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Abstract

A descending clock auction (DCA) is a mechanism for buying items from multiple sellers. The
auctioneer starts by offering bidders high prices and gradually decreases the prices while there is
competition. The literature has focused on the vanilla case where each bidder has two options: to
accept or reject the offered price. However, in many settings—such as the FCC’s imminent incentive
auction—each bidder may be able to sell one from a set of options. We present a multi-option DCA
(MDCA) framework where at each round, the auctioneer offers each bidder different prices for different
options, and a bidder may find multiple options still acceptable. A key component is the technique
for deciding how to set prices during the MDCA. This is significantly more difficult in an MDCA
than in a DCA. We develop a Markov chain model for representing the dynamics of each bidder’s
state (which options are still acceptable), as well as an optimization model and technique for finding
prices to offer to the different bidders for the different options in each round—using the Markov chain.
The optimization minimizes total payment while ensuring feasibility in a stochastic sense. We also
introduce percentile-based approaches to decrementing prices. Experiments with real FCC incentive
auction interference constraint data reveal that the optimization-based approach dramatically outper-
forms the simple percentile-based approach both under symmetric and asymmetric bidder valuation
distributions—because it takes feasibility into account in pricing. Both techniques scale to the large.

Keywords: Descending Clock Auction, Incentive Auction, Spectrum Auction.

1 Introduction

A descending clock auction (DCA) is a mechanism for buying items from multiple potential sellers. A
vanilla DCA works as follows, and has remarkably strong incentive properties [18]. Consider the following
setting where the auctioneer wants to buy items. Each seller i ∈ N has a specific type of item and
decides to sell it or not depending on the offer price. The items from the sellers could be substitutable
and complementary to the buyer. The auctioneer has a target number of items to buy, T , and there is a
feasibility function F : 2N → {0, 1} that specifies, for each subset of potential sellers, S, whether the items
from S can fulfill the target T or not, that is, F (S) = 1 if the combined items fulfill the target. A simple
example of this is the case where the sellers have identical items and the auctioneer wants to buy a target
number, T , of them. In that case, the feasibility function is simply F (S) = 1 if |S| ≥ T , and F (S) = 0
otherwise. In real-world applications—such as the FCC spectrum reverse auctions discussed below—the
feasibility function can be highly complex. Often it cannot be given in closed form, but rather is stated
through constraints as an optimization problem.
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In the vanilla DCA, the auctioneer sends offer prices to the sellers and checks whether they accept those
prices. Bidders who accept the offers are called active. If the combined items from the active bidders fulfill
the target, then the auctioneer reduces the prices further in the next round and repeats the process. If
at some point the items from the active bidders do not fulfill the target, then the auctioneer goes back to
the last step and conducts a last-round adjustment to offer higher prices to some declined bidders so that
feasibility is obtained.

The DCA framework is agnostic to how offered prices are decremented across rounds. Doing that well
is a key problem for which no solutions had been published until recently. Nguyen and Sandholm [19]
presented techniques for this.

In their percentile-based family of techniques, the approach is to set the offer price at some fixed
percentile of the (buyer’s model of the) distribution of that bidder’s valuation. For example, the prices
could be set so that each bidder has the same probability of accepting her offer. The choice of the percentile
would depend on what the auctioneer aims for on the trajectory of the sizes of sets of active bidders through
the rounds. For example, the trajectory could be set so that the expected number of rejections in each
round is distributed evenly throughout the auction. Another example of a trajectory is to set a fixed
percentage of rejection in each round, that is, the expected number of rejections would be proportional to
the size of the remaining set of active bidders.

Those methods have several drawbacks. First, having a fixed percentile means there is no way to
distinguish bidders with greater influence on the feasibility function; hence the final payment will likely
be unnecessarily high due to the probabilistic inclusion of high-priced bidders. More importantly, those
methods do not have any special treatment for the degree of interaction among the items in the feasibility
function.

Nguyen and Sandholm [19] also presented an optimization model for setting the prices in the vanilla D-
CA. The model is designed to minimize the expected final payment while ensuring feasibility in a stochastic
sense. It is flexible in that it can incorporate bidder-specific characteristics with respect to feasibility.

