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Abstract 

Core-selecting auctions were proposed recently as alternatives to the VCG mechanism for environments 
with complementarities. While the Vickrey auction yields efficiency in pure private values models, this 
efficiency may come at the cost of extremely low seller revenues and a high vulnerability to collusion and 
shill bidding. By contrast, core-selecting auctions may result in “competitive” outcomes which seem to 
mitigate the problems of the Vickrey auction. Ausubel and Milgrom (2002), Ausubel, Cramton and 
Milgrom (2006), Day and Raghavan (2007), Day and Milgrom (2008) and Day and Cramton (2008) have 
advocated selling complementary goods using core-selecting auctions or two-stage procedures 
incorporating a core-selecting auction. Moreover, this research has been taken seriously by policymakers; 
for example, the UK has already implemented two spectrum auctions using the package clock auction, in 
which the second stage is a core-selecting auction (Cramton, 2009). 
 
However, while the VCG mechanism is best motivated by its dominant-strategy property under 
incomplete information, the existing literature on core-selecting auctions performs only a complete-
information analysis. In this paper, we consider a simple incomplete-information model with two goods, 
two “local” bidders, and one “global bidder”. We examine a parametric family of distributions in which, 
at one extreme, the local bidders’ valuations are independent and, at the other extreme, the local bidders’ 
valuations are perfectly correlated. We perform a full equilibrium analysis for four different core-
selecting auction formats, including the nearest-Vickrey rule advocated by Day and Raghavan (2007) and 
Day and Cramton (2008), as well as the proxy auction of Ausubel and Milgrom (2002). 
 
For the case of independent, uniformly-distributed valuations, we find that the VCG mechanism obtains 
9% higher revenues and realizes 15% greater efficiency than the best core-selecting auction that we 
analyze, similar to what was discovered simultaneously and independently by Goeree and Lien (2009). 
However, the comparison changes markedly when we introduce positive correlations in the local bidders’ 
valuations. In particular, at the opposite extreme of perfect correlation, we find that the proxy auction 
obtains 33% higher revenues and realizes the same efficiency as the VCG mechanism. Moreover, it seems 
appropriate to posit that substantial correlations in bidders’ valuations would be present in important 
applications such as spectrum auctions. Thus, unlike Goeree and Lien, we conclude that there may be 
good reasons for policymakers to select a core-selecting auction rather than a VCG mechanism. 
 
In the course of our analysis, we obtain closed-form solutions for the core-selecting pricing rules that we 
study. This enables us also to obtain revenue and efficiency rankings among the various rules. These 
rankings appear to be robust for the parameters of our model. The results may also provide useful 
guidance for policymakers. 
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1 Introduction 
Core-selecting auctions have recently been proposed as alternatives to the Vickrey-Clarke-Groves 
(VCG) mechanism. In the VCG mechanism, the items are allocated so as to maximize revenues 
subject to the feasibility of the selected bids and each bidder is charged the opportunity cost of 
receiving the allocated items. While the mechanism has the attractive property that truth-telling is a 
dominant strategy — and truth-telling by all participants in the VCG mechanism implies efficient 
outcomes — there are several reasons to be wary of VCG in environments with complementarities. 
First, the VCG mechanism may generate low revenues (and, in environments with extreme 
complementarities, the revenues may equal zero). Second, VCG outcomes may be non-monotonic in 
the sense that increasing the number of bidders or increasing their valuations may reduce the seller’s 
revenues. Third, the VCG mechanism may be especially vulnerable to unusual forms of collusive 
behavior, including collusion by losing bidders and shill bidding. 

The simplest environment in which these issues can arise has just two items, “East” and “West” 
(which may be thought of as spectrum licenses for the Eastern half and Western half of a country), 
and three bidders. The “global” bidder views East and West as perfect complements, valuing the 
package {East, West} at 1, but obtaining no value from either item individually. Meanwhile, local 
bidder 1 values East at 1, but obtains no value from West; and local bidder 2 values West at 1, but 
obtains no value from East. Observe that the VCG mechanism1 allocates East to local bidder 1 and 
West to local bidder 2, maximizing social surplus at 2. However, the mechanism charges a price of 
zero to each bidder.2 The VCG outcome is non-monotonic in that, if each of the local bidders’ values 
declined from 1 to ½, the seller’s revenues would increase from 0 to 1. The explanation for this 
non-monotonicity, as well as for the opportunities present for loser collusion and shill bidding, is that 
the VCG outcome may lie outside the core;3 with the data of this paragraph, a coalition of the seller 
and the global bidder can block the allocation at zero prices to the local bidders.4 

Observe that the potential deficiencies of the VCG mechanism are likely to be empirically relevant. 
In the first place, much of the motivation for allowing package bidding in auctions arises from 
environments where there appear to be strong complementarities among items. Furthermore, in the 
area of telecommunications spectrum auctions, empirical work suggests that there exist substantial 
synergies among licenses covering different geographic areas.5 Similarly, there is a growing interest 
in auctions with package bidding for financial assets, and this again occurs in environments where 
there are apparent complementarities among assets. 

                                                 
1 The VCG mechanism was developed in the work of Vickrey (1961), Clarke (1971) and Groves (1973). Throughout this 
paper, we will use the terms “VCG mechanism” and “Vickrey auction” interchangeably. 
2 Observe that the total surplus when local bidder 1 is absent equals 1, and so the incremental surplus created by local 
bidder 1 equals 1. Similarly, local bidder 2’s incremental surplus also equals 1. In the VCG mechanism, each bidder is 
permitted to retain the entire incremental surplus that she creates, implying that the price paid by each local bidder is zero. 
3 The core is the subset of allocations in payoff space that are feasible and unblocked by any coalition. 
4 See Ausubel and Milgrom (2002). 
5 See, for example, Ausubel, Cramton, McAfee and McMillan (1997) and Fox and Bajari (2009). 
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As a result of this critique, researchers and auction practitioners recently began to explore a class of 
alternative mechanisms that have become known as core-selecting auctions. As in the VCG 
mechanism, buyers submit bids associated with various subsets of the set of all items, and the 
auctioneer determines the combination of bids which maximizes total revenues subject to feasibility. 
However, as seen two paragraphs above, applying the VCG payment rule in a complements 
environment may yield a profit allocation that lies outside the core. Instead, a core-selecting auction 
uses a different pricing rule — a rule always requiring the same or higher payments — which assures 
that the outcome is always in the core relative to the reported values. 

Despite the very recent development of core-selecting auctions, they have already been selected for 
some important applications. Ofcom, the UK telecommunications regulator, has conducted two 
spectrum auctions using a “package clock” auction: a two-stage auction procedure in which a 
simultaneous ascending clock phase is followed by a sealed-bid package auction. For the second 
stage, Ofcom utilized a core-selecting auction with the nearest-Vickrey pricing rule.6 The US Federal 
Aviation Administration (FAA) recently planned slot auctions for landing rights at the three New 
York City airports. While these auctions were stopped by an airline-industry lawsuit, the published 
regulations included the use of a core-selecting auction with the nearest-Vickrey pricing rule.7 

However, to date, most studies of package bidding have been limited to complete-information 
analyses. This is not a particularly satisfying state of affairs, as much of the motivation for using 
VCG or other package-bidding mechanisms is that bidders possess incomplete and asymmetric 
information. At the same time, it is easy to understand why the shortcut of assuming complete 
information has typically been taken: analyses of auctions under incomplete information can be 
extremely intricate, except when truth-telling is an equilibrium. Moreover, the typical sort of 
environment motivating package bidding inherently includes asymmetries, as some bidders desire 
smaller sets of items and other bidders desire larger sets of items. Researchers have found that 
asymmetric auctions are particularly difficult to analyze. 

