
MDPOP: Faithful Distributed Implementation of Efficient
Social Choice Problems

Adrian Petcu
∗

Ecole Polytechnique Fédérale
de Lausanne (EPFL)

Lausanne, Switzerland

adrian.petcu@epfl.ch

Boi Faltings
Ecole Polytechnique Fédérale

de Lausanne (EPFL)
Lausanne, Switzerland

boi.faltings@epfl.ch

David C. Parkes
†

DEAS, Harvard University
Cambridge, MA 02138 USA

parkes@eecs.harvard.edu

ABSTRACT
We model social choice problems in which self interested agents
with private utility functions have to agree on values for a set of
variables subject to side constraints. The goal is to implement the
efficient solution, maximizing the total utility across all agents. Ex-
isting techniques for this problem fall into two groups. Distributed
constraint optimization algorithms can find the solution without
any central authority but are vulnerable to manipulation. Incen-
tive compatible mechanisms can ensure that agents report truthful
information about their utilities and prevent manipulation of the
outcome but require centralized computation.

Following the agenda ofdistributed implementation[16], we in-
tegrate these methods and introduceMDPOP, the first distributed
optimization protocol thatfaithfully implements the VCG mech-
anism for this problem of efficient social choice. No agent can
benefit by unilaterally deviating from any aspect of the protocol,
neither information-revelation, computation, nor communication.
The only central authority required is a bank that can extract pay-
ments from agents. In addition, we exploit structure in the problem
and develop a faithful method to redistribute some of the VCG pay-
ments back to agents. Agents need only communicate with other
agents that have an interest in the same variable, and provided that
the distributed optimization itself scales the entire method scales to
problems of unbounded size.

1. INTRODUCTION
Distributed optimization problems can model environments where

a set of agents must agree on a set of decisions subject to side
constraints. We consider settings in which each agent has its own
preferences on subsets of these decisions, expressed as relations
that define its utility. The agents are self interested, and each one
would like to obtain the decision that maximizes its own utility.
However, the system as whole agrees (or some social designer de-

∗The first author is a PhD student at EPFL/Lausanne, supported by
the Swiss National Science Foundation grant 200020-103421/1.
†Parkes is supported by National Science Foundation grants IIS-
0238147, IIS-0534620 and an Alfred P. Sloan Foundation award.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

termines) that a solution should be selected to maximize the total
utility across all agents. Thus, this is a problem ofefficient social
choice. As motivation, we have in mind problems such as meeting
scheduling, where the decisions are about when and where to hold
each meeting, or scheduling contractors in construction projects.

Agents can of course solve such problems using a central au-
thority that computes the optimal solution. In combination with a
mechanism such as the Vickrey-Clarke-Groves (VCG) mechanism,
we can also prevent manipulation by agents. However, in many
practical settings it is hard to bound the problem so that such a cen-
tral authority is feasible. Consider meeting scheduling: while each
agent only participates in a few meetings, it is in general not pos-
sible to find a set of meetings that has no further constraints with
any other meetings and thus can be optimized separately. Simi-
larly, contractors in a construction project simultaneously work on
other projects, again creating an unbounded web of dependencies
that cannot be optimized in a centralized fashion.

Algorithms for distributed constraint reasoning such as ABT and
AWC ([21]), AAS [20], DPOP [17] and ADOPT [14] can deal with
problems of unbounded size as long as the influence of each agent
on the solution is limited to a bounded number of variables. How-
ever, the current techniques do not address the problem of making
agents truthfully declare their preferences and execute the protocol
correctly.

In this paper, we advance the agenda ofdistributed implementa-
tion [16], which integrates methods from mechanism design with
methods from distributed constraint optimization. In distributing
the centralized computation of mechanism design across a system
of self-interested agents the key challenge is to ensure that agents
cannot gain from deviating from the distributed protocol. In ad-
dition to information revelation, agents will now be asked to par-
ticipate in computation and message passing, both of which can
provide new opportunities for manipulation. We describe the first
faithful distributed constraint optimization algorithm, implement-
ing the VCG outcome without any trusted third party besides a
bank, used to enforce payments. The protocol forms anex post
Nash equilibrium [12], so that no agent can benefit by unilaterally
deviating, whatever the utility functions of other agents and what-
ever the constraints. While noting that our protocolneverruns at a
deficit, we also demonstrate how to exploit problem structure in fa-
cilitating payment distributionbackto agents from the bank. To do
this we identify components of the problem that define payments
that cannot be influenced by some subset of agents, that are then
eligible to receive a share of the payments.

After preliminaries, in Section 3 we describe the DPOP [17] al-
gorithm for distributed constraint optimization, which is the focus
of our study. Section 4 extends DPOP to compute the VCG out-
come and proves that the extended protocol, called MDPOP, is

faithful. We also provide an accelerated version of MDPOP that
simultaneously computes the solution to the marginal and main
economies, and again establish faithfulness. Section 5 discusses
the issue of budget balance and defines our payment redistribution
method.

2. PRELIMINARIES
We assume that the social choice problem consists of a finite but

possibly unbounded number of decisions that all have to be made at
the same time. Each decision is modeled as a variable that can take
values in a well-defined domain. There can be side constraints be-
tween the variables, and each agent can also have privaterelations
that define its utility for decisions.

Modeled as a distributed constraint optimization problem,
DCOP(A) on agentsA we have:

DEFINITION 1. An efficient social choice problem is modeled
as a distributed constraint optimization problem (DCOP) as a tuple
< A,X ,D, C,R > such that:
A = {A1, ..., An} is a set ofself-interestedagents interested in

the optimization problem;
X = {X1, ..., Xm} is the set ofpublic decision variables;

P (Ai) ⊆ X is the sub-domain of variables on which agentAi

could have relations;X(Ai) ⊆ P (Ai) are the variables in which
agentAi is interested and does have relations;
D = {d1, ..., dm} is the set of finitepublic domains of the vari-

ablesX ; each domain is known to all interested agents;
C = {c1, ..., cq} is a set ofpublic constraints, where a constraint

ci is a functionci : di1 × .. × dik
→ {−∞, 0} that returns 0 for

all allowed combinations of values of the involved variables, and
−∞ for disallowed ones; these constraints are known and agreed
upon by all agents involved in the respective communities;
R = {R1, ..., Rn} is a set ofprivate relations, whereRi is the

set of relations specified by agentAi and relationrj
i ∈ Ri is a

functiondj1 × ..× djk
→ R specified by agentAi, which denotes

the utility Ai receives for all possible values on the involved vari-
ables{j1, . . . , jk} (negative values can be thought of as costs).

