
Vickrey Prices and Shortest Paths:
What is an edge worth?

John Hershberger

Mentor Graphics Corp.
8005 SW Boeckman Road

Wilsonville, OR 97070, USA
john hershberger@mentor.com

Subhash Suri�

Computer Science Department
University of California

Santa Barbara, CA 93106, USA
suri@cs.ucsb.edu

Abstract

We solve a shortest path problem that is motivated by
recent interest in pricing networks or other computational
resources. Informally, how much is an edge in a network
worth to a user who wants to send data between two nodes
along a shortest path? If the network is a decentralized en-
tity, such as the Internet, in which multiple self-interested
agents own different parts of the network, then auction-
based pricing seems appropriate. A celebrated result from
auction theory shows that the use of Vickrey pricing moti-
vates the owners of the network resources to bid truthfully.
In Vickrey’s scheme, each agent is compensated in propor-
tion to the marginal utility he brings to the auction. In the
context of shortest path routing, an edge’s utility is the value
by which it lowers the length of the shortest path—the dif-
ference between the shortest path lengths with and without
the edge. Our problem is to compute these marginal values
for all the edges of the network efficiently. The naı̈ve method
requires solving the single-source shortest path problem up
to � times, for an �-node network. We show that the Vick-
rey prices for all the edges can be computed in the same
asymptotic time complexity as one single-source shortest
path problem. This solves an open problem posed by Nisan
and Ronen [12].

1. Introduction

Shortest paths are fundamental in many areas of com-
puter science, operations research, and engineering. Their
applications include network and electrical routing, trans-
portation, robot motion planning, critical path computation
in scheduling, etc. In addition, shortest paths also provide

�Subhash Suri’s research on this paper was partially supported by Na-
tional Science Foundation grants CCR-9901958 and ANI-9813723.

a unifying framework for many optimization problems such
as knapsack, sequence alignment in molecular biology, in-
scribed polygon construction, and length-limited Huffman-
coding, etc. (Eppstein [4] is a good reference for shortest
paths and their applications.) Most complex applications of
the shortest path problem, however, require more than just
the calculation of a single shortest path. In some applica-
tions, the desired path might be subject to additional con-
straints that are hard to quantify. In others it might be use-
ful to examine not just the shortest but a larger set of “short
paths.” It some applications, it is desirable to see how the
shortest path is influenced by various system parameters,
through a “sensitivity analysis.” Our problem belongs to
this last category. We wish to determine, for each edge �
in a graph, what effect �’s deletion has on the shortest path
between two given nodes.

Our problem is motivated by recent interest in pric-
ing networks and computing resources, which in turn is
prompted by the prominent role the Internet has come to
play in our lives. One of the distinguishing characteristics
of the Internet is that it involves interaction among multiple
(often very many) self-interested participants. These partic-
ipants (organizations, people, computers, software), called
“agents” in the AI terminology, cannot be trusted to fol-
low the rules of a protocol, especially if deviating from the
protocol is beneficial to the agent. Thus, unlike traditional
distributed computing protocols, a protocol for these new
settings must be designed explicitly to account for willing
manipulation by the users. We briefly describe an example
that helps illustrate this phenomenon.

One of the most famous distributed protocols on the In-
ternet is the Transmission Control Protocol (TCP), imple-
mented on each host on the Internet. An important feature
of this protocol is its congestion control mechanism. The
protocol uses packet loss as an indication of network con-
gestion, and is designed to reduce the sending host’s trans-
mission rate (using a fairly aggressive exponential back-

1

off). It then gradually increases the transmission rate until
another sign of congestion is detected. This cycle of in-
creasing and then decreasing the transmission rate allows
the protocol to discover and utilize whatever bandwidth is
available between two communicating hosts, while at the
same time sharing the overall resource among many such
pairs.