A few contemporaneous papers have introduced explicit incomplete-information analyses of package 
bidding, but they are limited to considering independent valuations. Independence is an extremely 
confining assumption in an auction environment. In many of the most important applications of 
package bidding, such as spectrum auctions, we would expect there to be significant correlations 
among bidders’ signals — and correlation among bidders’ signals has been one of the important 
ingredients in the theory of auctions of single items. Moreover, a central message of auction theory 
and mechanism design is that, when correlations are present, particular choices of auction format may 
enhance the ability of the seller to extract revenues from bidders.8 

The current paper seeks to advance the analysis of package bidding. We consider a very simple and 
stylized class of models in which one bidder values the items as perfect complements. We compare 

                                                 
6 See Cramton (2009). 
7 See Federal Aviation Administration (2008). 
8 See, for example, Milgrom and Weber (1982) and Crémer and McLean (1985). 
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and contrast a variety of package bidding formats, including the core-selecting auctions in the 
literature, as well as the VCG mechanism. 

Our model is an incomplete-information version of the auction environment with two items and three 
bidders that is described in the second paragraph of this Introduction. The global bidder obtains value 
u from winning both the Eastern and Western licenses, but gets zero value from having only East or 
West. Local bidder 1 values East at 1v , but obtains no value from West; while local bidder 2 values 
West at 2v , but obtains no value from East. The game is a standard Bayesian game in which each 
player knows the realization of her own value, but only the distribution from which her opponents’ 
values were drawn. The players simultaneously and independently submit bids, where 1b  denotes the 
bid submitted by local bidder 1 for East, 2b  denotes the bid submitted by local bidder 2 for West, and 
B denotes the package bid submitted by the global bidder for {East, West}. The solution concept is 
Bayesian-Nash equilibrium.9 

One of the novel aspects of our analysis is the family of distributions that we treat. The local bidders’ 
values are perfectly correlated with probability  and independently distributed with probability 1 – . 
(Moreover, at the time that the local bidder selects her bid, she is unaware of whether the values are 
perfectly correlated or independent.) Thus, we consider a parameterized family of distributions that 
permits the correlation between local bidders’ signals to be varied continuously from zero to one. 
Surprisingly, despite the private information and correlated signals, we are able to obtain explicit 
closed-form solutions for the core-selecting auction formats considered — for all   [0,1]. And the 
possibility of positive correlation has a quite substantial impact on our comparison of the various 
package-bidding formats. 

To see the various package-bidding mechanisms that we compare and contrast, suppose that the bids 
submitted by the respective bidders are 1 6b  , 2 8b  , and B = 10. In any of the mechanisms, the 
auctioneer first solves the winner determination problem of finding the allocation which maximizes 
revenues subject to the feasibility constraint. This bid data clearly results in local bidder 1 winning 
East and local bidder 2 winning West, as 6 + 8 = 14 > 10. The payments, 1p  and 2p , of local bidders 
1 and 2, respectively, remain to be defined. The various mechanisms to be discussed in this paper will 
differ in their payment rules. Our analysis will consider the following package-bidding mechanisms: 

VICKREY-CLARKE-GROVES (VCG): Payments are determined such that each winner receives a 
payoff equal to the incremental surplus that she brings to the system. The incremental surplus 
of local bidder 1 equals 4, as surplus (evaluated using the bidders’ bids) equals 14 if local 
bidder 1 is present, and 10 (the global bidder’s value) if local bidder 1 is absent. Thus, 

1 1 14 2b p p    . Similarly, the incremental surplus of local bidder 2 equals 4, so 

2 2 24 4.b p p     Thus, the VCG payments are 1 2( , ) (2, 4)p p  . However, this outcome 
is not in the core, as the seller and the global bidder form a blocking coalition: together, they 

                                                 
9Further, the joint distribution of values will be symmetric with respect to the two local bidders, and we will limit 
attention to Bayesian-Nash equilibria that are symmetric with respect to the two local bidders. In addition, in all of the 
core-selecting auctions, the global bidder will have a weakly-dominant strategy, and we will then limit attention to 
Bayesian-Nash equilibria in which the global bidder plays her weakly-dominant strategy. 
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can realize surplus of 10 (the global bidder’s value), while in the VCG outcome, the seller 
receives payoff of 1 26 p p   and the global bidder receives payoff of 0. 

NEAREST-VICKREY: Payments are determined such that the profit allocation is the bidder-
optimal core allocation that minimizes the Euclidean distance from the VCG outcome. In 
order to avoid the presence of any blocking coalitions, the payments, 1p  and 2p , must sum to 
at least 10; and in a bidder-optimal core allocation, the payments must sum to exactly 10. The 
payments that minimize the distance from the VCG payments of (2,4) are 1 2( , ) (4,6)p p  . 

PROXY AUCTION: Payments are determined that reflect the outcome of “proxy agents” 
competing in a simultaneous ascending auction with package bidding and arbitrarily small bid 
increments,  . The bids 1b , 2b  and B are reinterpreted as limit prices that the bidders have 
given their respective proxy agents. Each proxy agent must bid in the “virtual auction” 
whenever it is not a provisionally-winning bidder. In the initial round, all three proxy agents 
submit bids of  , making the two local bidders provisional winners. In round two, the proxy 
agent for the global bidder raises its bid to 3 , making the global bidder the provisional 
winner; in round three, the proxy agents for each of the local bidders raise their bids to 2 , 
making the two local bidders provisional winners; and the process repeats until the proxy 
agent for the global bidder drops out of the auction at a price of essentially 10B  . Thus, the 
local bidders win the virtual auction at prices of essentially 1 2( , ) (5,5)p p  , an alternative 
bidder-optimal core outcome. 

PROPORTIONAL PRICING: Payments are determined such that the bids are scaled down, 
proportionally, until the bidder-optimal frontier of the core is reached. In the above example, 
the bids of the local bidders sum to 14, and so they can each be scaled down by a factor of 5/7 
in order to sum to 10. Thus, the payments are 1 2

30 40
7 7

( , ) ( , )p p  . 

NEAREST-BID: Payments are determined such that the profit allocation is the bidder-optimal 
core allocation that minimizes the Euclidean distance from the vector of winning bids. In the 
above example, the bidder-optimal core payments that minimize the distance from the 
winning bids of (6, 8) are 1 2( , ) (4,6)p p  , coinciding with the nearest-Vickrey outcome in 
this example. 

FIRST-PRICE PACKAGE: Payments simply correspond to the amounts of the winning bids. That 
is, the auctioneer first solves the winner determination problem of finding the allocation 
which maximizes revenues subject to the feasibility constraint; and the winning bidders’ 
required payments are simply the amounts of their winning bids. If the same bids were 
submitted as in the above example, then the payments would be 1 2 1 2( , ) ( , ) (6,8)p p b b  . 
Obviously, since this is a “first price” rather than a “second price” auction format, it should be 
expected that bids would be substantially different from those in the other core-selecting 
auctions. 
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Each of these package-bidding pricing rules, as applied to the bid data 1 6b  , 2 8b  , and B = 10, is 
illustrated in Figure 1. Observe that the set of prices associated with core allocations is the shaded 
triangle of this figure, while the set of bidder-optimal core prices is the hypotenuse of this triangle. 

 

Figure 1. Package-Bidding Pricing Rules (as applied to example bid data) 
 

For the various “second-price-like” core-selecting auctions, if the marginal distribution of each 
bidder’s value is the uniform distribution, then we are able to derive explicit closed-form solutions 
for equilibria, for all   [0,1]. However, for the first-price package auction, the methodology of this 
paper does not yield a solution. To compare the performance of the first-price package auction with 
the other core-selecting auctions, we report the revenues and efficiency as computed using a 
numerical technique for approximating equilibria that is introduced in Baranov (2010). 