The optimal solution is a complete instantiationX∗ of all
variables inX , s.t. X∗ = argmaxX∈D(

P

Ri∈R Ri(X) +
P

ci∈C ci(X))1, whereRi(X) =
P

r
j
i
∈Ri

rj
i (X) is Ai’s utility

for this solution.

Refer to the agentsAi for which Xj ∈ X(Ai) for some vari-
ableXj as forming thecommunityfor variableXj . We will use
DCOP(−Ai) to denote the constraint optimization problem with-
out agentAi, and refer to this as the “marginal problem without
agentAi.”

An agent can also haveprivate variables, and rela-
tions/constraints imposed on subsets of private variables and public
variables. Decisions about private variables, as well as explicit in-
formation about these relations and constraints will remain private
to an agent.

In addition to defining values for variables, our faithful protocols
will also define payments, to be collected (or made) to agents. The
only central authority that we require is abank that can enforce
these payments. Agents are modeled with quasilinear utility func-
tions, so that agenti’s total utility for decisionX and paymentp
made to a bank isRi(X)− p.

The main assumptions made for this paper are as follows:

1Notice that the second sum is either−∞ if X is an infeasible
assignment, or 0 if it is feasible. Thus, optimal solutionX∗ will
always satisfy all hard constraints when that is possible.

• The set of variablesX , i.e. the number of decisions, is fixed and
independent of the participating agents. Moreover, each agent
knows the variables that it is interested in.

• DomainsD are known to all interested agents.

• Each constraintci ∈ C is known to all agents interested in any
variable involved inci.

• The agents with possible and actual interest in a variableXi are
known to all agents in the community ofXi.

• An agent can communicate with all agents in all communities
in which it is a member.

• Agents are modeled asrational but helpful, meaning that al-
though self-interested, they will follow a protocol whenever
there is no deviation that will make themstrictly better off.

• No collusion between agents.

• The problem has a feasible solution.

• Catastrophic failure if all agents in a community do not eventu-
ally agree on the same value for the variable.

• Every agent has a trusted communication channel with the
bank.

To motivate the assumption that all members of a community are
known to each other, consider meeting scheduling in which the de-
cision variables are the times and locations of each meeting. Here,
we would require that for each meeting there will be a list of par-
ticipants that have to agree on the time and place. Realize that the
only communication that we assume (other than with the bank) is
among agents in the same community.

The assumption of catastrophic failure given disagreement is
only used to ensure that once the multi-agent system has come to
a decision it will be finallyexecuted.It is to prevent “hold-out” by
an unhappy agent at this final stage. Given that the other agents
set their local values to be the agreed upon solution, no agent can
benefit by adopting an alternative view of the decision. To motivate
this, realize that a scheduled meeting where some participants as-
sumed a different time than others would not be valid, benefitting
no one.2

A simple “centralized” model of the DCOP(A), which we write
COP(A), can be represented as amultigraph (for example Fig-
ure 1(a)), with the decision variables as nodes, and (possibly) mul-
tiple relations belonging to different agents that involve the same
variables. Our complexity results are stated in terms of the induced
width of this graph ([3]).

In order to allow multiple agents to express preferences on the
same set of variables andin a distributed fashion, we adopt a dis-
tributed model where each agent has a local replica of the variables
that it is interested in (e.g. Figure 1(b).) For each public variable,
Xj ∈ X(Ai), agentAi has a local copy ofXj , denotedXi

j . Agent
Ai then models its interests as a local problemCOP (X(Ai), Ri),
by specifying its relationsrj

i ∈ Ri on the locally replicated vari-
ablesX(Ai). All copies of the same variable are synchronized be-
tween agents through equality constraints. In solving the problem,
agents interact with others only through the equality constraints be-
tween local replicas of the public variables.3

2On the other hand, this is not an appropriate assumption in market
domains where the decision is a trade of goods: it may in factnotbe
catastrophic for a seller to finally renege on an agreed trade. Here,
we would need additional techniques such as monitoring to extend
out methods. See Shneidman and Parkes [19] for an extended dis-
cussion of the problem of final execution of an agreement.
3Local, private variables do not show up in inter-agent communi-
cation. Agents typically need not solve the internal problem for all

Figure 1: A meeting scheduling problem, its modeling as a DCOP with replicated variables, and a DFS arrangement

Example: Meeting Scheduling.This model can be in-
stantiated for distributed meeting scheduling, yielding the PEAV
model [13]. Figure 1 shows an example where 3 agents want to find
the optimal schedule for 3 meetings. Each agent has as variables
the starting times of the meetings it participates in (e.g.A2 M1 rep-
resents the local copy of the variable representing meetingM1 for
agentA2). Local all-differentconstraints between an agent’s vari-
ables ensure that it does not participate in several meetings at the
same time. Inter-agent equality constraints between local copies
corresponding to the same meeting model the requirement of global
agreement. Unary relations on the starting times of the meetings
(e.g.r2(A2 M1)) model the preferences of the agents.

2.1 The Centralized VCG Mechanism
The Vickrey-Clarke-Groves (VCG) mechanism (see Jack-

son [11]) provides a centralized and incentive-compatible (IC) so-
lution to efficient social-choice problems. Indeed, the Groves fam-
ily of mechanisms (of which VCG is an instance) are the only effi-
cient, IC social choice mechanisms [9]. There is a long tradition of
leveraging the VCG mechanism within DAI, going back to Ephrati
and Rosenschein [4] who considered the use of VCG mechanisms
to achieve consensus.