TCP is self-regulating, meaning that it assumes that in-
dividual hosts will respond to congestion exactly as the de-
signers of the protocol intended. But a self-interested host
(agent) has motivation not to decrease its sending rate in
the hope that others will reduce their rate, eliminating the
congestion, while he can continue to enjoy the higher rate.
In one extreme case, no one follows the TCP congestion
rules, and the system crashes; in another extreme case, a
few misbehaving users enjoy an unfair share of the net-
work resources, while the rule-abiding majority of users
suffer. Because a protocol like TCP is easily manipulated,
many researchers have proposed game-theoretic and price-
based mechanisms to share bandwidth and other network
resources [5, 13, 19].

In this context, a natural economic question is this: how
much is an edge in a network worth to a user who wants
to send data between two nodes along a shortest path? If
the network is a decentralized entity, such as the Internet,
in which multiple self-interested agents own different parts
of the network, then an auction is often the best mecha-
nism to determine the utility of various network elements.
A celebrated result from auction theory shows that the use
of Vickrey pricing motivates the agents to bid truthfully. In
Vickrey’s scheme, each agent is compensated in proportion
to the marginal utility he brings to the auction. The insight
of Vickrey is that although agents have an incentive to lie
about their costs in the hope of receiving larger compensa-
tion from the network, making an edge’s payment depend
only on the declarations of other agents eliminates this ma-
nipulative element.�

Suppose we are interested in discovering the shortest
path from node � to node � in a network �, whose links
are owned by self-interested agents. We assume that agents
bid on individual links—that is, either each agent owns at
most one link, or if an agent owns multiple links, he bids on
each independently. (We do not consider the setting where
an agent can make strategic bids on subsets of links. In

�The Vickrey mechanism is a generalization of the well-known sealed
bid second price auction, in which an object is sold to the highest bid-
der, but the winner pays a price equal to the runner-up’s bid. This auction
protocol is known to be truthful, in that a rational agent’s best bidding
strategy is to bid his true valuation. Thus, in a distributed network where
network links belongs to rational, self-interested agents, Vickrey pricing
elicits truthful responses from agents, leading to economic efficiency in
the network—the shortest paths use agents with lowest costs (even though
actual costs are private, not public, information). This truthfulness, how-
ever, does come at a cost: the mechanism may need to subsidize the agents.
For a proof of the Vickrey mechanism’s truthfulness, see [11].

such bundle auctions, even determining the winning bids is
NP-complete, but under a restricted setting Bikhchandani
et al. [2] solve the Vickrey payment problem using linear
programming.) The network employs the Vickrey pricing
mechanism to elicit agents’ true preferences (costs). The
payment �� made to an edge � is determined as follows:

�� �

��
�
���� �� � � ��� ���� �� ������

if � is on the shortest path

� otherwise
(1)

That is, if edge � does not belong to the shortest path in �,
then its agent receives zero payment. Otherwise, the pay-
ment to � is the difference between the cost of the shortest
path without �, and the cost of the shortest path assuming �
is free.

This formulation is from Nisan and Ronen [12], who
posed the following question: what is the computational
complexity of determining all the Vickrey payments? The
straightforward method requires computing the �–� short-
est paths up to � times: once in �, and once in � � �, for
each � that belongs to the shortest path in �. The pay-
ment function expressed in equation (1) requires two short-
est path computations, but the second term can easily be
deduced from the shortest path distance ���� �� ��, for
each � that belongs to the shortest path. In a graph with
� nodes and 	 edges, each shortest path can be computed
in
�� ����		� time using Dijkstra’s algorithm, if all the
edges have non-negative costs, or in
��	� time using the
Bellman-Ford algorithm, if the network has negative cost
edges but no negative cycles [3]. Since there are at most
� �
 edges on the shortest path from � to �, the naı̈ve
method’s total cost for computing the payments to all the
agents is
��� ����	�	� for non-negative cost networks,
and
���	� for networks with negative edge costs.

Our main result is an algorithm to compute the Vick-
rey payments to all the agents in essentially the same time
bound as one single-source shortest path computation. Our
algorithm builds two shortest path trees, one based on �
and the other based on �, and computes the payment term
���� �� � � �� for each edge � by combining parts of these
trees. The total time complexity is
�	 	 � ����� if the
edge costs are non-negative, and
��	� otherwise.