The VCG mechanism was introduced in the classic theory of auctions and public choice. William 
Vickrey (1961) treated auctions with multiple units of a homogeneous product, while Edward Clarke 
(1971) and Theodore Groves (1973) treated public choice problems. The Clarke-Groves treatment 
subsumed the environment that Vickrey studied as well as auctions of multiple heterogeneous 
objects. We use the terminology “VCG mechanism” and “Vickrey auction” interchangeably. 

Our treatment of the proxy auction is based on Ausubel and Milgrom (2002, 2006). There the 
“ascending proxy auction” design is described; it is proven that this auction generally yields a core 
allocation with respect to the preferences reported by the bidders and (subject to a refinement) the set 
of complete-information equilibrium allocations coincides with the set of bidder-optimal core 
allocations. A closely-related auction procedure was developed independently by Parkes and Ungar 
(2000) and Parkes (2001). A two-stage auction procedure comprising a (multi-round) ascending-
clock auction followed by a single proxy auction round was proposed by Ausubel, Cramton and 
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Milgrom (2006). This became the basis for the “package clock” design recently adopted by the UK 
government for spectrum auctions (Cramton, 2009). 

Hoffman, Menon, van den Heever and Wilson (2006) introduced acceleration techniques for 
computing the proxy auction. Day and Raghavan (2007) propose a modification to the proxy auction 
where the “virtual” auctions of the proxy are superseded by a direct computation of bidder-optimal 
core allocation — in particular, they advocate the bidder-optimal core allocation that minimizes the 
maximum deviation from the VCG payments. They also introduce a core constraint generation 
algorithm which is an especially effective method for calculating bidder-optimal core allocations. 
Day and Milgrom (2008) define the class of core-selecting auctions and prove that, among core-
selecting auctions, the ones that minimize seller revenues also maximize incentives for truthful 
reporting and, in contrast to the Vickrey auction, yield monotonicity of revenues in the number of 
bidders and their bids. Day and Cramton (2009) propose the nearest-Vickrey pricing rule and 
demonstrate how to compute it efficiently. 

Three other recent papers have begun to explore the comparison among core-selecting auctions. Erdil 
and Klemperer (2009) define a class of payment rules referred to as “reference rules” — the proxy 
auction’s payment rule is one example, while the nearest-Vickrey rule is not — and they argue that 
reference rules reduce the marginal incentive to deviate as compared to other payment rules. While 
their paper does not explicitly contain incomplete-information analysis, their conclusions foreshadow 
the results of the current paper. Goeree and Lien (2009) consider the incomplete-information game 
with a global bidder and two local bidders whose valuations are independent and uniformly-
distributed. Simultaneously and independently from the current paper, they solve for the Bayesian-
Nash equilibrium of the nearest-Vickrey pricing rule for independent uniform distributions and they 
find that the VCG mechanism dominates it in expected revenues as well as efficiency. Sano (2010) 
considers the incomplete-information game with a global bidder and two local bidders whose 
valuations are independent and uniformly-distributed. Simultaneously and independently from the 
current paper, he solves for the Bayesian-Nash equilibrium of the proxy auction under independence, 
finding that high-value local bidders submit almost their true values, while low-value local bidders 
shade considerably. 

In the current paper, we too analyze incomplete-information games with a global bidder and two 
local bidders. We formulate the game and solve for equilibria, allowing independence ( = 0) or 
correlation ( > 0) between the local bidders’ values. We consider four different core-selecting 
auctions — the nearest-Vickrey, the proxy, the proportional and the nearest-bid pricing rule — and 
for each   [0,1], we are able to obtain explicit closed-form solutions under certain assumptions on 
the distributions.10 For the case where the marginal distributions are uniform, we obtain Figure 2, 
which summarizes the expected seller revenues and efficiency in the equilibrium: 

                                                 
10Only three solutions are required, as the equilibrium for the proportional pricing rule coincides with the equilibrium for 
the nearest-Vickrey rule in the model we consider. 
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Figure 2. Seller Revenue and Efficiency for  = 1 and all   [0,1] 

 
Counter to Goeree and Lien, we find that the choice between a core-selecting auction or the VCG 
mechanism is sensitive to the information structure. As shown in Figure 2, the relative performance 
of the alternative mechanisms changes substantially as the correlation  increases from zero to 1. 
When  = 0, the VCG mechanism raises 8.9% higher expected revenues than the proxy auction, and it 
achieves 9.6% higher revenue than the nearest-Vickrey rule, despite achieving greater efficiency. 
However, at the opposite extreme, when  = 1, the proxy auction attains 33.3% higher expected 
revenues than the VCG mechanism while also realizing full efficiency. Clearly, the choice of whether 
to use the VCG mechanism or a core-selecting auction depends on the likely informational 
environment. 

We also consider the effect of varying the uniform distribution on the local bidders’ values. While the 
distribution F(v) = v does not generally admit a closed-form solution, it does when  = 2. Stable 
numerical simulations can be found for other  — for symmetry with  = 2, we also consider  = ½. 
In this formulation,   controls the relative frequency of local bidders’ winnings under full efficiency. 
For example, when  = 1 (uniform distribution) local bidders are expected to win with probability ½ 
while they only expected to win with probability 1/3 when  = ½. We find that the comparison 
among the VCG mechanism and the various core-selecting auctions changes in . In particular, the 
case of  = 2 reverses the revenue ranking of the proxy auction and the VCG mechanism, while the 
case of   = ½ enhances the revenue advantage of VCG emphasized by Goeree and Lien. 

This paper proceeds as follows. In Section 2, we present the model, including the family of 
distributions that allow partial correlation, and we detail the package-bidding mechanisms to be 
considered. In Section 3, we introduce the pivotal pricing property and we establish Lemma 3, which 
provides local optimality conditions for local bidders in any mechanism satisfying the pivotal pricing 
property. We solve for explicit closed-form solutions for the various mechanisms under 
consideration, for all correlation parameters, in Section 4. In Section 5, we discuss extensions to the 
basic model, and we conclude in Section 6. Most proofs are relegated to Appendix A, and the 
solutions for different values of parameters  and  are summarized in Appendix B. 
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2 The Model 
Two items are offered for sale. There are two local bidders, 1 and 2, who are interested in only one 
item and receive no extra utility from acquiring the second item. Their values are denoted v1 and v2, 
respectively. There is one global bidder who wants to acquire both items and obtains no utility from 
owning just one item. Her value for the pair of items is denoted u. The bidders are risk neutral and 
have quasilinear utilities: the payoff of local bidder i, if she wins one unit at price pi, is vi – pi; and the 
payoff of the global bidder, if she wins both units at a total price of p, is u – p. 

The value, u, of the global bidder is independently drawn from the distribution on [0,2] described by 
a cumulative distribution function ( )G u with atomless probability density function ( )g u . With 
probability , the  values, vi (i = 1,2), of local bidders are perfectly correlated and drawn from a 
distribution on the interval [0,1] , defined by a cumulative distribution function ( )F v with atomless 
density ( )f v . With probability 1 – , the values of the local bidders are independently drawn from 
the same distribution ( )F v . 

The assumption of independence between value realizations of the global bidder versus the local 
bidders seems reasonable enough — the scale of operations, cost structure and other bidder-specific 
characteristics of the global and local bidders may be substantially unrelated. However, it seems 
likely that there might be positive correlation between one local bidder’s value and another. 
For example, in a spectrum auction, the local bidders might be two firms that intend to deploy 
identical telecommunications technologies in different geographic regions. 

Parameter  controls the amount of correlation between the local bidders’ values. The local bidders’ 
value model is summarized by the conditional cumulative distribution function of the local bidder i  
given her value vi: 
 

(1 ) ( ) ,
( | ) for .