That paper—and, to our knowledge, all other papers on incentive auctions and on the DCA to date [18,
21]—consider the setting where bidders have only two options, that is, either to sell or not.

In contrast, in many settings, each seller may be able to sell one from a set of options to the auctioneer.
The DCA can be generalized to this setting by offering each bidder a separate price for each of her options
in each round. However, the problem of decreasing prices appropriately during the DCA is drastically more
intricate in this multi-option DCA (MDCA) setting.

We present an MDCA framework and price-decrementing techniques for it. The model captures a broad
set of applications, including the imminent flagship application of DCAs, the FCC incentive auctions—
where an MDCA will be needed and used.

1.1 Incentive auctions

The FCC has been selling radio spectrum licenses via auctions since 1994 [2, 15]—in recent years via
combinatorial auctions [3, 4]. However, there is not enough spectrum left to sell for the new high-value
spectrum uses that have arisen. The idea of incentive auctions, therefore, is to buy some of the existing
licenses back from their current holders, which frees up spectrum, and then to sell spectrum to higher-value
users. The idea of such incentive auctions was introduced in the 2010 National Broadband Plan [6]. It is
motivated by the fact that the demand and the value of over-the-air broadcast television has been declining
while the demand for mobile broadband and wireless services has increased dramatically in recent years.
Given the limited spectrum resources, incentive auctions were introduced as a voluntary, market-based
means of repurposing spectrum. This is done by creating a market that exchanges the usage rights among
the two groups of users: (a) existing TV broadcasters and (b) wireless broadband networks. Three key
players in this market are existing spectrum owners, spectrum buyers, and the FCC, which acts as the
intermediator.
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An incentive auction consists of three stages [11] (see also a whitepaper about design choices by Hazlett
et al. [12]):

1. Reverse auction: some spectrum currently used by TV broadcasters is bought back.1, 2

2. Repacking : remaining broadcasters are reallocated to a smaller spectrum band.

3. Forward auction: freed spectrums is sold via a (combinatorial) auction for use in wireless broadband
networks.3

In the reverse auction, we need to find a set of stations to be reallocated to lower-band channels and
a separate set of stations to be bought off the air, in order to achieve the following goals: (a) meet some
target on the number of contiguous channels freed on the higher spectrum band and (b) minimize total
payment by the FCC. The FCC is required to respect the broadcasters’ carry-right, which means, in the
context of a DCA, that a station that rejects the offer still has the right to stay on the air, but possibly
on a lower spectrum band. This repacking stage needs to ensure that all the stations that rejected their
offers can be feasibly repacked into the allocated band without violating the engineering constraints, that
is, interference-free population coverage, as we detail later in the paper.

There are n = 2177 stations and m = 49 channels (ranging from channels 2 to 51, with channel 37 not
available). The channels are divided into two bands: the very-high frequency (VHF) band (54-216 MHz)
and the ultra-high frequency (UHF) band (614-698 MHz) [6]. These correspond to VHF channels 2-13 and
UHF channels 14-51. The VHF band is further divided into two bands: lower VHF (LVH) with channels
2-6 and upper VHF (UVH) with channels 7-13.

The aim of the reverse auction is to clear a number of channels in the high-frequency band, say channels
33-51. This means all stations that are currently in this band need to either go off-air or be reallocated to
lower-frequency channels 2-32. Stations in channels 2-32 could alternatively go off-air or be reallocated to
different channels. It is these options that beget the need for a multi-option DCA, as we detail in the next
section.

At each round of the DCA, the repacking problem needs to be solved in order to check whether the
remaining stations can be feasibly reassigned to the targeted lower-band channels. Other groups have
recently also tackled the repacking part (e.g., Leyton-Brown [14]). There are a large number—2.9× 106—
of engineering interference constraints requiring pairs of stations not to be allocated in the same or adjacent
channels. Also, some stations are restricted to being allocatable to only a subset of the channels. The FCC
has published all these engineering constraints on the FCC web site [9], and we use these real constraints
in our experiments, as detailed later.