To use the centralized VCG, each agent would report to a cen-
ter its relations (and also the domains of variables, and constraints
if they were not already known by the center). The center would
assign values to variables and determine payments to be made by
each agent. The VCG mechanism enjoys a strong form of IC: it is
truthful, meaning that each agent can always maximize its own util-
ity by reporting true information about its relations,whateverthe
reports of other agents. Truthful reporting is adominant-strategy
equilibrium (DSE), which is useful because it frees an agent from
modeling the behavior of other agents in computing its equilibrium
strategy. Each agent makes a payment equal to the marginal im-
pact of its presence on the rest of the system. In determining this,
the center in the VCG mechanism would also solve the marginal
problems DCOP(−Ai) without each agentAi. LetX∗

−i denote the
solution to DCOP(−Ai) andX∗ denote the solution to DCOP(A).
The payment by agenti to the center is:

Tax(Ai) =
X

j 6=i

(Rj(X
∗
−i)−Rj(X

∗)) , (1)

whereRj ∈ R are the relations specified by agentAj . Thus, agent
Ai makes a payment equal to the total marginal negative effect of
its presence on the utility of other agents.

combinations of values of the public variables [21].

Realize that in all problem instances we haveTax(Ai) ≥ 0,
for all Ai, with

P

j 6=i
Rj(X

∗
−i) ≥

P

j 6=i
Rj(X

∗) because agent
Ai’s presence can only have the effect of changing the values of
variables away from the best possible settings just for agents6=
Ai. Thus, we always haveweakbudget-balance, with the center
running a surplus in all instances of our social choice problem.

The payment by agentAi can be disaggregated, with
Tax j(Ai) = Rj(X

∗
−i)−Rj(X

∗) denoting the payment made by
agentAi based on its marginal effect on agentAj . Indeed, it can be
further disaggregated to the individual relations of agentAj . This
simple observation will be very powerful in our setting.4 It will
permit a distributed computation of tax payments, where agentAj

computes the payment that should be made by other agents to the
bank for their marginal effect on itself; i.e. agentAj computes
Tax j(Ai) for all i 6= j, which will be possible becauseAj will
know the values on variables of interest inX∗ andX∗

−i.

2.2 Distributed Implementation
Parkes and Shneidman [16, 19] introduce the notion ofdis-

tributed implementationfor social choice problems. A distributed
implementation (DI),dM =<g, Σ, sm >, defines an outcome rule
g : Σn → D × R

n, whereg1 ∈ D defines values on variables
andg2 ∈ R

n defines the payment by each agent, a feasible strategy
spaceΣ, and asuggested(multi-agent) protocolsm. A protocol
dM is ex postfaithful if suggested protocolsm is anex postNash
equilibrium (NE), meaning that no agent can benefit by deviating
from the protocol in equilibrium (i.e. given that other agents follow
the protocol) and whatever the particular instance of DCOP.

In a DI, the suggested protocol,sm, combines the information
revelation actions of mechanism design with the computational and
communication actions of distributed algorithms. Thus, in follow-
ing sm an agent is both revealing information about its private rela-
tions and assisting in solving the DCOP and computing payments.
The outcome ruleg defines the assignment of values and payments
for all possible termination states, including those that could arise
from unilateral deviations. The feasible strategy spaceΣ, restricts
the space of actions available to an agent in all possible states of
the protocol, i.e. the messages that an agent can send that are in-
terpretable by the other agents given that they are following the
suggested protocol.

Parkes and Shneidman [16] introduced thepartition principle
for the distributed implementation of VCG mechanisms. Briefly,
this principle states that a distributed mechanism is anex post

4See Feigenbaum et al. [6] for a corresponding disaggregated VCG
payment in the domain of shortest-path Internet routing.

faithful distributed implementation of efficient social choice if:
(1) optimal solutions are always obtained forDCOP(A) and
DCOP(−Ai) givensm; (2) agentAi cannot influence either the
solution toDCOP(−Ai) or its tax; (3) the optimal solution of
DCOP(A) is correctly executed and the corresponding taxes col-
lected.

Loosely, the partition principle holds because no agent can af-
fect its payment for any outcome. Thus, it is in the best interest
of every agent to follow the suggested protocol so that the efficient
outcome (i.e. the outcome selected in the VCG mechanism) is se-
lected. The only effect of a deviation by an agent is to change either
the outcome or some other agent’s payment. Truthfulness of VCG
then gives faithfulness. The suggested strategy forms anex post
NE but not a DSE because it relies on other agents following the
strategy; if another agent deviates, e.g. from its role in the compu-
tation to solveDCOP(A), then the correct outcome of the VCG
mechanism will not be selected.

In related work, Feigenbaum and colleagues [6, 7] introduced
the notion ofdistributed algorithmic mechanism design, but em-
phasized complexity questions rather than the faithfulness that is
central to DI; see [19] for a faithful extension. Monderer and Ten-
nenholtz [15] consider a distributed single item auction problem,
but focus on communication of messages by self-interested agents
rather than distributed computation. Finally, Izmalkov et al. [10]
leverage cryptographic methods to convert centralized mechanisms
into DIs on fully connected graphs.

3. DISTRIBUTED OPTIMIZATION VIA
DPOP

In this section, we instantiate the DPOP algorithm [17] for ef-
ficient social choice. DPOP is an instance of Dechter’s general
bucket elimination scheme [3], adapted for the distributed case.
This instantiation runs in three phases, which are very similar to
the ones from the standard DPOP protocol. Phase one (section 3.1)
constructsDFS(A), which defines the control ordering of the in-
ference algorithm. Phase two is a bottom-up utility propagation,
and phase three is a top-down value assignment propagation (see
section 3.2). There are some slight differences in phases one and
two because we seek to exploit the structure of this DCOP model
with replicated variables, for computational efficiency reasons.