(1 ) ( )

  if

  if,


 
 

     

j j

L j i
j j

F v x
F v v x i j

F v x

v

v
   

 

It is interesting to observe that vi and vj are not affiliated random variables for any  > 0. 11 
Nevertheless, for y  x, ( | )LF y (first-order) stochastically dominates ( | )LF x . The failure of 
affiliation would prevent some of the results in the theory of single-item auctions from going through, 
but note that the structure of winning is different in the current package-bidding context: local bidder 
1’s bid need not exceed the bid of local bidder 2; rather the sum of the bids of local bidders 1 and 2 
needs to exceed the bid of the global bidder. 

Our model handles both homogeneous and heterogeneous environments. In the former interpretation, 
local bidder i derives positive utility vi from winning either item.12 In the latter interpretation, there 
                                                 
11Consider x > y > z and let (,) denote the joint probability of vi and vj. Then (y, y)  (x,z) = (x,y) and (y, y)  (x,z) = 
(y,z), but (x,y) (y,z) < (y,y) (x,z), contradicting the affiliation inequality. 
12Then the global bidder exhibits classic increasing returns to scale. 
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are two heterogeneous items, East and West; local bidder 1 obtains positive utility only from East and 
local bidder 2 obtains positive utility only from West.13 Our equilibrium solutions are fully consistent 
with either interpretation. 

All of the auction mechanisms that we analyze in this paper, other than the VCG mechanism, satisfy 
the following definition: 

Definition 1. A core-selecting auction is a mapping from bids to allocations and payments such that 
the payoffs resulting from every bid profile are elements of the core.14 

Without loss of generality we limit our attention to the restricted auctions in which each bidder is 
allowed to submit only one bid. While impractical in a general environment, this limitation does not 
affect efficiency in any way because of the perfect complementarity nature of the bidders’ 
preferences in the model we consider here. For example, the global bidder has value for a package of 
two items and her bid B is interpreted as a package bid for two items. Each local bidder i  is 
interested only in one item and her bid ib expresses her willingness to pay up to ib  for the one item.       

All auctions considered in the paper proceed in the following manner. First, all bidders submit their 
bids to the auctioneer who then chooses an allocation which maximizes total welfare with respect to 
the bids. In our simple model, only two outcomes are possible. If the package bid of the global bidder 
is greater than the sum of the local bids, i.e. 1 2B b b  , the global bidder wins the auction and 
receives both items. The local bidders win the auction and each receive one item whenever the sum 
of their bids is higher than the package bid of the global bidder, i.e. 1 2B b b  .Ties are resolved 
using a fair randomizing device. The payment each winner is required to make depends on a specific 
pricing rule.   

We consider the VCG mechanism and several core-selecting pricing rules. Denote 1V and  2V , the 
VCG payments of local bidders in case of winning, i.e. 1 2 2 1max{0, }, max{0, }V B b V B b    . 
Additionally, we use 1 2( , , )p b b B  to denote a payment vector associated with the corresponding bids 

1 2,b b by local bidders and a bid B by the global bidder. 

Without loss of generality, we will assume that 1 2b b .  

(1) VCG Mechanism (Benchmark Rule) 

This is a well-known pricing rule which is motivated by its dominant strategy property. Under 
this rule, the payment of the particular bidder does not depend upon her bid and only affects 
the allocation.    

 1 2 1 2
1 2

1 2 1 2

, ,0 if  B
( , , )

(0,0, ) if  B

V V b b
p b b B

b b b b

  
 

  
 

 

                                                 
13Then the global bidder is intending to implement a technology which (for technical or marketing reasons) is only 
economical if deployed on a nationwide basis. 
14This definition is taken from Day and Milgrom (2008). 
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(2) Proxy Auction 

The ascending proxy auction was suggested by Ausubel and Migrom (2002). Given our 
simple model, it can be summarized using the following formula: 

2

1 2 2 2 2 1 2

1 2 1 2

1 1
2 2

( , ,0) if 2

( , , ) ( , ,0) if 2

(0,0, ) if

 
   
 


 

B B b B

p b b B B b b b B b b

b b B b b

 

 
(3) Nearest-VCG Rule 

The nearest-VCG pricing rule was introduced by Day and Raghavan (2007) and Day and 
Milgrom (2008). The central idea of this rule is to select the bidder-optimal core allocation 
that minimizes the distance to the VCG point. 

 1 2 1 2
1 2

1 2 1 2

1 2

, ,0 if    B
( , , )

(0,0, ) if    B

where   =  
2

V V b b
p b b B

b b b b

B V V

      
 

  
 



 

 
(4) Proportional Rule 

This is a natural rule to consider in this environment. Whenever the local side wins the 
auction, they split the amount they are required to pay proportionally to their bids.  

1 2
1 2

1 2 1 2 1 2

1 2 1 2

, ,0 if  
( , , )

(0,0, ) if . 

 
     

   

b b
B B B b b

p b b B b b b b

b b B b b

 

 
(5) Nearest-Bid Rule 

The “nearest-bid” description corresponds to the point in a minimum-revenue core which is 
the closest to the winners’ bids. This rule can be motivated by a simple description of the 
payment procedure. In case of winning each local bidder pays her bid and then gets a refund. 
The amount of the refund is just half of the “money left on the table”, i.e. 1 2b b B  . As with 

Proxy Rule, if bids are too different, the amount of refund might be higher than the smallest of 
the locals’ bids. Since payments can not be negative, the local bidder i with the small bid 

 i jb b is reimbursed completely while the local bidder j pays the global bidder’s bid alone. 

This rule is intuitive and easy to explain to the bidders. 
       

1 2

1 2 1 2

1 2

1 2 1 2

1 2

1 2

( , ,0) if

( , , ) ( ,0,0) if

(0,0, ) if

where = .
2

,

    
 
   
 




b b

p b b B B b B

b b B b b

b

b b B b b

b b B
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3 Initial Analysis 
 

Definition 2. A bid b by bidder i is pivotal if, for any 0  , a bid b   yields bidder i a non-empty 
set of items, while a bid of b   yields bidder i the empty set.  

Note that, in auctions with pricing rules (1)–(5), any bid 1 2( , )b b or B is pivotal if and only if 1 2b b B  .  

 

Definition 3. An auction satisfies the pivotal pricing property with respect to a given bidder if, 
whenever the bidder's bid is pivotal, the price that she pays (if she wins) equals her bid. 

The pivotal pricing property is very natural and is satisfied for the most of the reasonable auction 
formats. Consider standard single-item auction with at least three bidders. First-price and all-pay 
auctions necessarily satisfy the pivotal pricing property since the winner always pays her bid. In a 
second-price auction a winning bid is pivotal only if top two bids are equal to each other in which 
case the winner pays her bid precisely. However, some auctions do not satisfy this property. For 
example, in a third-price auction a winner with pivotal bid in general pays less then her bid.  

 
Lemma 0. The VCG mechanism satisfies the pivotal pricing property with respect to all bidders. 

 
Proof: If bidder i’s bid, bi, is pivotal, then the incremental surplus contributed by bidder i is zero. 
By the specification of the VCG mechanism, bidder i’s payoff in the mechanism equals zero. 
Consequently, bidder i pays a price of bi. 

 
Lemma 1. Every core-selecting auction satisfies the pivotal pricing property with respect to all 
bidders. 

 
Proof: Let pi denote the price paid by bidder i when her bid, bi, is pivotal, and let Si denote the set of 
winning bidders if bidder i had instead submitted a bid of bi – . By the definition of a pivotal bid, 
i  Si. Suppose that pi < bi. Then the allocation can be blocked by the coalition comprising the seller 
and set Si. Suppose instead that pi > bi. Then the allocation can be blocked by the coalition 
comprising bidder i alone. We conclude that pi = bi. 

