. Under Mechanism 1, in the first time-step
agent 1 must pay the “immediate externality” imposed on
agent 2 assuming the policy optimal for agent 2 would be
executed in all following periods, i.e., his cost of waiting
one period, or(1−0.9) ·0.910 ·210. If agent 1’s deliberation
yields the high value (1010) he must then pay0.910 · 210.
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20 21 22 . . . 210
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Figure 4: Agent 1 has initial value 10. With small proba-
bility his value will increase to1010 if he deliberates once.
Agent 2’s value ismin(2x, 210), wherex is the number of
times he has deliberated.c1 = c2 = 0 andγ = 0.9.

If agent 1’s deliberation does not yield the improvement,
then in every period that follows prior to allocation (with
agent 2 deliberating) agent 2 must pay(1− 0.9) · 10 = 1. In
the final allocation step agent 2 pays 10. Bear in mind that
agent 2discountsvalue (rewards and costs) in the future by
a factor of 0.9. We can compute agent 2’s expected utility
(from the first time he is asked to deliberate) for being truth-
ful, and compare it to his expected utility if he misreports
his MC such that he is asked to instead deliberate for only
k < 10 time-steps, and then finishes his deliberation once
he receives the resource. For anyk, if agent 2 deliberatesk
times, the total discounted payments he makes will equal:

(1 − γ)10 + γ(1 − γ)10 + . . . + γk−1(1 − γ)10 + γk10

= 10 − γ10 + γ10 − . . . − γk−110 + γk−110 − γk10 + γk10

= 10

So hisdiscounted paymentsare the same regardless of how
many times he deliberates. Then since it is optimal for agent
2 to deliberate 10 times, whether he does so inside or out-
side the context of the mechanism, his total discounted util-
ity will always equalγ10210 − 10.

Extensions: Multiple deliberation processes
So far, in order to simplify the analysis we’ve assumed that
each agent has only one way of deliberating. However, our
results also apply when agents have multiple independent
deliberation methods. For instance, imagine an agent that
has three different research programs it could pursue (po-
tentially with distinct associated costs per time-step)—the
agent merely has to report all three models to the center, who
will consider all three in determining the optimal policy. It
is important, though, that all deliberation processes areinde-
pendent(deliberation in one process cannot change the state
of another process); otherwise, there will be no reduction to
the multi-armed bandit problem. Given this independence, a
generalization of Theorem 4 immediately follows.



Strategic Deliberation
Consider now a setting in which an agent may have one or
more deliberation processes that pertain to the value ofother
agents for the resource. This models the setting of strategic
deliberation introduced by Larson and Sandholm (2001).6

We retain the ability to implement optimal deliberation-
allocation policies in this context. Note that the optimal pol-
icy might specify “cross-agent” deliberation, with the results
of i’s research being shared withj (in particular, wheni has
a better deliberation process thanj).

The dynamic-VCG schemewill not work here. A subtle con-
dition usually required for the good incentive and IR prop-
erties of dynamic-VCG is that the optimal policy for agents
other thani does not take any actions that involve agenti.
Formally, the necessary condition is thatmaxπ∈Π V π

−i(s) =
maxπ∈Π−i

V π
−i(s) (see Cavallo et al. (2007) for a discus-

sion). This condition is not met when the optimal policy
has one agent deliberate about another’s value. The intu-
ition behind the extension of dynamic-VCG that we present
is that the payments make the expected equilibrium pay-
off to agenti forward from any state equal to the payoff
i would receive in the dynamic-VCG mechanismif its de-
liberation processes about other agents were actually about
itself. The equilibrium properties then follow immediately
from the analysis of Mechanism 1 in the context of agents
with multiple independent deliberation processes.

Let pij denote a deliberation process possessed by agenti
pertaining to the value agentj would achieve from the re-
source; we letcpij

denote the cost (toi) of deliberating on
processpij . For any processpij , any statespij

consists
of two things: someinformation I(spij

) (e.g., the obser-
vations of the world acquired from research, or the plan
resulting from some computation), and a valuationv(spij

)
for j receiving the item given the information content. Let
vj(I(spij

)) denote theactualvalue received byj for the in-
formation associated with the same state. Allowing for mis-
reports,v(ŝpij

) denotes the value that should be achieved by
j according toi’s state report,I(ŝpij

) denotes the informa-
tion content associated with that state report, andv̂j(I(ŝpij

))
is a claim made byj about the actual value it achieved. In
Mechanism 2 the center computes payments by reasoning
about the social value that could be achieved under a policy
that is optimal with all agents present, but in which an agent
i cannot take any actions. We denote this quantity, which is
independent ofi’s state, asV ∗−i(s−i), for all s ∈ S.

Theorem 5. Given Assumptions 1–4, Mechanism 2 is opti-
mal, incentive compatible, and IR in a within-period ex post
Nash equilibrium, and does not run a deficit when agents
are truthful.

Proof Sketch.The incentive and IR properties of the mech-
anism follow from those of Mechanism 1, combined with
the following observation: for any processpij with i 6= j,
the payment scheme yields a scenario which is, payoff-wise,
identical to one in whichpij is a deliberation process per-

6But note that our independence assumption precludes results
of one agent’s deliberation impacting the expected resultsof an-
other’s, though they may concern the same agent’s value.

taining toi’s value. Ifpij is selected for deliberation theni
already pays the cost. Ifpij is selected for allocation theni
will be paid an amount equal to the actual value yielded from
the process (assuming agentj is honest), andj will obtain
value 0 (assumingi is honest), sincev(st

pij
) = vj(I(st

pij
))

by our assumption that beliefs are correct.7 The mechanism
never runs a deficit in equilibrium. Prior to the final alloca-
tion step there are no payments that flow to the agents. Then
in that final allocation step payments made to the center are
v(st

pij
)+V ∗−i(ŝt

−i)− vj(I(st
pij

)). Given truthful reporting
(which, as shown above, is achieved in an ex post equilib-
rium), this quantity equalsV ∗−i(ŝt

−i), which is≥ 0.