The FCC announced in June 2014 that a multi-option DCA will be used for the reverse auction [8],
but left open the important question of how prices will be decremented across rounds. Our paper is, to

1The FCC has decided to use some form of DCA for the reverse auction instead of a VCG mechanism because 1) the
VCG winner determination problem with the interference constraints is prohibitively complex [17] (and would have to be
solved |N | + 1 times to obtain VCG prices also), and 2) a small approximation error in solving can lead to significant
over-payment [16].

2Combinatorial reverse auctions are used extensively for sourcing goods and services in industry and government (e.g., [25,
20]). Typically, pay-your-winning-bids (i.e., first-price) pricing is used. Usually, 1-to-3 rounds of bidding are used, with
feedback to bidders between rounds. Also, continuous variants have been used (when the number of items in the auction is
small), where tentative winner determination is conducted each time a bid is submitted or revised [25]. Feedback and bidder
strategies in combinatorial auctions have also been studied in laboratory experiments [1]. Combinatorial reverse auctions
have been proposed for sourcing carrier-of-last-resort responsibility for universal service [13]. In contrast to combinatorial
reverse auctions, in the DCA, prices are non-combinatorial: only individual items are priced.

3Once the reverse auction phase is completed and the remaining stations are repacked, the FCC announces the cleared
spectrum that is now available for purchase. Buyers then submit bids on bundles of licenses. The FCC solves a winner
determination problem to decide which bids to accept. This does not involve the engineering constraints, so it resembles a
standard combinatorial auction. Existing algorithms (e.g., [23, 24, 25, 26, 5, 22]) can be used for this. (The FCC may iterate
between the reverse and forward auctions to try to (approximately) equilibrate supply and demand before actual purchases
and sales are made [10].)
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our knowledge, the first paper on pricing techniques for multi-option DCAs. We present general tech-
niques, both ones based on percentiles and ones based on optimization. We present experiments using real
interference constraints from the imminent FCC incentive auction.4

The problem of designing the price-decrementing methodology is a key design element in the DCA,
and the FCC has postponed the incentive auction multiple times because that has not yet been figured
out (e.g., wireless.fcc.gov/ incentiveauctions/learn-program/rule-option/reverse-auction.html). The FCC
was planning to run the first incentive auction in 2014. Then it was postponed to mid-2015 [27], and most
recently to 2016 [10].

2 Multi-option descending clock auction (MDCA)

We present our MDCA in the domain of the FCC incentive auction, where the number of options per
bidder is at most three (plus the option of rejecting all three options), but the techniques can be directly
extended to any number of options per bidder.

In the FCC setting, bidders (stations) that are currently in the UHF band, have four choices5: go off-
air, go down to LVH (lower VHF), go down to UVH (upper VHF), or reject all of these options. Stations
currently in the UVH band, have three choices: go off-air, go down to LVH (lower VHF), or reject both of
these options. Stations currently in the LVH band have two choices: go off-air or reject. When a station
rejects all options, it will be (re)allocated to a channel in its original band (without any payment).

We denote the set of options D = {OFF, LVH, UVH} with indices k ∈ {1, 2, 3}, respectively. Di is the
set of options that station i can choose. Di = {1, 2, 3} for station in UHF, Di = {1, 2} for stations in UVH,
and Di = {1} for stations in LVH. We denote by vik be the valuation of station i for option k, that is, the
price at which the station is indifferent between accepting the option and rejecting all options.

For each station i ∈ N , let A(r)
i ∈ {0, 1}3 be the binary vector that indicates whether, at round r,

station i is still active for the three participation options. That is, A(r)
i1 = 1 if station i is still active to go

off-air and A(r)
i1 = 0 otherwise. Similarly, A(r)

i2 = 1 (A(r)
i3 = 1) if station i is still active to be downgraded to

LVH (UVH). (No upgrading to higher bands is allowed so A(r)
i2 = 1 is possible only if station i is currently

in the UHF band and A(r)
i1 = 1 is possible only if the station is currently in either the UHF or the ULV

band.) Figure 1 shows the bidders’ options and the corresponding possible allocations. The first row shows

which band the stations currently belong to while the first column shows 8 possible scenario for A(r)
i . The

second row includes 4 possible outcomes of the final allocation, i.e., OFF (off-air), LVH, UVH, or UHF
(reject all offers and stay in UHF). For each of the 8 rows, cells that are marked with a cross X are possible
allocations. Because upgrading is not allowed, some cells are colored in gray. Empty cells are not applicable

due to the corresponding choices of A(r)
i .