 
Lemma 2. The global bidder has a weakly dominant strategy to bid her value in auctions with pricing 
rules (1) – (5). 

 
Proof: For each of these pricing rules, the global bidder wins if and only if her package bid, B, 
satisfies B  b1 + b2, and her payment is then b1 + b2. Consequently, the exact same argument holds 
as in the standard second-price auction for a single item. 

 



 
 

12

In what follows, we assume that the global bidder bids according to her weakly dominant strategy, 
i.e. ( )B u u . 

 
With a slight abuse of notation let (.) denote the symmetric equilibrium bid function of the local 
bidders for all pricing rules. Additionally, denote ( , )i i ib v  and ( , )i i ib v  the probability of winning 
and marginal probability of winning for a local bidder i  who submits a bid ib  assuming all other 
bidders follow their equilibrium strategies, i.e.:  

 

( ) ( ) ( ) ( )

( , ) Pr( )

( ) (1 ) ( ) ( )

( ( )) (1 ) ( ) ( ( ))

( , )
( , )

( ( )) (1 ) ( ) ( ( )) .

 

 

   



   

   

    

   

    






    

 





i i i j

j

j

i i i i j

j j

b v B u b v B u

i i j i j j

v

i i i
i i i

i

i i j i j j

v

b v b b B

g u du f v g u dv du

G b v f v G b v dv

b v
b v

b

g b v f v g b v dv

 

 
Let ( , )i i iP b v and ( , )i i iMP b v  denote the expected payment and the expected marginal payment, 
respectively, for a local bidder who submits a bid ib  assuming all other bidders follow their 
equilibrium strategies, i.e.: 

 

,

( , ) ( , , )

( , ( ), ) ( ) (1 ) ( , ( ), ) ( ) ( )
j

i i i i i j

i i i i i j j j

u u v

P b v Ep b b B

p b v u g u du p b v u f v g u dv du   

 

     

,

( , ) ( , , )

( , ( ), ) ( ) (1 ) ( , ( ), ) ( ) ( ) .   

 

    
j

i i i i i j

i i i i i j j j

u u v

MP b v Ep b b B

p b v u g u du p b v u f v g u dv du  

 
Lemma 3. For an auction satisfying the pivotal pricing property, the optimality conditions for a local 
bidder i  are given by: 

 

 
( ) ( , ) ( , ) 0

( ) ( , ) ( , ) 0 .





  

  
i i i i i i i i i

i i i i i i i i i

v b b v MP b v b

b v b b v MP b v
 

 
Proof: See Appendix A. 
 
Lemma 3 just simplifies the Karush-Kuhn-Tucker conditions for the local bidders’ profit 
maximization problem taking into account the pivotal pricing property. Intuitively, an infinitely small 
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increase in a bid affects costs by increasing expected payment in non-pivotal states and adding a new 
payment in the pivotal state (when the increase results in a pivotal bid, or the state in which bidder 
wins only because she increased her bid by a small amount ). The latter payment equals to the 
player’s bid according to the pivotal pricing property.  

 
In case ( , ) 0i i ib v  , the optimality conditions in Lemma 3 can be rewritten as:  

( , )
max 0, .

( , )
 

  
 

i i i
i i

i i i

MP b v
b v

b v
 

Note that a local bidder shades her bid when the expected marginal payment is positive. We 
formalize this general functional form of the equilibrium local’s bidder bid function in a Corollary 1.  

 
Corollary 1. The general functional form of the locals’ equilibrium bid function is  

0 ( )
( )

( ) ( )

v d
v

c v v d







  
 

where 

 
( ) 1

: 0   such that   (0, ) (0, )
(1) 0 1

d d
d d d d MP d

d

 



 

   
 

 ( )c v is strictly increasing on [ ( ),1]d   
 

The equilibrium bid function potentially has a flat segment in the beginning. Intuitively, the local 
bidder might find it optimal to free-ride on the other local bidder because the probability of winning 
is strictly greater than zero for a local bidder with a zero bid.   

 
Proposition 0. The equilibrium bid function of local bidders under the VCG pricing rule is given 
by ( )v v  .  

 
Proof: Well known. 

 

4 Main Results 
This section contains our main results.  In order to derive equilibrium bids explicitly, we assume 
uniform distributions for all values. Namely, (.)f  is a uniform density on [0,1]  and  (.)g  is a 
uniform density on[0,2] . Under this assumption, there is symmetry between global and local sides of 
the market because under full efficiency the global and local sides are expected to win equally often. 

 
We start by considering the Proxy Rule. 
 
Proposition 1. The equilibrium bid function of local bidders (in symmetric Bayesian-Nash equilibria) 
under the Proxy Rule is given by:        
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 
0 ( )

( ) 1ln (1 ) i 
1 )

f
(

1

v d

v v
v d


  





  
  

15       and      ( ) if =1v v  , 

 

where 
(1 )

( ) 0 1
1

e
d

  


  
   


.  

 
Proof: See Appendix A. 
 
Figure 3 (left panel) provides examples of equilibrium bid functions for the proxy rule. In 
equilibrium, local bidders with low values prefer to bid zero in an attempt to free-ride. Moreover, the 
size of the zero-bid interval is magnified by the proxy rule itself because a local bidder with a 
sufficiently small bid would be required to pay her bid whenever the locals win with the other local 
bidder paying the rest. To put it differently, a local bidder with a small bid in the proxy auction has 
shading incentives which are similar to that of the first-price package auction. In sharp contrast, a 
high-type local bidder bids almost truthfully because she expects to be the highest bidder from the 
local side in which case her payment is independent from her bid.  

With the increase in correlation, the zero-bid interval vanishes since a low-type local bidder no longer 
expects a sufficiently high bid from the other local bidder. Instead she expects a comparably low bid 
which makes her reluctant to shade. At the extreme case of perfect correlation, both local bidders bids 
truthfully in a symmetric equilibrium. The case of perfect correlation is very interesting since the 
proxy rule is able to achieve the first-best by combining equilibrium truthful-bidding property with 
the core property. 

However, the proxy rule model with perfect correlation also has a multiplicity of other, asymmetric 
equilibria where revenue and efficiency performance is undermined. Specifically, one of the 
asymmetric equilibria results in truthful bidding by one of the local bidders and bidding zero by the 
other local bidder.  

 

Proposition 2. The equilibrium bid function of local bidders under the Nearest-Vickrey Rule is given by:  

   
0 (

i
)

( )  f
(

1
) ( ) ( )

v d
v

v d v dk


 

  


   
16       and    

2
( ) if =1

3
v v  , 

 

                                                 
15 A symmetric Bayesian-Nash equilibrium for the Proxy Rule with local bidders having independent values, i.e.  = 0, 
was derived independently in Sano (2010). 
16 A symmetric Bayesian-Nash equilibrium for Nearest-Vickrey Rule with local bidders having independent values, i.e. 
 = 0, was derived independently in Goeree and Lien (2009)  
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where       
 2

2

2
( ) 0

2 2 8 3
( )

2
1

2
k d







 


   






  


.  

 

Proof: See Appendix A. 
 
The equilibrium bid functions for the nearest-Vickrey rule are shown in Figure 3 (central panel). The 
size of the zero-bid interval is smaller when comparing to the proxy rule which, as was mentioned 
above, induces first-price incentives to bidders with low valuations. In contrast with the proxy rule, a 
high-type local bidder has no incentive to bid truthfully anymore since her bid affects the price 
considerably. It is worth highlighting a nice linear functional form of the equilibrium bids in case of 
nearest-Vickrey rule where correlation parameter  defines the slope and intercept coefficients. For 
example, a local bidder shades uniformly across all values when there is no correlation between local 
bidders, i.e. 0  . Positive correlation has an ambiguous effect on revenue and efficiency since it 
reduces bid-shading for low-type bidders and increases bid-shading for high-type bidders.  