2. Related work

Researchers in multi-agent systems, or distributed AI,
have studied cooperation and competition among “software
agents.” Many of these papers use ideas from mechanism
design to analyze strategies and responses of these agents
in negotiations and resource allocations [14, 15, 20]. Oth-
ers use market-based ideas to solve distributed computa-
tional problems [21, 23]. Researchers in networking have

2

proposed game-theoretic techniques to deal with congestion
control in the Internet [5, 6, 13, 19].

Our paper is motivated by the algorithmic mechanism
design paper of Nisan and Ronen [12]. They investigate
computational complexity and algorithmic issues in mech-
anism design, and raise some intriguing problems. Specif-
ically, they asked the question that forms the basis of our
work: Can the payment functions of the Vickrey mechanism
be computed faster than � invocations of the optimization
problem? The payment function computation for the net-
work routing problem is equivalent to the following: given
a directed graph�, and two specified nodes � and �, deter-
mine, for each edge � in the graph, the effect on ���� �� of
deleting �.

Our problem is related to the topic of “sensitivity analy-
sis” in operations research. In sensitivity analysis, the goal
is to determine the robustness of a solution: how much
the system parameters can be perturbed before the solution
changes. For instance, the sensitivity analysis of the mini-
mum spanning tree requires computing for each edge � the
amount Æ��� by which the cost of � must change before the
minimum spanning tree changes; Æ��� is positive if � is part
of the MST, and negative otherwise. Tarjan [22] presents
an
�	��	���� time algorithm for calculating Æ��� for all
edges of a graph with � nodes and 	 edges, where � is
a functional inverse of Ackermann’s function. Tarjan also
presents a similar result for performing the sensitivity anal-
ysis of a shortest path tree. In our problem, however, we are
not interested in computing the cost threshold of an edge,
but rather in deleting an edge, and then finding the new
shortest path. To the best of our knowledge, all the known
methods for this type of sensitivity analysis of shortest paths
require ��	� work per shortest path edge [1]. Our prob-
lem also has some similarity to the �-shortest paths problem
studied by Eppstein [4], but requires different techniques.

Finally, Bikhchandani et al. [2] and Schummer and
Vohra [18] have considered general auction settings where
the Vickrey payments correspond to dual variables in a lin-
ear program. Their results depend on a combinatorial condi-
tion, which they call the “agents are substitutes” condition.
It turns out that the minimum spanning tree problem and the
assignment problem satisfy the “agents are substitutes” con-
dition, and therefore the Vickrey payments for those prob-
lems can be determined efficiently. However, the “agents
are substitutes” condition does not hold for the shortest path
problem, so the methods of [2] and [18] do not apply to our
setting.

3. Shortest path preliminaries

We assume that our network is modeled by a graph
� � �
���, with �
 � � � and ��� � 	. Each edge � � �
has an associated cost ����. We consider both directed and

undirected graphs, and present our algorithm for undirected
graphs first, since some of the details are simpler. We as-
sume that a pair of vertices � and � has at most one edge
connecting them, but this is not a necessary restriction for
our algorithms: the algorithms work just as well when there
are multiple parallel edges joining pairs of vertices.

A path in� is a sequence of edges, such that consecutive
edges share a common vertex, and each vertex is incident to
at most two path edges. The total cost of a path in � is the
sum of the costs of the edges on the path. The shortest path
between two vertices � and �, denoted by ������� ��, is the
path joining � to �, assuming one exists, that has minimum
cost. The distance between � and �, denoted ���� ��, is the
length of ������� ��, or infinity if no path exists.�

We denote shortest paths and distances when an edge
� has been removed from the graph � by the notations
������� �� � � �� and ���� �� � � ��. The distance in
the full graph ���� �� is shorthand for ���� �� ��; likewise
������� �� is shorthand for ������� �� ��.