Mechanism 2 (with cross-agent deliberation)..

• Each agenti computes the locally optimal, infinite-
horizon Markov chain for every deliberation process it
possesses, and reports claims about each MC and initial
local state to the center.

• At every time-stept (with agents in true statest), while
the resource has not yet been allocated:

1. For processpī,j̄ activated in the previous time-step,
agenti reports a claim̂st

pī,j̄
aboutpī,j̄ ’s current state.

2. The center chooses the action specified by activation
of a processpij with highest Gittins index.

3. If deliberation was performed, agenti pays the center
(1 − γ)V ∗−i(ŝt

−i).

If the item was allocated andi = j, j pays the center
V ∗−j (ŝt

−j). If i 6= j, the center communicatesI(ŝt
pij

)

to agentj, j communicatesvj(I(ŝt
pij

)) to the center,
i pays the centerV ∗−i(ŝt

−i)−vj(I(ŝt
pij

)), andj pays
the centerv(ŝt

pij
).

Example 2 Consider a 2-agent scenario in which
agent 1 will obtain value 10 if allocated the re-
source (deliberation changes nothing), and agent 2
has one deliberation step, which yields value 100
with probability 0.2, and otherwise yields value 0.

100

0

0

0.2

0.8

Consider that agent 1 and agent 2
each have a deliberation process with
this structurefor agent 2, but that
agent 2’s cost of running his is50
and agent 1’s cost is1. Takeγ = 0.9.

(a) Agent 1 does not have an incentive to deviate from
truthfulness—for instance, simply claiming agent 2 has the
high 100 value without deliberating for him. Agent 1 will be
payed the value thatagent 2 reports experiencing, given the
information obtained from agent 1’s deliberation. So agent
1’s payment is only based on agent 2’sactualutility (assum-
ing agent 2 is truthful). If agent 1 reported agent 2 had the

7Note that if an agenti is allocated the item via an agentj’s
process, both agents are indifferent about their reports during the
final allocation stage. Ex post IC and IR are technically maintained
as there is only one “possible” true state forj, and it is known toi.
There is an alternate payment scheme that avoids this indifference,
but in some cases a deficit will result in equilibrium.



high value and didn’t communicate corresponding informa-
tion (e.g., a plan for using the resource), the value agent 2
experiences—and the value agent 1 is payed—would be 0.8

(b) Now consider a variant in which agent 2’s cost of delib-
erating is5 rather than50. Agent 2 knows that if he re-
ports truthfully agent 1 will be selected first (since agent
1’s deliberation process about agent 2 is superior: cost 1),
and if agent 1’s deliberation yields a plan worth value 100
he will obtain none of the surplus. So would he prefer to
report cost 0 in order to be asked to perform the deliber-
ation himself first? No. Mechanism 2 specifies that he
would be chargedas though agent 1’s deliberation processes
were about agent 1. So in the first period agent 2 would be
charged(1− γ)[γ(0.2 · 100 + 0.8 · 10)− 1] = 2.42 and pay
deliberation cost 5. If agent 2’s deliberation yields the high
value (probability 0.2) he would obtain the resource (value
100) and make paymentγ(0.2 · 100 + 0.8 · 10)− 1 = 24.2.
If it yields low value he gets 0 and pays 0. Thus agent 2’s
expected utility from this strategy is−2.42 − 5 + 0.2 · 0.9 ·
(100 − 24.2) = 6.224. But if agent 2 is truthful, he still
has a chance for high payoff; recall that the two deliber-
ation processes areindependent, so the result of one does
not impact what the result of the other will be. In partic-
ular, if agent 1 deliberates first agent 2 has expected value
γ0.8(−(1−γ)10+0.2(γ(100−10))+0.8 ·0−5) = 7.344.
(With probability 0.8 agent 1’s value for agent 2 is 0, and
then agent 2 is asked to deliberate and with probability 0.2
will achieve value 100, making a payment of 10.) Thus
truthfulness is a superior strategy for agent 2.

To summarize: our modification of dynamic-VCG specifies
cross-agent deliberation exactly when it is socially-optimal.
The payments align agents’ welfare with that of the whole
system, so an agent’s utility maximizing strategy is exactly
the strategy that maximizes utility for the system, i.e., truth.

Conclusion
This paper makes two distinct contributions. First, we
demonstrate that the multi-armed bandits problem is suit-
able for solving multi-agent metadeliberation problems, in
this case by careful reduction of the original multi-agent
MDP model into a multi-agent MC model. Second, we pro-
vide a novel application of the developing theory of dynamic
mechanism design to coordinate deliberative processes of
involved, self-interested agents, improving social welfare.
This provides, to our knowledge, the first normative solu-
tion in the setting in which information acquisition by par-
ticipants is incremental rather than instantaneous. We extend
the intuition of the dynamic-VCG mechanism to an environ-
ment in which it cannot be directly applied because of posi-
tive externalities. Remarkably, this does not lead to a budget
deficit. There are many directions for future work. Perhaps
most exciting would be an extension to the undiscounted set-
ting where agents are completely patient; no index policy
is currently known for such settings. There is also another
class of compelling deliberation scenarios in which deliber-
ation yieldsbetter estimatesof a true valuation; i.e., agents

8Note that this is not an issue of “punishment.” Rather, in equi-
librium it will neverbe useful to deviate.

learn their valuations through research, rather than increase
them by learning new uses for a resource. This setting is not
amenable to the reduction technique applied here.
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