Proposition 3. The equilibrium bid function of local bidders under the Proportional Rule is given by: 
   

0 (
i

)
( )  f

(
1

) ( ) ( )

v d
v

v d v dk


 

  


   
       and    

2
( ) if =1

3
v v  , 

 

where    
 2

2

2 2 8 3
( )( ) 0 1

2 2

2 






 
 

 
  

 


 



dk .  

 

Proof: See Appendix A. 
 
Surprisingly, the equilibrium bid strategies for our model are the same under the nearest-Vickrey 
pricing rule and the proportional pricing rule. This result is mainly driven by two of our modeling 
assumptions: uniform distribution of the global bidder’s value with the zero lower bound and the 
number of local bidders. In a model with more than two items for sale (discussed in greater detail in 
Section 5), this rule results in different equilibrium bid functions.   

 
Proposition 4. The equilibrium bid function of local bidders under the Nearest-Bid Rule is given by: 
 

 1
( ) ln(2) ln(2 (1 ) ) if <1

1
v v  


   


 and 

1
( ) if =1

2
v v  . 

 

Proof: See Appendix A. 
 
Figure 3 (right panel) demonstrates examples of equilibrium bid functions for the nearest-bid rule. 
The bidding behavior under this rule is very different from the rules already considered. First, the 
equilibrium bid functions are strictly increasing for all correlation levels. The absence of the zero-bid 
interval for low-type local bidders is easily explained by the nature of the nearest-bid rule. 
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Conditional on winning, the expected payment of a low-type local bidder is close to zero since the 
half of the refund to which the bidder is entitled almost surely exceeds the amount of her bid. At the 
same time, a high-type bidder shades substantially, since her payment depends heavily on the amount 
of her bid. Second, correlation has a strong negative impact on the equilibrium bidding functions. 

 

Figure 3. Equilibrium Bids: Proxy Auction Rule (left), Nearest-Vickrey (center) and Nearest-Bid (right) 
 
Figure 2, already seen in the Introduction, summarizes the expected revenue and efficiency results for 
all pricing rules. The revenue of the VCG rule is negatively affected by positive correlation. By 
contrast, the performance of the proxy rule improves rapidly as the correlation increases, allowing the 
proxy rule to outperform the VCG rule in terms of revenue for a substantial range of  values. 
Moreover, the proxy rule achieves full efficiency when the locals’ values are perfectly correlated. 
The performance of the nearest-Vickrey rule seems to be robust to correlation. This suggests that the 
seller interested in stable revenue and efficiency outcome across different correlation levels might 
have a good reason to use the nearest-Vickrey rule. However, for this particular model and 
distributions the proxy rule dominates other core-selecting rules including nearest-Vickrey rule. The 
performance of the nearest-bid rule falls with correlation, which makes the rule inferior and 
impractical for this environment. Corresponding numbers for revenue, efficiency and profits of 
bidders can be found in Table 1. Expressions used to compute revenue and efficiency for all pricing 
rules are provided in Appendix A. We use simulation results from Baranov (2010) in order to 
compare all mechanisms considered here with the first-price package auction. Interestingly, the first-
price package auction consistently beats the nearest-Vickrey and nearest-bid formats in terms of both 
revenue and efficiency for any positive correlation value. However, its expected revenue is lower 
than that of VCG and proxy auction for low and high correlation values respectively.  
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  Statistics VCG Proxy N-VCG N-Bid First-Price 17 

0   Revenue 
Efficiency 
Profit Global 
Profit Local 

0.5833 
1 

0.2916 
0.2087 

0.5360 
0.8679 
0.4642 
0.1342 

0.5327 
0.8431 
0.4673 
0.1335 

0.5 
0.8069 

0.5 
0.1253 

0.5471 
0.8754 
0.4267 
0.1498 

0.5   Revenue 
Efficiency 
Profit Global 
Profit Local 

0.5417 
1 

0.3126 
0.2295 

0.5852 
0.9261 
0.4148 
0.1523 

0.52 
0.8356 
0.4798 
0.1415 

0.4521 
0.7739 
0.5479 
0.1252 

0.5414 
0.9036 
0.4297 
0.1649 

1   Revenue 
Efficiency 
Profit Global 
Profit Local 

0.5 
1 

0.3335 
0.2499 

0.6667 
1 

0.3335 
0.1666 

0.5185 
0.8334 
0.4816 
0.1481 

0.4167 
0.75 

0.5834 
0.125 

0.5411 
0.9049 
0.4304 
0.1757 

Table 1. Revenue, Efficiency and Profits 
 

5 Some Extensions 

5.1 Non-Uniform Model 
The main results of this paper were derived under the assumption of uniform distributions for 
bidders’ values. In this subsection we consider a more general model where the underlying 
distribution for the local bidders’ values allows varying the full-efficiency frequency of winning 
between the global bidder and local bidders. Specifically, we assume that the cumulative distribution 
function for local bidders is ( ) , 0F v v    on the interval [0,1] . We continue to assume that the 
values of the local bidders are perfectly correlated with probability   and that the global bidder 
draws her value independently from the uniform distribution on [0,2] .  

The parameter  of the local bidders’ distribution function can be interpreted in the following way. 
When  is less then one, the sum of the local bidders’ values is expected to be small in comparison 
with the expected value of the global bidder, implying that the local bidders lose more frequently 
under full efficiency. When  is greater then one, the situation is reversed, with the global bidder 
winning less frequently under truthful bidding. In other words, a high  makes the local bidders the 
stronger side in terms of their expected value.  

In general, there are no closed-form solutions for this model, but it can be easily solved by 
appropriate numerical methods. For example, the equilibrium bidding function for the nearest-
Vickrey rule, as in the uniform model, is linear with the slope coefficient being derived explicitly 
while the intercept term is determined from a non-linear equation which can be solved by a standard 
numerical procedure like the Newton method. The equilibrium bidding functions for the proxy rule 
and nearest-bid rule can be easily approximated by numerical methods for solving ODEs. Appendix 
B contains some equilibrium bidding functions and corresponding equations for numerical 
approximations for all pricing rules and all correlation levels. 

                                                 
17 Simulations are based on numerical solutions developed in Baranov (2010) 
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For the various second-price-like core-selecting auction formats, an increase in  leads to an increase 
in bid shading by the local bidders. Intuitively, a local bidder expects a higher bid from the other 
local bidder and tries to free-ride, reducing her bid accordingly. Symmetrically, smaller  results in 
more truthful bidding since opportunities for free-riding are reduced.   

Figures 4 and 5 contain revenue and efficiency calculations for scenarios where  = 2 and  = ½, 
respectively. As can be seen in Appendix B, the calculations for  = 2 for the proxy auction and 
nearest-bid rule are based on explicit closed-form solutions of equilibria and for the nearest-VCG rule 
are based on “almost-closed-form” solutions. Meanwhile, the value  = ½ was chosen for symmetric 
comparison with  = 2; most of the associated calculations are based on numerical simulations. Even 
though a low value for   generates more sincere bids by local bidders, the expected total bid from 
them is smaller than in case of  = 1 (uniform distribution) and so expected seller revenue is lower. 
The seller revenue is affected positively by an increase in  for all core-selecting rules. On the other 
hand, an increase in   negatively affects revenue of the VCG auction since it leads to an increase in 
the probability of low revenue and zero revenue outcomes.  As can be seen from Figures 4 and 5, the 
revenue performance of Vickrey rule relative to any core-selecting rule falls with .  For example, 
the proxy rule and the nearest-Vickrey rule generate higher revenues for any correlation level    
when  = 2. 