There are two distinguished vertices � and � in the graph,
called the source and the target vertices. The shortest path
joining them is ������� �� � ���, ��, � � �, ���, where �� � �
and �� � �. Recall that we want to compute, for each
� � �
� � � � � � �
�, the length of the shortest path from
� to � that does not use the edge �� � ���� �����, which we
call the �-� distance omitting ��. This is precisely the term
���� �� � � ��� in the payment function.

We can analyze the shortest paths from � to � in terms
of the set of edges crossing a cut. In later sections we will
choose the cut according to the structure of the graph, but
for now let us simply consider any partition of the ver-
tex set
 into two sets
� and
� such that � �
� and
� �
� . The set of edges crossing the cut is denoted by
���� � ��
��
��. Each edge ��� �� � ���� has � �
�
and � �
�. Any path from � to � must include at least one
edge from ����. Therefore, we can express our problem as
follows: For each �� � ���� ����� and some cut �
��
��
possibly dependent on ��, compute

���� �� � � ��� � �
�
	���
�	���

	���
����

�
�
���� �� � � ��� 	
���� �� 	
���� �� � � ���

�
� (2)

In Section 4 we apply this expression to compute the �-
� distance omitting each edge of ������� �� in the special
case in which� is undirected and all the vertices of
 lie on
������� ��. In Section 5 we solve the problem for general
undirected graphs, and in Section 6 we solve the problem
for directed graphs.

�For convenience we assume that all path lengths are distinct, so the
shortest path between any two vertices is unique. This condition is easy to
enforce by a symbolic perturbation of the edge costs.

3

4. Payment computation in path graphs

We illustrate our ideas by solving the special case in
which ������� �� includes all the vertices of
 . The ad-
ditional structure in this case makes it particularly easy to
compute the distances in � � � required by equation (2).
We define the cut �
��
�� based on the natural partition of
������� �� � ���� ��� � � � � �
� induced by the removal of
the edge �� � ���� �����. We choose
� � ���� � � � � ��� and

� � ������ � � � � �
�. To simplify the notation, we define
�� � ��
��
�� for ��. See Figure 1.

x yVx Vy

Figure 1. The edges of �� cross the dashed ver-
tical line.

For a given edge �� � ���� ����� to be removed, consider
a cut edge ��� �� � ��. Because ������� �� is contained in

�, ���� �� � ���� �� �����. Likewise, because ������� ��
is contained in
� , ���� �� � ���� �� � � ���. These dis-
tances are simply the lengths of the subpaths of ������� ��
connecting each point to � and �. Thus equation (2) reduces
to

���� �� ����� � �
�
	���
�	�

	���
 ����

���� ��	���� ��	���� ��� (3)

To compute the shortest �-� path omitting each edge
of ������� �� efficiently, we evaluate equation (3) for each
�� � ���� ����� in sequence from � �
 to ��
. For a given
�, we minimize the quantity ���� ��	 ���� ��	���� �� over
all ��� �� � �����. But the difference between�� and����

is easy to compute: it consists of exactly those edges with
one endpoint at ����. To produce ���� from ��, we add
to �� all edges whose left endpoint is ����, and we remove
from �� all edges whose right endpoint is ����.

To formalize this, let ������� and �	
����� be the indices
of the endpoints of � in ������� ��, with ������� � �	
�����.
In later sections, when the endpoints of � do not necessarily
lie on ������� ��, we will redefine ������� and �	
����� to
be indices such that � � �� for all ������� � � � �	
�����.
We perform the following algorithm:

Path Algorithm

1. Let L and R be �-element arrays whose elements are
sets of edges, initially empty.
Let � be a priority queue of (weight, edge) pairs, in-
dexed by weight, initially empty.

2. For each � � � � ������� ��

If ������� � �	
�����, put � into ���������� and
���	
������.

3. For � �
 to � �

(a) For each � � ��� �� � ����

Insert ��� �� into �, with weight � �
���� �� � � ��� 	 ���� �� 	 ���� �� � � ���.

(b) Remove from� all ��� �� pairs with � � ����.

(c) Report the minimum weight in � as the �-� dis-
tance omitting ��.