Notice that DPOP can be applied to disconnected problems as
well: the DFS arrangement is then a DFS forest, and agents in each
connected component simply execute DPOP on a tree of that forest.
The solution to the (disconnected) problem is then simply the union
of optimal solutions for each independent, connected subproblem.

Section 4 will modify DPOP to make it faithful.

3.1 Phase One: DFS Tree Generation
See Algorithm 1. This phase has as a goal to generate a depth-

first traversal (DFS) of the problem graph in a distributed manner.
A DFS arrangement of a graph G is a rooted tree with the same
nodes and edges as G and the property that adjacent nodes from the
original graph fall in the same branch of the tree (thus, there are no
edges between different branches of the tree). Common definitions
of parent, child, pseudoparent, pseudoparent apply. For example,
in Figure 1(c),A2 M1 andA2 M2 are parent/child to each other,
andA2 M3 andA2 M2 are pseudoparent/pseudochild.Tree-edges
connect parents/children (e.g.A2 M1 − A2 M2), andback-edges
connect pseudoparents/pseudochildren (e.g.A2 M3 −A2 M2).

First, each agentAi formulates internally its interests on the vari-
ablesX(Ai) asCOP(X(Ai), Ri), with a replicated variableXi

j

for eachXj ∈ X(Ai). All agents subscribe to the communities

Algorithm 1: Phase One of DPOP.

DPOP(A,X ,D, C,R):
1 Each agentAi models its interests asCOP i(X(Ai), Ri): a

set of relationsRi imposed on a setX(Ai) of variablesXi
j

that each replicate each public variableXj ∈ X(Ai)
2 Each agentAi subscribes to the communities ofXi ∈ X(Ai)

DFS Generation:
3 The agentsA choose one of the variables,X0, as the root.
4 Agents inX0’s community elect a “leader”,Ar

5 Ar initiates the token passing to construct the DFS
6 At completion, eachAi knowsP (Xi

j), PP (Xi
j), C(Xi

j),
PC(Xi

j), for all local copiesXi
j .

they are interested in, and learn which other agents belong to these
communities.5 In doing this theproblem graphis constructed.
Next, one of the variables,X0 is chosen as the DFS root.6 The
agents involved in the community forX0 then randomly choose
one of them,Ar as theleader. The local copyX0

r of variableX0

forms the root of the DFS. In the case that the problem is initially
disconnected then a modification is required to choose multiple root
communities, one for each connected component.

Second, the agents participate in a distributed depth-first traver-
sal of the problem graph to construct the DFS for problem
DCOP(A), which we denoteDFS(A). (Multiple DFS trees are
generated for disconnected problems.) For convenience, we de-
scribe the DFS process as a token-passing algorithm in which all
members within a community can observe the release or pick up of
the token by the other agents. But, this can also be implemented
via (private) message passing.

Let us refer to the example from Figure 1, and assume thatM3

was chosen as the start community, andA2 was chosen within the
community as the start node.A2 creates an empty token, adds
A2 M3’s ID to the token, and then releases it back to the com-
munity. Another agent fromM3’s community (e.g.A3) picks up
the token, adds its copy ofM3 to the token (A3 M3’s ID) and
releases it again.A1 picks it up and automatically adds equality
constraints between its variableA1 M3 and all its corresponding
replica variables that precede it in the context of the token (A2 M3

andA3 M3) (i.e. one tree edge and one back edge.) Notice that
the result is that all replicas of a variable are arranged in a chain,
and have equality constraints (back-edges) with all the predeces-
sors that are replicas of the same variable.

Agent A1 also adds its copy ofM3 to the token (A1 M3) and
as the last agent in communityM3 to receive the token looks to
see if it is a member of another community that has yet to receive
the token (choosing one at random if such a community exists).
Here, agentA1 is linked to communityM1 and adds its copy of
M1 to the token (i.e.A1 M1), and then releases the token inM1’s
community, whereA2 picks it up. When a dead end is reached,
the last agent backtracks by sending the token back to its parent.
In our example, this happens whenA3 receives the token fromA2

in theM2 community. Then,A3 sends back the token toA2, etc.
Eventually the token returns on the same path all the way to the
root, and then the process is complete.7

5A community can be e.g. a bulletin board, a mailing list, etc
6This can be done e.g. randomly, using any distributed algorithm
for random number generation, or by simply picking the variable
with the highest ID, etc.
7K-ary constraints (involving k variables) are treated like a cliques
during the DFS construction. Concretely, in Figure 1, there is a
ternaryall-diff constraint6= A2(M1, M2, M3). A2 then considers

In constructingDFS(A), the DFS traversal is made according
to the structure defined by the relations of the agents. Most hard
constraints appear thus as backedges in such a DFS tree. By con-
vention, any hard constraintci ∈ C is assigned to the highest agent
in the community of the variable involved inci that is lowest in the
DFS ordering. For example, in Figure 1(c), assume that there is a
constraint betweenM2 andM3 that specifies thatM2 should occur
afterM3. With our convention, this constraint becomes a backedge
between the 2 communities, and is assigned toA2 for handling,
becauseA2 M2 is the highest variable inM2’s community, which
is lower thanM3’s community in the DFS.A2 then handles this
constraint in parallel with its own relationA2 M2-A2 M3.

Realize that the choice of DFS does not change the solution, so
the choice of root node, leaders, etc does not affect the incentive
properties.

3.2 Phases Two and Three: Inference
Phase 2is a bottom-to-top pass that propagates aggregated in-

formation about the relations towards the root. TheUTIL propaga-
tion starts bottom-up from the leaves and propagates upwards only
through tree edges, from children to parents. AUTIL message sent
by Xi to its parentXj informsXj how much utilityu∗

Xi
(vk

j) each
one of its valuesvk

j gives to the whole subtree rooted atXi in the
optimal solution.