 
 

Figure 4. Seller Revenue and Efficiency for  = 2 and all   [0,1] 
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Figure 5. Seller Revenue and Efficiency for  = ½ and all   [0,1] 
 

5.2 Number of Bidders 
Here we look into a question of robustness of our results with respect to an increase in the number of 
bidders. There are several interesting modifications of our model one can consider.  

First of all, an increase in the number of global bidders can be modeled as a replacement of the 
distribution function of the global bidder with the extreme value distribution function of values. For 
example, if there are two global bidders who draw their values from distribution described by a 
function ( )H u  independently from each other and local bidders, a version of the model with one 
global bidder can be used instead with distribution function of the global bidder being equal to the 
product of individual distributions, i.e. 2( ) ( )G u H u . This replacement works because global bidders 
still have a weakly dominant strategy to bid truthfully. Since the distribution of this pseudo global 
bidder is no longer uniform, the equilibrium bidding functions of local bidders in general have to be 
approximated numerically.  

Another interesting comparative statics exercise is to increase the number of local bidders together 
with the number of items offered for sale. For example, consider an auction where three items are 
offered, with three local bidders who only wish to acquire one item each and a global bidder who is 
interested only in winning all three items. Keeping a similar value structure, it is possible to solve this 
model for some correlation levels and some pricing rules. For example, for the proportional rule this 
model can be solved in closed form for all levels of correlation among local bidders’ values. 
Unfortunately, some pricing rules such as the nearest-Vickrey rule become inherently complex in this 
environment.  Luckily, the solution for the proportional rule sheds some light on the revenue and 
efficiency performance of the core-selecting rules relative to that of the Vickrey rule. An increase in 
the number of local bidders leads to a more severe coordination problem among them, more bid 
shading, and lower seller revenues and efficiency in comparison with the Vickrey rule. This finding 
suggests that any core-selecting rule may be a poor choice for environments where the presence of a 
coordination problem is significant. 
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Finally, one can think of increasing the number of local bidders without increasing the number of 
products offered in the auction. In such environments, local bidders face competitors for their own 
item or market and they bid more aggressively. For example, a zero-bid interval (interval of values 
for which local bidder submits zero bid) no longer exists.   

5.3 Robustness Check 
In this subsection we demonstrate numerically that the partial correlation model for local bidders’ 
values used in this paper results in equilibrium bidding functions which are qualitatively very general. 
Consider the following modification to the original model of Section 2. Let M be a common unknown 
distributional factor for local bidders which is distributed on the interval  0,1  with some positive 
density ( )Mf m . Conditional on a particular realization, m, of the distributional factor, values for local 
bidders are drawn independently from a truncated logit distribution on  0,1  with parameters ( , )m  , 
where 0  is a known scale factor, i.e.: 

 
( )/

2( )/

( , )
( | ) for [0,1]

1









 

 
  



j

j

v m

L j j
v m

A m e
f v M m v

e
, 

where ( , )A m  is a normalizing constant.  

Since m is not observable, both local bidders make inferences about the distribution of the other local 
bidder’s value using their own values as signals about m . It is not hard to show that the conditional 
density takes the following form: 

1

0
1

0

( | ) ( | ) ( )

( | )

( | ) ( )

L j L M

L j i

L M

f v m f s m f m dm

f v v s

f s m f m dm

 



   

Figure 6 contains approximations of conditional densities for different values of the signal and 
different levels of parameter   which controls the correlation in this model (taking the role of    in 
the main model of this paper). Levels of   are chosen such that the correlation between local 
bidders’ values in the main model with gamma values 0, 0.5 and 0.9 and the model considered here 
are approximately equal to each other. 
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Figure 6. Conditional Densities 

 
Given conditional densities, we approximate first-order conditions for different pricing rules derived 
in Lemma 3. The corresponding equilibrium bidding functions can be found at Figure 7. The 
numerical solutions exhibit qualitatively similar shapes and patterns as the closed-form equilibrium 
bidding functions derived in Section 4 (i.e. Figure 3). These results are very encouraging for the 
future use of this paper’s partial correlation model in other contexts, since in some environments it 
allows us to generate closed-form solutions or extremely stable and easy numerical solutions without 
introducing any qualitative distinctions from smoother and more plausible partial-correlation models.     

 
Figure 7. Approximations of Equilibrium Bids 
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6 Conclusion 
The past literature has shown the VCG mechanism to have a variety of shortcomings in environments 
with complementarities, including the possibility of low or even zero revenues, non-monotonicity of 
revenues with respect to bids and number of bidders, and vulnerability to unusual forms of collusion 
such as shill-bidding and collusion by losing bidders. This list of drawbacks may help to explain why 
this auction format — despite its attractive dominant-strategy property — is seldom used in practice: 
to date, we are not aware of any examples of auctions employing the Vickrey payment rule in an 
environment with multiple heterogeneous items. At the same time, interest in core-selecting auctions 
appears to be rising, with two high-stakes auctions already conducted using a two-stage version of the 
nearest-Vickrey pricing rule. Nevertheless, the existing literature on core-selecting auctions primarily 
studies complete-information environments and, to the extent that incomplete information is 
introduced, bidders’ values are assumed to be independent.  

This paper develops a model of package auctions in an environment with private information. The 
model considered, while simple and intuitive, includes a number of realistic features that motivate the 
use of package auctions, such as the presence of substantial complementarities in bidders’ 
preferences and a positive correlation of bidders’ values. We were able to derive explicit closed-form 
solutions for all considered payment rules and all correlation levels, under certain assumptions on 
distributions.   

Our analysis shows that core-selecting payment rules create strong incentives for bidders without an 
intersection of interests to shade their bids in equilibrium. At first glance, this equilibrium property 
might discourage the use of core-selecting auctions, since they do not achieve full efficiency and their 
expected revenue might be even smaller than the revenue of the corresponding VCG auction. 
However, the presence of positive correlation may dramatically improve the performance of core-
selecting auctions relative to the VCG mechanism. In fact, positive correlation significantly improves 
the performance of the proxy rule while affecting negatively the performance of the VCG. The nature 
of the proxy rule makes shading profitable only if the local bidder expects a sufficiently high 
complementary bid from the other local bidder, which becomes increasingly unlikely as the 
correlation increases. On the other hand, positive correlation increases the probability of low-revenue 
or zero-revenue outcomes in the VCG mechanism — these occur when both local bidders’ are a 
substantial fraction of the global bidder’s value. 

Furthermore, the VCG mechanism has a lot of other potential drawbacks for practical applications. 
The full efficiency property of the VCG is actually a result of the best-case scenario analysis in a 
more general model of package auction where bidders can effectively use several identities (or shills) 
to represent their interests. If the seller has no control over identities of the bidders, the efficiency and 
revenue of the VCG may be significantly lower.  For example, in a simple model with two items, two 
global bidders and a VCG pricing rule, the truth-telling strategies no longer form equilibria when one 
or both global bidders can enter the auction using two local shills. In contrast, for a complete-
information environment, Day and Migrom (2008) show that core-selecting auctions preserve 
monotonicity of revenue with respect to the number of bidders, suggesting that bidders will not be 
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able to take advantage of the shill-bidding strategies when the auction utilizes a core-selecting pricing 
rule. In the example above, any bidder-optimal core-selecting auction has an equilibrium in sincere 
strategies with full efficiency, while VCG does not. Moreover, in important applications such as 
spectrum auctions, it is very likely that substantial correlations in bidders’ valuations may be present. 
Thus, unlike Goeree and Lien (2009), we conclude that there may be good reasons for policymakers 
to select a core-selecting auction rather than a VCG mechanism. 