At step �, � contains the edges of �� � ��, and so
the �-� distance omitting �� is correctly computed. Only
the priority queue operations take non-constant time. A
naı̈ve priority queue implementation gives a running time
of
�	 ���	�.

We can improve this time complexity by using a Fi-
bonacci heap for � with at most � �
 nodes, numbered
from � to � [3]. The �’th node stores the minimum-weight
edge in the current cut that belongs to ����. We initialize
the Fibonacci heap to have � �
 nodes, each with weight
�. In step 3a, for each � � ����, we compare its weight �
with the weight of the heap node with index � � �	
�����;
if � has the lesser weight, we perform a DecreaseKey op-
eration on node � and reset its edge to be �. (We do not
need to do anything if � has the greater weight, because the
edge stored at node � will be in the cut just as long as �.)
In step 3b, we delete node � from �—the minimization in
step 3a means that this node is the representative of all the
edges in ����. Thus the heap contains only a subset of the
edges that would be stored in a naı̈ve implementation of �,
but it is guaranteed to contain the minimum-weight element
of the cut set.

The Fibonacci heap implementation performs
�	�
DecreaseKey operations, but only
��� inserts, deletes,
and FindMin operations. Only the delete operation takes

������ time in the Fibonacci heap; the other three opera-
tions take
�
� amortized time apiece. Thus, the total time
spent on priority queue operations using the Fibonacci heap
implementation is
�� ��� �		�.

4

5. Networks with undirected edges

In a general undirected graph, not all vertices lie on
������� ��. This means that the structure of the shortest
paths from � to other vertices is unrelated to the structure
of the shortest paths from those other vertices to �. The
shortest path tree with source � is the union of all the short-
est paths from � to other vertices in
 . Since we assume
uniqueness of shortest paths, this union of paths is indeed
a tree. Each vertex � has a unique parent � in the tree;
������� �� is obtained by concatenating ������� �� with the
edge ��� ��. Let us denote the shortest path tree with source
� by� .

We can also define a shortest path tree with sink �, which
we denote by � . This is the union of all shortest paths from
vertices in
 to the destination �. (Since we are assuming�
is undirected, � is identical in structure to the shortest path
tree with source �. For directed graphs, this is not true.) The
shortest path trees� and � can be computed in
�� ����	
	� time using Dijkstra’s algorithm and Fibonacci heaps [3],
or in
�	 ����� time using simple data structures.

In the case of a path graph, as discussed in Section 4,
� � � � ������� ��, and the removal of an edge � splits
� and � into identical components. However, for general
undirected graphs, this is not true. For example, in Figure 2,
the vertices in the upper branch of the graph lie in opposite
components of� � � and � � �.

10 10 10 10 10 10

11

10

10 10 10

11

G

X

Y

e

e

e

Figure 2. � and � have different structures.

To compute the �-� distance omitting each edge � � �
���� ����� in ������� �� � ���� � � � � ���, we define the
cut �
��
�� based on the shortest path tree � . Because
������� �� is contained in � , the removal of �� splits �
into two components; we choose the component containing
� to be
�, and the complement to be
� . To be more spe-
cific in the determination of
� and
�, we assign vertices
of
 to blocks based on their position in the shortest path
tree� . If we delete all the edges of ������� �� from� , the

vertices connected to �� in the remaining forest form block
��. If � � ��, we define
���� ��� � �. Thus for a given
edge �� � ���� ����� � ������� ��,
� � 	������ , and

� � 	�������� . See Figure 3.

1B

2B

3B

kB

Figure 3. Removing ������� �� from � defines
blocks ��.

Consider computing the �-� distance omitting � � accord-
ing to equation (2). For all � �
�, ������� �� is contained
in
� by definition, so we have ���� �� � ���� �� � � ���.
Because the partition of� induced by deleting � � is not the
same as the corresponding partition of � (Figure 2), it is not
obvious that ������� �� is contained in
� for all � �
�.
Nevertheless, it turns out that ������� �� does not use ��,
which is what we need.