To compute theUTIL message for its parent,Xj has to join the
messages it received from all its children, and the relations it has
with its parent and pseudoparents.8 Afterwards, it projects it-
self out of the join and sends the result to its parent. The result of
the projection is in fact the set of optimal utilities that can be ob-
tained by the subtree rooted at this node, plus the relations it has
with its parent/pseudoparents, for each combination of values of
the parent/pseudoparents (see [17] for details and examples). This
projection provides for an efficient algorithm.

A useful optimization for social choice problems can be intro-
duced to handle replica variables. In the example of Figure 1,
A2 M2, A3 M2 and A2 M1 all have back-edges:A2 M2 −
A2 M3, A3 M2−A3 M3 andA2 M1−A2 M3 respectively. These
represent the inequality constraints for agents. Normal DPOP
would conditionUTIL messages on bothA2 M3 andA3 M3 sep-
arately. For social choice these will adopt the same values due
to the equality constraints, and thus the conditioning can be col-
lapsed into a single dimension, the value ofM3. This is possi-
ble because all 3 agents involved, i.e.A1, A2 andA3 know that
A1 M3, A2 M3 andA3 M3 represent the same variable.

Phase 3is a top-to-bottom pass that makes decisions about the
value of variables, with decisions made recursively from the root
down to the leaves. This “VALUE propagation” phase is initi-
ated by the agentAr representing the root variableX0, once it has
receivedUTIL messages from all of its children. Based on these
UTIL messages, the root assigns itself the valuev∗ that maximizes
the sum of its own utility and that communicated by all its subtrees.
It then sends aVALUE(X0

r ← v∗) message to every child. The pro-
cess continues recursively to the leaves, with agentsXi assigning
values to local copies of variables.

3.3 Complexity Analysis of DPOP
It has been proved in Petcu and Faltings [17] thatDPOP pro-

duces a linear number of messages for general distributed optimiza-

the variables in the scope of this constraint to be a fully connected
component, which produces the result from Figure 1(c).
8A k-ary relation is introduced in this join only once, by the lowest
node in the DFS tree, which is part of its scope. E.g. in Figure 1(c),
the constraint6= A2(M1, M2, M3) is introduced byA2 M2.

tion problems. Its complexity lies in the size of theUTIL messages
(the VALUE messages have linear size). This is also true for its
instantiation to social choice problems.

Let us denote byw the width of the problem graph for the cen-
tralized model of DCOP(A) (e.g. Figure 1(a)). The induced width
of a graph is a topological parameter that captures the density and
clustering of the graph [3]. It is roughly defined as themaximal
number of overlapping tree paths between any pair of different ver-
tices. In the example from Figure 1,w = 2. Let D = maxm |dm|
denote the maximal domain of any variable.

THEOREM 1. The number of messages passed is2×m, (n−1)
and(n−1) for phases one, two and three respectively, wheren and
m are the number of nodes and edges in the distributed model.

The maximal amount of computation on any node in DPOP is
O(Dw+1), and the largest UTIL message hasO(Dw+1) entries,
wherew is the width of the centralized problem graph.

Sketch of Proof.Follows from the analysis of DPOP in Petcu and
Faltings [17], and the fact that equivalent variables use up only one
dimension in theUTIL messages (see Section 3.2), and that a di-
mension is not projected out immediately as it reaches the first tar-
get variable, but only when it reaches its top most copy.2

The complexity of DPOP for social choice problems is exponen-
tial in the tree width of the centralized graphical model, but not the
decentralized graphical model which includes the replicated vari-
ables. This is due to the special handling of replica variables de-
scribed in Section 3.2.

4. MDPOP: A FAITHFUL PROTOCOL FOR
DISTRIBUTED OPTIMIZATION

In this section we extend the DPOP algorithm to defineMD-
POP, and prove that MDPOP is a faithful implementation of dis-
tributed constraint optimization, terminating with the outcome of
the VCG mechanism. We first provide a simple extension, that we
call simple-MDPOP, before describing our preferred extension, that
we call MDPOP.

Algorithm 2: Simple-MDPOP.

1 Run DPOP forDCOP(A) onDFS(A); find X∗

2 forall Ai ∈ A do
3 Run DPOP forDCOP(−Ai) onDFS(−Ai); find X∗

−i

4 ∀Aj 6= Ai, computeTax j(Ai) = Rj(X
∗
−i)−Rj(X

∗)
5 ∀Aj 6= Ai, reportTax j(Ai) to the bank
6 Bank deducts

P

j 6=i
Tax j(Ai) from Ai’s account

7 Ai implementsX∗ as solution to its localCOP (Ai)

Algorithm 2 describes simple-MDPOP. The algorithm is pre-
sented for a setting in which the main problem and the subproblems
are connected but extends immediately to disconnected problems,
as discussed in the previous section and without new incentive
considerations. Notice that the protocol sets up, and then solves,
n + 1 DPOP protocols, one for the main problem and one for the
n marginal problems, with each agentAi removed in turn. Once
thesen + 1 stages are complete every agentAj has sufficient local
knowledge of the solutions{X∗, X∗

−1, . . . , X
∗
−n} to compute the

tax payment that every other agentAi, for i 6= j, should make to
the bank because of its marginal effect on agentj. Each agent will
finally respect decisionX∗, to avoid catastrophic failure.

THEOREM 2. The simple-MDPOP algorithm is a faithful dis-
tributed implementation of the optimal solution to a DCOP, and
terminates with the outcome of the VCG mechanism.

PROOF. Follows from the partition principle [16]. First, DPOP
computes optimal solutions to DCOP(A) andDCOP(−Ai) for
all Ai ∈ A when every agent follows the protocol. Second, agent
Ai cannot influence the solution toDCOP(−Ai) because it is not
involved in that computation. The DFS is constructed and then
inference performed by the other agents, who completely ignore
Ai’s variables and constraints, and any messages that agentAi

might send. Moreover, agentAi is not required to perform any
message passing in solving forDCOP(−Ai). Note that any hard
constraints thatAi may have handled inDCOP(A) are reassigned
automatically to some other agent inDCOP(−Ai).