A curious reader might notice that our paper only considers the case of positive correlation between 
local bidders’ values without considering the case of negative correlation. This treatment seems to be 
satisfactory since we are not aware of any reasonable practical application for an auction model with 
negative correlations. The received wisdom in auction theory is that the higher the value of the object 
to one bidder, the higher the value of the object to any other bidder. Nevertheless, from a 
methodological viewpoint, a similar model of negative correlation between local bidders’ values can 
be easily constructed. We envision that the presence of negative correlations will improve the 
performance of the VCG and nearest-bid pricing rules while hurting the proxy rule. This conclusion 
is based on the intuition developed in Section 4 on the effect of increasing the correlation, only 
applied in the opposite direction.           
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Appendix A – Proofs 
 
Proof of Lemma 3: 
 
Profit function of a local bidder i : 

( , ) ( , ) ( , )   i i i i i i i i i ib v v b v P b v  

The first-order optimality conditions are as follows: 
* *

* *( , ) ( , )
0 0 0 [0,1]

   
       

i i i i i i
i i i

i i

b v b v
b b v

b b
 

In order to get the desired form of the first-order conditions, we first compute the marginal cost of 
winning with a bid ib : 

( ) ( )

( , )
( , ( ), ) ( ) (1 ) ( , ( ), ) ( ) ( )

( , ( ), ( )) ( ( )) (1 ) ( , ( ), ( )) ( ) ( ( ))

( , (
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   

       

 

   

      
    

      



 


i i i j

j

i i i
i i i i i j j j

i i b v u b v u

i i i i i i i i i j i j j i j j

v

i i i

P b v
p b v u g u du p b v u f v g u dv du

b b

p b v b v g b v p b v b v f v g b v dv

p b v
( ) ( )

), ) ( ) (1 ) ( , ( ), ) ( ) ( ) .
 

 
   

  
i i i j

i i j j j

b v u b v u

u g u du p b v u f v g u dv du

 

 
Note that by Lemma 2 and the pivotal pricing property we have the following:  

( , ( ), ( )) ( , ( ), ( )) ,i i i i i i i j i j i i jp b v b v p b v b v b v v         

Plugging the last equality back to the marginal cost of winning we get a short and intuitive form for 
this term: 

( , )
( ( )) (1 ) ( ) ( ( )) ( , )

( , ) ( , )

j

i i i
i i i j i j j i i i

i v

i i i i i i i

P b v
b g b v f v g b v dv MP b v

b

b b v MP b v

   



        
   

 

  

Finally, the desired form of the first-order optimality conditions: 
 

 
*

* * * *( , ) ( , )
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i i i i i i i i i i i i
i i
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 
 

* * * *
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( , ) ( , ) 0 0
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b v b b v MP b v v
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

   
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Proof of Proposition 1: 
 
The following table summarizes marginal payments for a local bidder in all possible situations: 
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( ), ( )i jv v   2u   2 ( ) ( )i ju v v      ( ) ( )i ju v v    

Perfect Correlation 

i jv v  
0 N/A 0 

Independence i jv v  0 1 0 

Independence i jv v  0 0 0 

(* (min( , ))i jv v  ) 

 
The expected marginal payment for a local bidder in equilibrium is: 

 
1(1 )

( ( ), ) ( ) ( )
2 j j

v

MP v v v v dv
  

   

 

 
1

( ( )) (1 ) ( ) ( )j j

v

v v v v dv        

 

Note that ( )v v   in case of 1  . The associated expected revenue and efficiency are 
 

Proxy Proxy2 13R Ef   

 
For the case 1   the equivalent differential equation and terminal condition are given by: 
 

1
' (1) 1

(1 )v
 

 
 

 
 

 
The solution for this differential equation yields the equilibrium bid function. 
The associated expected revenue and efficiency are given by: 
 

(1 ) 2(1 ) 2 3
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3
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2

6 (1 5 2 )

2(1 )

2 (1 4 )

2(1 )
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 
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   

 

    




  




 1   

 
Proof of Proposition 2: 
 
The following table summarizes marginal payments for a local bidder in all possible situations: 
 

( ), ( )i jv v   ( )iu v  ( ) ( ) ( )i i jv u v v     ( ) ( )i ju v v    

Perfect Correlation 

i jv v  
0 1/2 0 

Independence 0 1/2 0 
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The expected marginal payment for a local bidder in equilibrium is: 
1

0

1
( ( ), ) ( ) (1 ) ( )

4 j jMP v v v v dv   
 

   
 
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0
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2 j jv v v v dv   
 

    
 

  

Note that 2( ) 3v v   in case of 1  . The associated expected revenue and efficiency are: 

 
Nearest-VCG Nearest-VCG 514

27 6R Ef   
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The associated expected revenue and efficiency are given by: 
 

 3 2 2 2
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2
Nearest-VCG

( 1) 3 (1 )(1 ) 13 (1 ) (7 25 12 ) 11 17

6(2 )

2 (1 ) 2 (2 ) 4

2(2 )

d d d d
R

d d
Ef

     


  



          




    




, 

where 
 2

2

2 2 8 3
( )

2
d

 


 

   


 
 and 1  . 

 
Proof of Proposition 3: 
 
The following table summarizes marginal payments for a local bidder in all possible situations: 
 

( ), ( )i jv v   0 ( ) ( )i ju v v     ( ) ( )i ju v v    

Perfect Correlation 
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0 

Independence 

 2
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0 

 
The expected marginal payment for a local bidder in equilibrium is: 
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   
 

22 1 1

22
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              
 

 
Note that the expected marginal payment is exactly the same as the one for Nearest-VCG Payment 
Rule. Therefore, equilibrium bid function, expected revenue and efficiency are the same. 
 
Proof of Proposition 4: 
 
The following table summarizes marginal payments for a local bidder in all possible situations: 
 

( ), ( )i jv v   u     ( ) ( )i ju v v        ( ) ( )i ju v v    

Perfect Correlation 

i jv v  
N/A ½ 0 

Independence 0 ½ 0 
(* (min( , )) (max( , ))i j i jv v v v     ) 

 
The expected marginal payment for a local bidder in equilibrium is: 
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0 0
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Note that 
1

( )
2

v v   in case of 1  . The associated expected revenue and efficiency are: 

 
Nearest-Bid Nearest-Bid5 3

12 4R Ef   

 
 
For the case 1   the equivalent differential equation and initial condition are given by: 
 

1
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
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The associated expected revenue and efficiency are given by: 
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Appendix B – Solution Summary 
 
1) Proxy Rule 
 
Local Distribution Parameter 

0   ( ) , 0F v v    

Correlation Parameter 
0 1   

Symmetric Equilibrium Bid 

0   1   ( )b v v  
1   0 1   ln( (1 ) )

( ) max 0,1
1

v
b v

 


  
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1, 2    0 1   No closed-form solution. 

Differential Equation: 
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' (1) 1
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b b
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2) Nearest-VCG Rule (Proportional Rule) 
 
Local Distribution Parameter 

0   ( ) , 0F v v    

Correlation Parameter 
0 1   

Symmetric Equilibrium Bid 

0   1   2( ) 3b v v  

1   0 1   
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1   0   Almost-Closed Form: 
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1   0 1   2

2
k





 

d is defined by equation: 
1 3

0
(1 ) 3 2 1

d k k
d

k k






 



  
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Note that the equation has exactly one 
root on (0, k) interval 

 
 
 
3) Nearest-Bid Rule 
 
Local Distribution Parameter 

0   

 ( ) , 0F v v    

Correlation Parameter 
 0 1   

Symmetric Equilibrium Bid 

0   1   1( ) 2b v v  

1   0 1    1
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1
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1, 2    0   
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No closed-form solution. 
Differential Equation: 
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