In the beginning, we can assume that all the bidders are active for all their available options. That is,

in the first round r = 0, A(r)
i = ι(Di) which is the indicator vector in {0, 1}3 with non-zero indices in Di.

Stations in UHF will be offered three prices. Stations in UVH and LVH will be offered two prices and one
price, respectively. We denote by pik, k ∈ {1, 2, 3}, the offer price to station i for option k.

In each DCA round, the auctioneer offers each bidder prices for all the options for which the bidder is
still active. The bidder then evaluates them and decides which of those options are still acceptable. As
long as a bidder is still active for an option, the bidder enters the next round where the same process will

4Very recently, in December 2014, in parallel with our work, the FCC put up for comment an MDCA design that includes
a price adjustment heuristic [10]. It is much more rigid than what we propose. Also, it does not take feasibility into account
to nearly the same extent as our pricing technique does. To our knowledge, no theory or experiments have been published so
far to analyze the design choices. In Appendix A.1 we discuss how our techniques can be of benefit even within the confines
of that proposal.

5The option of stations sharing channels is not included as an option in the auction—by the FCC or by us—as it can be
viewed as one station going off-air and the other bidding in the DCA.
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Figure 1: Bidders’ options and allocation possibilities.

be repeated for the remaining active options. If a bidder becomes inactive for all options, that station
needs to be allocated to its current band without payment.

ALGORITHM 1: A Multi-Option DCA Framework

Input: A set of stations N = {1, . . . , n}, an auctioneer with a feasibility function F :
∏

i∈N Ai → {0, 1}. A
target number of rounds allowed m. Initial valuation function estimates vik, k ∈ Di.

Output: For each station owner i, a feasible final set of active options Ai, i.e. F (A) = 1, the corresponding offer
price vector p for achieving A, and the final assignment of stations to their options to minimize the
expected payment.

1. Set the initial prices p at the reserves. Set r = 0 and let A(r)
i = ι(Di);

2.for round r = 1...m do
2.1. Find a vector of prices p to offer the bidders on their active options;

2.2. Update the sets A(r) as follows: A(r)
ik = 1 only if option k is still available for station i, i.e. A(r−1)

ik = 1,
and if bidder i accepts price pik, i.e. pik ≥ vik;

if bidders’ options according to A(r) still leads to feasible packing, i.e. F (A(r)) = 1, then
2.2.1. Update the distributions of the bidders’ valuations;

else

2.2.2. Reset the sets A(r) to those in the previous round and enter Step 3;
end

end
3. Final round adjustment to find the winners and their prices;

There are two missing pieces in Algorithm 1, which are to find the offer prices in step 2.1 and to check
the repacking feasibility within step 2.2. We will now discuss these pieces, starting from the latter.

2.1 Repacking feasibility problem

Let S be a set of stations that needs to be repacked into a set of channels C. We use i and j as indices
for stations and k as indices for channels. Let Ci ⊂ C, i ∈ S, be the set of feasible channels for station i.
Let Ic be the list of triplets (i, j, k) such that stations i and j cannot be assigned to the same channel k.
Let Ia be the list of triplets (i, j, k) such that stations (i, j) cannot be assigned to channels k and k + 1,
respectively. Data for Ci, Ic and Ia are available from the domain file and the interference-paired file on
the FCC web site [9], which we use in our experiments.