Lemma 1 Let � be a vertex in
� � 	�������� for some
�� � ���� �����. Then ���� �� � ���� �� � � ���.

x y

Vx
Vy

vu

vi vi+1

Figure 4. Unlike the shaded path, ������� ��
cannot include ��, because ���������� �� is con-
tained in
�.

Proof: The proof is by contradiction. Suppose that
������� �� uses the edge ��. It must traverse �� in the for-
ward direction, from �� to ����, because the shortest path
from ���� to � is fully contained in
� and does not traverse
��. Then ������� �� is the concatenation of ������� �����
with ���������� ��, and the first subpath contains vertex
�� (which is a vertex of
�) in its interior (see Figure 4).
On the other hand, because � �
�, the shortest path tree
� shows that ���������� �� is completely contained in
�.
Since � is undirected, ������� ����� is just the reversal of

5

���������� ��. But one contains �� and one does not, a con-
tradiction. Therefore ������� �� does not contain � �, and the
lemma is established.

We have (almost) reduced the general undirected graph
case to the case in which all vertices lie along ������� ��.
For an edge � � ��� �� �� ������� ��, we define ������� �

���� ��� and �	
����� �
���� ���, assuming
���� ��� �

���� ���. This ensures that � � �� if and only if ������� �
� � �	
�����, and we can apply the algorithm of Section 4
directly. For each edge ��� �� � ��, the distance ���� �� is
computed using the shortest path tree � , and the distance
���� �� is computed using � .

6. Directed networks

When � is directed, things become more complicated.
For example, the shortest path tree with source � is not the
same as the shortest path tree with sink �. To get the shortest
path tree � with sink �, we must reverse the orientation of
every edge in � and compute the shortest path tree with
source � in this modified tree.

If� contains only edges with non-negative costs, we can
compute the shortest path tree using Dijkstra’s algorithm in

�� ���� 		� time, as in the undirected case. However,
directed graphs may contain negative-cost edges; so long
as there are no negative-cost cycles, it still makes sense to
compute shortest paths. If � contains negative-cost edges,
Dijkstra’s algorithm is not applicable, and we must use a
less efficient
��	� algorithm to compute shortest path
trees [3].

x
y

Vx
Vy

vu

e10

10

10

100

10

1000

1010

Figure 5. Lemma 1 is false for directed graphs.

Even after the shortest path trees � and � are com-
puted, computing the �-� distance omitting each edge on
������� �� is still more complicated than in the undirected
case. The chief difficulty is that Lemma 1 does not hold for
directed graphs. Figure 5 shows an example in which vertex
� belongs to the component of� � � that contains �, but the
shortest path ������� �� contains the edge �. Fortunately, it
turns out that we can finesse our way around the failure of
Lemma 1. As the following lemma shows, we do not need
to minimize over all the edges in ��
��
�� in equation (2),
and the edges that we do need don’t violate Lemma 1.

Lemma 2 Let
� and
� be the components of � induced
by removing an edge � � ������� ��. Then ������� �� ����
includes exactly one edge of ��
��
��.

x
y

Vx Vyu
e

P

Figure 6. � is the last vertex of � in
�. Shaded
������� �� is contained in
�.

Proof: Consider any path � connecting � to � in� � �, and
let � be the last vertex of � in
�. (The path � may pass
from
� to
� several times, but we choose the last such
transition. See Figure 6.) The shortest path from � to � in
� is contained in
�, since
� is a subtree of � containing
both � and �. Therefore ������� �� � ������� �� � � ��,
and we can shorten � by replacing the portion of � up to �
by ������� ��. The only edge of ��
��
�� in this shorter
path is the one immediately following �. It follows that the
shortest path from � to � in � � � must contain exactly one
edge of ��
��
��.