Notice thatDCOP(−Ai) could become disconnected without
the presence of agentAi. However, as noted in the beginning of
Section 3, DPOP would still solveDCOP(−Ai) correctly. Finally,
agentAi cannot prevent the correct calculation and reporting of the
tax it should pay because this is done by agentsAj 6= Ai. The bank
collects payments and all agents finally set local copies of variables
as inX∗ to prevent catastrophic failure. (Notice that agentAi will
not deviate as long as other agents do not deviate. Moreover, if
agentAi is the only agent that is interested in a variable then its
value is already optimal for agentAi anyway.)2

In particular, notice that we get from the partition principle that
no agent has an interest in obstructing the choice of root commu-
nity or leader agent in Phase one of DPOP, or in the information-
revelation, computation and message passing in Phases two and
three of DPOP. Also, no agentAi can usefully influence its pay-
ment by misreporting the local utility of another agentAj , asUTIL

messages are exchanged. While this could change the select ofX∗

or X∗
−k for somek 6= {i, j}, it would not change the utility in-

formation used in finally determining agentAi’s payments because
only the utility information local toAj and known toAj is used in
computing the component ofAi’s payment due to its effect onAj .

Note on antisocial behavior: While it is true that an agentAj

has no immediate self-interest in reporting the payment another
agent should make, it does have a long-term self-interest if it wants
other agents to be truthful (e.g. imagine a system where over time
agents realize that the correct payments are not being collected
from others). Reporting exaggerated taxes hurts other agents, but
does not increase one’s own utility, so this is excluded by our as-
sumption that the agents are self-interested but helpful.

4.1 Full-MDPOP
In simple-MDPOP, the computation to solve the main problem

is completely isolated from the computation to solve each of the
marginal problems. The fullMDPOPalgorithm leverages the com-
putation already performed in solving the main problem in solving
the marginal problems whenever this is possible and without break-
ing incentive properties.

This enables the algorithm to scale well to problems where each
agent’s influence is limited to a small part of the entire problem.9

The first stage of MDPOP solves the main problem just as in
Simple-MDPOP, running DPOP(A). Once this is complete, each
marginal problem is solved in parallel. To solveDCOP (−Ai),
a DFS-tree is constructed as a modification to DFS(A), retaining
as much of the structure as possible. This maximizes the reuse
of UTIL messages. The new tree,DFS(−Ai) must be con-
structed in a way that is non-manipulable, i.e. without allowing
agenti to interfere with its construction, and also to ensure correct-
ness. This requires that communities of variables that remain con-
nected inDCOP (−Ai) remain connected in theDFS(−Ai) tree

9For example, in a meeting scheduling problem with thousands of
agents, any one agent only participates in a few meetings, in a rather
restricted circle of acquaintances.

Algorithm 3: MDPOP.

1 Run DPOP forDCOP(A) onDFS(A); find X∗

2 forall Ai ∈ A do
3 CreateDFS(−Ai) by adjusting DFS(A):

exclude all variablesXi
j and relations that belong toAi;

the highest descendant of each excludedXi
j that has a

back edge with an ancestor ofXi
j turns it into a tree-edge;

4 Run DPOP for DCOP(−Ai) on DFS(−Ai):
children/parents of each excludedXi

j recompute their
UTIL messages and restart propagations;
reuseUTIL msgs fromDPOP (A) not influenced byAi;

5 Compute and levy taxes as in simple-MDPOP;
6 Ai implementsX∗ as solution to its localCOP (Ai);

when edges that link to nodes owned byAi are disabled in solving
DCOP (−Ai). For instance, in Figure 2,A1 M1−A1 M3 is a tree
edge inDFS(A), and its removal disconnectsDCOP(−A1)).

Phase One of MDPOP for a marginal problem. Consider
DPOP(−Ai). In building DFS(−Ai) from DFS(A), existing
links that were back-edges inDFS(A) can be turned into tree-
edges inDFS(−Ai) as necessary to keep it connected. This pre-
serves as much as possible of the tree structure. Figure 2 shows an
example of a commonDFS(A), adjusted for each marginal prob-
lem using this idea. For example,A2 M3−A2 M1 is a back-edge
in DFS(A), but becomes a tree-edge inDFS(−A1) to compen-
sate for the loss of edgeA1 M1−A1 M3. The algorithm works
by considering each of the nodesXi belonging toAi in turn. For
eachXi that will be excluded from DPOP(−Ai), all nodes below
Xi check the path from the root to themselves, and the list of nodes
reachable from their children (both these pieces of information are
available afterDFS(A) is constructed). The highest node below
Xi that has a back edge pointing to a node aboveXi converts this
edge into a tree edge and converts its pseudo parent into a parent.

Thus, no additional links are created, as we use only existing
ones, previously designated as back-edges. Realize that this con-
version, in converting back edges to tree edges, cannot increase the
induced width ofDFS(−Ai) above the one ofDFS(A), there-
foreUTIL messages can only decrease in size.

Phase Two of MDPOP for a marginal problem.Each marginal
problem is then solved onDFS(−Ai). Notice that the parent and
children of excluded nodes will have to recompute their messages
from DPOP(A) to account for the new structure and initiate the
corresponding propagation forDPOP(−Ai).

Subsequently, any message can be reused iff it comes from a sub-
tree that does not contain any ofAi’s variables, becauseAi could
not have influenced it. E.g. inDPOP(−A1), A2−M1 is a child of
A2−M1 ∈ A1. It has to recompute aUTIL message and send it to
A2−M3. To do this, it can reuse the message sent byA2−M2 in
DPOP(A), because the sending subtree does not containA1. By
doing so, it reuses the effort spent inDPOP(A) to compute the
messagesA3−M2 → A2−M2 andA2−M2 → A2−M1.