Let F :
∏
i∈N Ai → {0, 1} be the feasibility function

F (A) =

{
1, if P(A, C) 6= ∅,
0, otherwise,
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where P(A, C) is the set of feasible assignments of stations in A to available channels C:

P(A, C) =


z :

zik ∈ {0, 1},∀i ∈ N and k ∈ Ci,∑
k∈Ci zik ≥ 1−A(r)

i1 ,∀i ∈ N ,∑
k∈LVH zik ≤ A

(r)
i2 ,∀i 6∈ LV H,∑

k∈UVH zik ≤ A
(r)
i3 ,∀i 6∈ UV H,

zik + zjk ≤ 1,∀(i, j, k) ∈ Ic,
zik + zjk+1 ≤ 1,∀(i, j, k) ∈ Ia,


(1)

Here, zik is a binary variable that indicates whether station i is assigned to channel k. The second set

of constraints requires that, if a station decided not to go off-air (A(r)
i1 = 0), the station needs to be

(re)allocated to reserve its carry-right. The third set of constraints requires that, for stations currently
not in LVH and that do not accept to move to LVH, they will not be allocated to LVH. The fourth set
of constraints enforces the analogous requirement for the UVH band. The last two sets of constraints
ensure that the allocation avoids interference. Later in the paper we present an optimization technique for
decrementing prices that incorporates this feasibility problem.

3 Setting offer prices

A key component of a DCA is how the prices offered to active bidders are decremented across rounds.
The auctioneer needs to consider the tradeoff between minimizing payment to the accepted bidders and
fulfillment of the target (repacking feasibility in the case of incentive auctions).

Furthermore, the pricing affects the number of rounds the auction takes. This begets another tradeoff. If
the prices decrease too slowly, many rounds are required, and that may be undesirable from the perspective
of minimizing logistical effort. If the prices decrease too quickly, many bidders reject and the auction ends
without properly serving its price-discovery purpose.

How the prices are changed across rounds should depend on (a) the estimated value functions of the
bidders, (b) the importance of the items for the target to be fulfilled (including interference in the case
of incentive auctions), and (c) the desired number of rounds. We provide an optimization model that
incorporates these considerations.

3.1 A stochastic program for optimizing offer prices

We first present a stochastic program for finding optimal offer prices. Although we will not attempt to
solve this model due to its complexity, it provides us an understanding of the uncertainty involved. For
each station i and for each option k ∈ {1, 2, 3}, suppose the valuations vik are drawn from some distribution
on support [lik, uik]. Assume that the auctioneer knows these distributions but not the valuations.

Let Xik(pik) be the Bernoulli random variable that indicates whether bidder i will accept the offer for
option k at price pik. Let X = (Xik), i ∈ N , k ∈ {1, 2, 3} be one such matrix of realized outcomes. We
denote by Q(p) the probability distribution over X. Given outcome X, the auctioneer faces a problem of
choosing which active options from each station to choose so as to minimize total payment while achieving
a feasible assignment. This can be formulated as the integer program

f(p,X) = min
z

∑
i∈N

∑
k∈Xi

zikpi,o(k) s.t. z ∈ P(X, C); See (1) for a formulation of P(·, ·). (2)

Here z is the assignment and o(k) is the band that channel k is in. If the current channel of station i and
channel k belong to the same band, we can assume o(k) = 0 with pi,0 = 0. The set of constraints here
is similar to those in repacking feasibility (1). The only difference is that we have replaced A(r) with X.
Note that the repacking problem might be infeasible. In that case, we define f(p,X) = +∞.
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Given that X is a random matrix generated by Bernoulli random variables with success rates dependent
on p, f(p,X) is also a random variable. A natural approach in stochastic programming is to find the optimal
offer price p such that the expected total payment is minimized:

minp EX∼Q(p) [f(p, X)]. (3)

This is very difficult to solve, if not impossible, because even a functional evaluation of the term f(p,X)
inside the expectation for a given p and a realization X involves solving a large-scale integer program that
is very difficult to solve to optimality. (This problem is actually a generalized graph coloring problem and
its IP formulation is of the same form as the final settlement problem described later in Section 4.) We
will design a deterministic approximation of (3). One major difficulty in designing a deterministic program
to approximate the stochastic program (3) lies in the complexity caused by the multiple possible states
that a station can be in throughout the DCA. To develop a percentile-based model or a deterministic
optimization model, we need to model the constraints in relation to the decision variable p. This requires a
mathematical representation for the (expected) number of stations that will finally end up in each band—
which is non-trivial: these will be highly nonlinear functions of p.