A simple corollary of this lemma is the fact that if ��� ��
is the single edge of ������� �� � � �� in ��
��
��, then
������� �� � � �� � ������� ��. It follows that in the min-
imization of equation (2), we do not need to consider any
edge ��� �� of ��
��
�� such that ������� �� contains any
vertex of
�. Consequently, the minimization set of equa-
tion (2) can be reduced as follows:

���� �� � � �� � �
�
	���
�		�����

	���
���
����	���
�����

�
�
���� �� � � �� 	
���� �� 	
���� �� � � ��

�
�

(4)
To filter out edges that violate the condition on

������� ��, we label each vertex � �
 according to the
lowest-indexed block of � that ������� �� passes through.
Define �	�
���� ��� to be the smallest � such that ������� ��
contains a vertex of block ��. That is, �	�
���� ��� �
�
�
�����	���

���� ���. See Figure 7. We can compute
�	�
���� ��� for all vertices � in
��� time by by a pre-
order traversal of � starting from �. For any edge ��� ��,
�	�
���� ��� is just �
��
���� �����	�
���� ����, and the
preorder traversal visits � before �.

For a directed edge � � ��� �� �� ������� ��, we define
������� �
���� ��� and �	
����� � �	�
���� ���. With

6

x
y

v

B2 B3 B4 B5

Figure 7.
���� ��� � �, but �	�
���� ��� � �.

these definitions of ������� and �	
�����, we ensure that �
belongs to the minimization set of equation (4) for � � if and
only if ������� � � � �	
�����, and we can apply the al-
gorithm of Section 4. The distances ���� �� and ���� �� are
available from the shortest path trees � and � . We have
established our main result:

Theorem 3 Given a directed network � with	 edges and
a pair of vertices ��� ��, we can compute ���� �� � � �� for
each edge � � ������� �� in total time
�� ����		� plus
the time to compute a shortest path tree in �.

This theorem allows us to compute the Vickrey payments
for all edges of a shortest path in a network, as given in
equation (1), in the same asymptotic time as is needed to
compute the shortest path itself.

7. Concluding remarks

With the emergence of the Internet as a global plat-
form for communication, computation, and commerce,
there is an increased need to design efficient protocols
that motivate self-interested agents to cooperate. Example
applications include resource allocation in computational
grids [24], market-based protocols for scheduling or task
allocation [21, 23], and congestion control in the Inter-
net [5, 6, 10, 19]. One of the most celebrated results in
the field of mechanism design is the Vickrey (or Vickrey-
Clarke-Groves) protocol, which uses a payment scheme to
motivate selfish agents to bid truthfully.

In this paper, we focused on the algorithmic aspect of
computing the Vickrey payments in the context of shortest
path routing in an internet, where multiple self-interested
agents own portions of the network. Naı̈vely, computing
payment functions for � agents requires � shortest path
computations. Our main result shows that this computa-
tional overhead can be significantly reduced—the payments
are computable in the same asymptotic time as a single
shortest path tree. Our algorithm is quite simple, and uses
only some elementary properties of shortest paths.

We believe our algorithm will have applications to other
graph problems as well. For example, we have recently used
these ideas to compute the � simple (loopless) shortest paths
in the same asymptotic time as � single-source shortest path

tree computations (paper in preparation). The running time
of our algorithm is an improvement by a factor of ���� over
the previous best results, which date back to Lawler’s and
Yen’s algorithms of the early seventies [8, 25, 26].

Many interesting and challenging problems remain in
the still nascent field of algorithmic mechanism design.
For instance, many applications in distributed comput-
ing may require designing new mechanisms [12, 21, 24].
There are also many important problems in which comput-
ing Vickrey payments requires solving NP-complete prob-
lems [9, 16, 17]. In those cases, it would be interesting
to use the techniques of approximation or randomization
to design new polynomial-time mechanisms. The work of
Bikhchandani et al. [2] and Schummer and Vohra [18] also
suggests a promising direction for further exploration.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network
Flows: Theory, Algorithms, and Applications. Pren-
tice Hall, Englewood Cliffs, NJ, 1993.

[2] S. Bikhchandani, S. de Vries, R. Vohra, and J. Schum-
mer. Linear Programming and Vickrey Auctions. Pro-
ceedingss of the IMA workshop on e-auctions and
markets, 2001.

[3] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Intro-
duction to Algorithms. MIT Press, Cambridge, MA,
1990.