THEOREM 3. The MDPOP algorithm is a faithful distributed
implementation of the optimal solution to a DCOP, and terminates
with the outcome of the VCG mechanism.

Sketch of Proof.From the partition principle [16]. First, agenti
cannot prevent the construction of a valid DFS forDCOP(−Ai)
because in the construction ofDFS(−Ai) from the main DFS, all
transformations are initiated by neighbors ofAi, and all links with
Ai are simply dropped. Second, agenti cannot influence the ex-
ecution of DPOP onDCOP(−Ai) because all messages thatAi

Figure 2: Each agentAi is excluded in turn from the optimizationDCOP(−Ai). DFS(−Ai) is adapted fromDFS(A).

influenced in the main problemDCOP(A) are recomputed in the
new structure. This follows from the fact that every link where
agentAi was responsible for computing a message is eliminated
by its neighbors and that all these propagations are restarted.2

5. INCENTIVE COMPATIBLE VCG PAY-
MENT REDISTRIBUTION

No social choice mechanism can be efficient, incentive-
compatible, and individually rational while at the same time guar-
anteeing exact budget-balance [8].10 In our setting, where there
are no positive externalities, the VCG mechanism runs at a sur-
plus with the bank receiving a net payment from agents. While
these taxes cannot be simply redistributed among the agents, a tax
paymentcanbe refunded to an agentAl as long as that agent has
no influence on the computation of the payments it receives. This
general idea was suggested by Ephrati and Rosenschein ([4]), and
recently explored by Faltings [5] and Cavallo [2].

The most straightforward way to implement this idea is to con-
sider any agent that does not influence any of the optimizations
that are used in computing a certain part of the VCG tax as eligi-
ble to receive this tax. However, this approach would not maintain
incentive-compatibility, as an agent with only a small influence on
some aspect of the problem could gain an advantage by misstating
its preferences to become non-pivotal and thus receive a possibly
much larger tax payment.

Faltings [5] suggests to deal with this problem by forcing an
agentAl to be non-pivotal independently of its declarations by sim-
ply ignoring it in the optimization. In this way, it is guaranteed that
the agent does not have an influence on the tax computation and
thus can receive it without creating unwanted incentives. While
the mechanism may be forced to choose a suboptimal solution, [5]
shows through experiments on randomly generated problems that
the expected utility loss from suboptimality is much smaller than
what would result from wasting the taxes.

However, a drawback of this approach is that in a large opti-

10For budget balance in general problems, one can settle forex ante
individual-rationality [1] and Bayes-Nash incentive-compatibility,
but this requires the mechanism and agents to have common knowl-
edge about a distribution on agent types.

mization problem, some agent would not be considered at all in the
entire problem. It would be more advantageous if various agents
could receivesome portionof the tax in return forsomereduction
of their influence on the solution.

Consider the VCG payment portion:

taxj(Ai) = rj(X
∗
−i)− rj(X

∗)

that is paid in Algorithm 2 by agentAi with respect to relationrj .
Let rj ∈ Rk, i.e. rj was posted by agentAk.

We designate an agentAl, l /∈ {k, i} to receive this payment as
a refund. A straightforward way to chooseAl would be to take an
agent that did not influence the values of any of the variables inrj in
the solution. However, this would destroy incentive-compatibility,
since an agent may now have an incentive to hide its interest in
order to be eligible to receive the refund. Similarly, an agent could
have an interest to make other agents look pivotal to increase its
own chance of receiving a refund.

To avoid such influence,Al needs to be chosen independently of
the agents’ declarations. Our algorithm does this as follows:

1. For each agentAl, we use the setP (Al) of the variables on
which the agent could possibility express interest and ignore
its declarations when they involve other variables.

2. For each payment portiontaxj(Ai), choose an agentAl that
will be eligible to receive it, using any criterion that is not
related to the agents’ own declarations. This can be done by
random selection among agents that cannot possibly be part
of the community of the variables.

3. Using the declarations of the agents, for each payment por-
tion verify that the agentAl chosen to receive it indeed can-
not have any influence on the values of the variables in-
volved. If there is no possible influence, the agent receives
the payment as a refund, if not, it has to be wasted.

We now give a brief description of the third step of the algorithm.
This step is important because even an agent not in the community
of a variable may still be able to influence relations via the propa-
gation of its effect over the problem graph.

We use theomnidirectionalutility propagation from the DPOP
extension presented in [18]. In this version, messages circulate in

all directions along the DFS tree (parent to children, too). A mes-
sage from a parent to its child summarizes the utility information
from the entire problem except the subtree of that child. Joining
messages from the parent and the children gives each node the same
global view of the system as the root in the simple DPOP has.

We can characterize the influence that an agentAl has on a vari-
ableXk by a label that contains a value for each member ofXk ’s
domaindk. The value is “1” ifAl can makeXk take the corre-
sponding value by its declarations, and ”0” if it cannot. IfAl posts
a relation onXk, it can make any value the most preferred one, so
each position has a “1”.

As an example, consider a variableXk that can take three values
a, b, c. Let Al have no influence on any sibling or ancestor
of Xk in the DFS ordering, but complete control of the value of
Xk. Thus,Al’s label forXk is (1,1,1). Let Xa be the ancestor
of Xk in the DFS ordering with possible valuesd, e, f, and
assume that some other agent has imposed the following relation
betweenXk andXa:

Xa = d e f
Xk = a 3 2 1
Xk = b 2 3 1
Xk = c 4 3 2

Furthermore, let the sum of all other messages arriving atXa, as-
suming omnidirectional propagation, be the vector(5, 5, 5), giving
the utilities ofXa = (d, e, f) in the rest of the problem. Note that
this vector is not influenced byAl.