To elaborate, consider a station that is in the UHF band and has all three options still active. Suppose
the auctioneer offers prices to the options in such a way that the acceptance probabilities are q1, q2, q3.
Now, what is the probability of the station ending up in the UHF band (i.e., rejecting all offers) after m
rounds? What about the other bands? We propose using Markov chains to model the dynamic of the
station’s state throughout the DCA.

3.2 Modeling the dynamics of a station in the DCA using a Markov chain

We denote by qik the probability that station i finds price pik acceptable for option k. For example, if the
valuation distribution is uniform, qik = uik−pik

uik−lik . For convenience, we regard q as the decision variables
that the auctioneer has to set.

Consider a station that is currently in the UHF band. Suppose at the current round r, the auctioneer
offers acceptance rates (q1, q2, q3) to the three available options. What is the station’s probability distri-
bution over its states in the next round? How about after m rounds if the acceptance rates in each round
are kept the same at (q1, q2, q3)? To answer these questions, we need to understand the state evolution of
each station. We will use Markov chains for this.

We define the state of a station to depend on which of the three options are still active. There are
23 = 8 possible states formed by the power set of {OFF, LVH, UHF}:

S1 = {OFF, LVH, UVH} S2 = {OFF, LVH} S3 = {OFF, UVH} S4 = {LVH, UVH}
S5 = {OFF} S6 = {LVH} S7 = {UVH} S8 = {None}

Table 1: States of a station with respect to active options.

Theorem 1. The state transition of the m-round DCA with fixed acceptance probabilities (q1, q2, q3) is
equivalent to a single-round DCA with acceptance probabilities qm1 , q

m
2 , q

m
3 .

We now present an exposition of this result, which also serves as the proof.
Figure 2 (a) shows the Markov chain for a station currently in the UHF band. For example, the

transition probability to go from S1 to S1 is q1q2q3 since this occurs when all three offers are acceptable.
We can derive the transition probabilities between the remaining states analogously.

We denote by ΓUHF the corresponding transition matrix
q1q2q3 q1q2(1 − q3) q1(1 − q2)q3 (1 − q1)q2q3 q1(1 − q2)(1 − q3) (1 − q1)q2(1 − q3) (1 − q1)(1 − q2)q3 (1 − q1)(1 − q2)(1 − q3)

0 q1q2 0 0 q1(1 − q2) (1 − q1)q2 0 (1 − q1)(1 − q2)
0 0 q1q3 0 q1(1 − q3) 0 (1 − q1)q3 (1 − q1)(1 − q3)
0 0 0 q2q3 0 q2(1 − q3) (1 − q2)q3 (1 − q2)(1 − q3)
0 0 0 0 q1 0 0 (1 − q1)
0 0 0 0 0 q2 0 (1 − q2)
0 0 0 0 0 0 q3 (1 − q3)
0 0 0 0 0 0 0 1


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Figure 2:Markov chain for a station currently in UHF (a), UVH (b), and LVH (c).

We denote by I
(r)
UHF ,i ∈ R8 the probability vector of station i being in state S1, . . . , S8. At the beginning

of the auction, I
(0)
UHF ,i =

[
1 0 0 0 0 0 0 0

]T
. By the end of round m,

I
(m)
UHF ,i = ΓUHF I

(m−1)
UHF ,i = · · · = ΓmUHF I

(0)
UHF ,i

The formulation for EUHF , EUVH and ELVH involves ΓmUHF which is a polynomial of q1, q2, q3 and of order
3m. We need a fast way to evaluate this. It turns out that the eigenvalues of ΓUHF have special forms of∏
j∈S qj for each of the 23 subset S ⊂ {1, 2, 3}. Let Λ denote the diagonal matrix with these eigenvalues

on the diagonal and let V be the matrix containing the corresponding eigenvectors on its columns:

Λ = diag





1
q1
q2
q3
q1q2
q1q3
q2q3
q1q2q3




and V =



1 1 1 1 1 1 1 1
1 0 1 1 0 0 1 0
1 1 0 1 0 1 0 0
1 1 1 0 1 0 0 0
1 0 0 1 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0


We observe that the eigenvectors do not depend on qi and the eigenvalues have a nice form as a function

of qi. Thus we can utilize the single value decomposition for ΓUHF as ΓUHF = V ΛV −1. From that, we have
ΓmUHF = V ΛmV −1. By defining κi = qmi ,

ΓmUHF =


κ1κ2κ3 κ1κ2(1 − κ3) κ1(1 − κ2)κ3 (1 − κ1)κ2κ3 κ1(1 − κ2)(1 − κ3) (1 − κ1)κ2(1 − κ3) (1 − κ1)(1 − κ2)κ3 (1 − κ1)(1 − κ2)(1 − κ3)

0 κ1κ2 0 0 κ1(1 − κ2) (1 − κ1)κ2 0 (1 − κ1)(1 − κ2)
0 0 κ1κ3 0 κ1(1 − κ3) 0 (1 − κ1)κ3 (1 − κ1)(1 − κ3)
0 0 0 κ2κ3 0 κ2(1 − κ3) (1 − κ2)κ3 (1 − κ2)(1 − κ3)
0 0 0 0 κ1 0 0 (1 − κ1)
0 0 0 0 0 κ2 0 (1 − κ2)
0 0 0 0 0 0 κ3 (1 − κ3)
0 0 0 0 0 0 0 1


At any round r, each station i currently in the UHF band has 8 possible states. Let Φri ∈ {0, 1}8 be the

indicator vector that denotes the current state: if the station is in state S1, the first binary indicator equals
1, and so on. The probabilities of that station to be in each of the 8 states at round (r +m) are ΦriΓ

m
UHF ,

which is a vector of dimension 8 where a component at position j = 1, . . . , 8 represents the probability of
being in Sj .

For a station currently in UVH, Figure 2 (b) shows the Markov chain. The states are S2, S5, S6 and S8.
The probability of remaining in S2 is q1q2 because this occurs when the station is willing to accept both
the offer to go off-air (with probability q1) and the offer to be downgraded to LVH (with probability q2).
The probability to go from S2 to S5 is q1(1− q2) because this occurs when the station is willing to accept
the offer to go off-air and declines the offer to be downgraded to LVH. Similarly, we derive the transition
probabilities between other states as shown in the figure. The transition matrix for S2, S5, S6 and S8 using
this ordering is

8



ΓUVH =


q1q2 q1(1− q2) (1− q1)q2 (1− q1)(1− q2)

0 q1 0 (1− q1)
0 0 q2 (1− q2)
0 0 0 1


which is exactly the same as in the transition matrix for ΓUHF between states S2, S5, S6 and S8. Using
the same singular value decomposition technique, we obtain

Γm
UVH =


κ1κ2 κ1(1− κ2) (1− κ1)κ2 (1− κ1)(1− κ2)

0 κ1 0 (1− κ1)
0 0 κ2 (1− κ2)
0 0 0 1


For a station currently in LVH, Figure 2 (c) shows the Markov chain. The state can be S5 = {OFF},

which means the station is still active to go off-air, or S8 = {None}, which means the station is no longer
participating. The transition probabilities are shown in the figure. Here, the transition probability to go
from S5 to S5 is q1 while that to go from S5 to S8 is (1− q1). The transition matrix is

ΓLVH =

[
q1 (1− q1)
0 1

]
and ΓmLVH =

[
κ1 (1− κ1)
0 1

]
During the auction, each UVH station will be in state S2, S5, S6, or S8. We denote by I

(r)
UVH,i ∈ R4 the

corresponding probability vector. At the beginning of the auction, I
(0)
UVH,i =

[
1 0 0 0

]T
. By the end of

round m, I
(m)
UVH,i = ΓUVHI

(m−1)
UVH,i = · · · = ΓmUVHI

(0)
UVH,i.