[4] D. Eppstein. Finding the � shortest paths. SIAM J.
Computing, 28:652–673, 1998.

[5] R. J. Gibbens and F. P. Kelly. Resource pricing
and the evolution of congestion control. Automatica,
35:1969–1985, 1999.

[6] R. Karp, E. Koutsoupias, C. Papadimitriou, and
S. Shenker. Optimization problems in congestion con-
trol. In Proc. 41st Annu. IEEE Sympos. Found. Com-
put. Sci., 2000.

[7] V. King. A simpler minimum spanning tree verifica-
tion algorithm. Algorithmica, 18(2):263–270, 1997.

[8] E. L. Lawler. A procedure for computing the best
solutions to discrete optimization problemns and its
application to the shortest path problem. Management
Science, 18, pp. 401–405, 1972.

[9] D. Lehmann, L. O’Callaghan, and Y. Shoham. Truth
revelation in approximately efficient combinatorial
auctions. In Proc. ACM Conference on Electronic
Commerce, 2000.

7

[10] J. K. MacKie-Mason and H. R. Varian. Pricing con-
gestible network resources. IEEE Journal of Selected
Areas in Communications, 1995.

[11] A. Mas-Collel, W. Whinston, and J. Green. Microeco-
nomic Theory. Oxford University Press, 1995.

[12] N. Nisan and A. Ronen. Algorithmic mechanism de-
sign. In Proc. 31st Annu. ACM Sympos. Theory Com-
put., 1999.

[13] A. Odlyzko. A modest proposal for preventing
Internet congestion. http://www.research.-
att.com/˜amo/doc/modest.proposal.ps,
1997.

[14] J. Rosenschein and G. Zlotkin. Rules of Encounter:
Designing Conventions for Automated Negotiations
Among Computers. MIT Press, 1994.

[15] T. Sandholm. Distributed rational decision making.
In Introduction to Multiagent Systems: A Modern In-
troduction to Distributed Artificial Intelligence. MIT
Press, 1999.

[16] T. Sandholm and S. Suri. Improved algorithm for op-
timal winner determination in combinatorial auctions
and generalizations. In AAAI 17th National Confer-
ence on Artificial Intelligence, 2000.

[17] T. Sandholm, S. Suri, A. Gilpin, and D. Levine.
CABOB: A Fast Optimal Algorithm for Combinato-
rial Auctions. In IJCAI 17th International Joint Con-
ference on Artificial Intelligence 2001.

[18] J. Schummer and R. Vohra. Auctions for Procuring
Options. Northwestern University Technical Report,
2001.

[19] S. Shenker, D. Clark, D. Estrin, and S. Herzog. Pric-
ing in computer networks: Reshaping the research
agenda. Telecommunications Policy, pages 183–201,
1996.

[20] Y. Shoham and K. Tanaka. A dynamic theory of in-
centives in multi-agent systems. In Intl. Joint Conf. on
Artificial Intelligence, 1997.

[21] W. E. Walsh and M. P. Wellman. A market protocol
for decentralized task allocation. In Proc. 3rd Interna-
tional Conference on Multi-Agent Systems, 1998.

[22] R. E. Tarjan. Sensitivty analysis of minimum spanning
trees and shortest path trees. IPL, 14 (1), pp. 30–33,
1982.

[23] W. E. Walsh, M. P. Wellman, P. R. Wurman, and J. K.
MacKie-Mason. Auction protocols for decentralized
scheduling. In Proc. 18th International Conference
on Distributed Computing Systems, 1998.

[24] R. Wolski, J. S. Plank, J. Brevik, and T. Bryan. G-
commerce: Market formulations controlling resource
allocation on the computational grid. In IPDPS, 2001.

[25] J. Y. Yen. Finding the shortest loopless paths in
a network. Management Science, 17, pp. 712–716,
1971.

[26] J. Y. Yen. Another algorithm for finding the shortest
loopless network paths. Proc. of 41st Mtg. Operations
Research Society of America, 20, 1972.

8