AgentAl can influence the value ofXa only through the utili-
ties it gives to the three different values ofXk. Letting these be
Ul(Xk), and factoring the utilities reported in the rest of the prob-
lem, the propagation would choose the maximum in each row of
the following table, indicated in bold:

Xa= d e f
Xk = a 8 + Ul(Xk =a) 7 + Ul(Xk =a) 6 + Ul(Xk =a)
Xk = b 7 + Ul(Xk =b) 8 + Ul(Xk =b) 6 + Ul(Xk =b)
Xk = c 9 + Ul(Xk =c) 8 + Ul(Xk =c) 7 + Ul(Xk =c)

where the chosen row depends on the value ofXk. Now note that
Al can never forceXa = f, since this will never give the maximum
utility. Thus, Al’s label forXa is (1,1,0). HadAl’s label for
Xk been(1,0,1), its label forXa would have been(1,0,0),
meaning that onlyXa = d is possible and thusAl has in fact no
possibility to influenceXa’s value.

Note that the number of “1”s in a label can never increase during
such propagation, since for every choice of input value there can
be only one optimal output value. This means that propagation will
eventually converge to labels with a single “1”. By propagating
labels in the same way as propagating messages in MDPOP, we
can determine the variables that an agent can potentially influence.

The presence of backedges in the DFS tree somewhat compli-
cates the algorithm. The full algorithm will be described in a longer
version of this paper.

6. CONCLUSIONS
We presented a multiagent constraint optimization algorithm for

use in efficient social choice problems when agents are self inter-
ested and have private information about their utility for different
outcomes. Our algorithm is faithful, in the sense that no agent can
improve its utility either by misreporting its local information or
deviating from any aspect of the algorithm. The only centralized
control we assume is that of a bank that is able to receive messages
about payments and collect payments. In addition to promoting ef-
ficient decisions we also seek to return payments back to agents,

to further improve the net utility of outcomes. Future work should
provide a comprehensive empirical analysis, in order to understand
the scheme’s scalability and budget balance properties on realistic
problem instances.

7. REFERENCES
[1] C. d. Aspremont and L. A. Gerard-Varet. Incentives and incomplete

information.Journal of Public Economics, 11:25–45, 1979.
[2] R. Cavallo. Optimal decision-making with minimal waste:

Strategyproof redistribution of VCG payments. InProceedings of the
International Joint Conference on Autonomous Agents and Multi
Agent Systems (AAMAS-06), Hakodate, Japan, May 2006.

[3] R. Dechter.Constraint Processing. Morgan Kaufmann, 2003.
[4] E. Ephrati and J. Rosenschein. The Clarke tax as a consensus

mechanism among automated agents. InProceedings of the National
Conference on Artificial Intelligence, AAAI-91, pages 173–178,
Anaheim, CA, July 1991.

[5] B. Faltings. A budget-balanced, incentive-compatible scheme for
social choice. InWorkshop on Agent-mediated E-commerce (AMEC)
VI. Springer Lecture Notes in Computer Science, 2004.

[6] J. Feigenbaum, C. Papadimitriou, R. Sami, and S. Shenker. A
BGP-based mechanism for lowest-cost routing. InProceedings of the
2002 ACM Symposium on Principles of Distributed Computing,
pages 173–182, 2002.

[7] J. Feigenbaum and S. Shenker. Distributed Algorithmic Mechanism
Design: Recent Results and Future Directions. InProceedings of the
6th International Workshop on Discrete Algorithms and Methods for
Mobile Computing and Communications, pages 1–13, 2002.

[8] J. Green and J.-J. Laffont. Characterization of satisfactory
mechanisms for the revelation of preferences for public goods.
Econometrica, 45:427–438, 1977.

[9] T. Groves and M. Loeb. Incentives and public inputs.Journal of
Public Economics, 4:211–226, 1975.

[10] S. Izmalkov, S. Micali, and M. Lepinski. Rational secure
computation and ideal mechanism design. InFOCS ’05: Proceedings
of the 46th Annual IEEE Symposium on Foundations of Computer
Science, pages 585–595, Washington, DC, USA, 2005. IEEE
Computer Society.

[11] M. O. Jackson. Mechanism theory. InThe Encyclopedia of Life
Support Systems. EOLSS Publishers, 2000.

[12] V. Krishna.Auction Theory. Academic Press, 2002.
[13] R. T. Maheswaran, M. Tambe, E. Bowring, J. P. Pearce, and

P. Varakantham. Taking DCOP to the realworld: Efficient complete
solutions for distributed multi-event scheduling. InAAMAS-04, 2004.

[14] P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo. ADOPT:
Asynchronous distributed constraint optimization with quality
guarantees.AI Journal, 161:149–180, 2005.

[15] D. Monderer and M. Tennenholtz. Distributed games: From
mechanisms to protocols. InProc. 16th National Conference on
Artificial Intelligence (AAAI-99), pages 32–37, July 1999.

[16] D. C. Parkes and J. Shneidman. Distributed implementations of
Vickrey-Clarke-Groves mechanisms. InProc. 3rd Int. Joint Conf. on
Autonomous Agents and Multi Agent Systems, pages 261–268, 2004.

[17] A. Petcu and B. Faltings. A scalable method for multiagentconstraint
optimization. InProceedings of the 19th International Joint
Conference on Artificial Intelligence, IJCAI-05, Edinburgh, Scotland,
Aug 2005.

[18] A. Petcu and B. Faltings. Superstabilizing, fault-containing
multiagent combinatorial optimization. InProceedings of the
National Conference on Artificial Intelligence, AAAI-05, Pittsburgh,
USA, July 2005.

[19] J. Shneidman and D. C. Parkes. Specification faithfulness in networks
with rational nodes. InProc. 23rd ACM Symp. on Principles of
Distributed Computing (PODC’04), St. John’s, Canada, 2004.

[20] M.-C. Silaghi, D. Sam-Haroud, and B. Faltings. Asynchronous
search with aggregations. InAAAI/IAAI, pages 917–922, Austin,
Texas, 2000.

[21] M. Yokoo and K. Hirayama. Algorithms for distributed constraint
satisfaction: A review.Autonomous Agents and Multi-Agent Systems,
3(2):185–207, 2000.