Similarly, each LVH station will be in state S5 or S8. We denote by I
(r)
LVH,i ∈ R2 the probability vector.

At the beginning of the auction, I
(0)
LVH,i =

[
1
0

]
. By the end of round m, I

(m)
LVH,i = ΓLVHI

(m−1)
LVH,i = · · · =

ΓmLVHI
(0)
LVH,i. This completes the proof of the theorem.

The significance of Theorem 1 is that, instead of having to keep track of the transitions through m
rounds, we can apply the change of variables and view it as a single-round DCA. This helps simplify the
expression of the state probabilities, and will help tame the complexity of the nonlinear model as we will
show in Section 3.4.

To proceed further, one needs to model how the auctioneer will deal with stations with more than one
active option remaining. Which one of those options will the auctioneer offer to the stations? In principle
one could treat this as a combinatorial optimization problem with the objective of payment minimization,
but that has the same structure as a winner determination problem and is often prohibitively difficult to
solve.6 Instead, we assume that the auctioneer will choose among the bidder’s available options with equal
probabilities.7 For example, if a station is in state S1, that is, it offers to be off-air, downgraded to LVH, or
downgraded to UVH, then there is one third probability that it will be taken off-air, one third probability
that it will be moved to LVH, and one third probability that it will be moved to UVH.8

So, if the auctioneer fixes the percentiles for acceptance to be q1, q2, and q3 for the three options OFF,
LVH and UVH, respectively, then by round m,

• the number of stations in state S1 is NUHF I
(m)
UHF ,i(1),

6Solving this WDP is challenging because it involves thousands of binary variables and millions of interference-avoidance
constraints. The FCC attempted to solve it when they considered using a seal-bid auction framework for the reverse auction.
Solving an instance of this WDP with a state-of-the-art optimization package takes weeks without finding the optimal
solution [17].

7It is possible to use unequal probabilities as well.
8In December 2014 the FCC put out for comment the idea of introducing a ‘preferred option’ into their DCA; each station

that still has multiple active options must state which option is preferred [10]. In Appendix A.1 we discuss how our framework
can be extended to capture that and other aspects under consideration by the FCC.
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• the number of stations in state S2 is NUHF I
(m)
UHF ,i(2) + NUVHI

(m)
UVH,i(1), i.e., it can include stations

that came from UHF or UVH,

• the number of stations in state S3 is NUHF I
(m)
UHF ,i(3),

• the number of stations in state S4 is NUHF I
(m)
UHF ,i(4),

• the number of stations in state S5 is NUHF I
(m)
UHF ,i(5) +NUVHI

(m)
UVH,i(2) +NLVHI

(m)
LVH,i(1),

• the number of stations in state S6 is NUHF I
(m)
UHF ,i(6) +NUVHI

(m)
UVH,i(3),

• the number of stations in state S7 is NUHF I
(m)
UHF ,i(7), and

• the number of stations in state S8 is NUHF I
(m)
UHF ,i(8) +NUVHI

(m)
UVH,i(4) +NLVHI

(m)
LVH,i(2).

We define the weight matrix WUHF ∈ R8×4 where each row corresponds to a state among 8 possible
states, S1 to S8, and the four columns correspond to the probabilities of having the final assignment be
UHF, UVH, LVH, or OFF, respectively:

WUHF =



0 1
3

1
3

1
3

0 0 1
2

1
2

0 1
2

0 1
2

0 1
2

1
2

0
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


In this example, the first row states that a station that ended up in state S1 will have 1

3 chance to be
assigned to each of UVH, LVH, and OFF. The 8th row states that a station that ended up in state S8,
that is, rejected all three options, will be assigned to UHF.

Similarly, the weight matrices for UVH and LVH stations are

WUVH =


0 1

2
1
2

0 0 1
0 1 0
1 0 0

 and WLVH =

[
0 1
1 0

]

Then the expected number of stations that end up in the UHF band is

EUHF =
∑

i∈UHF

Φr
i Γm

UHFWUHF (1)

= NUHF (S1)(1− κ1)(1− κ2)(1− κ3) +

NUHF (S2)(1− κ1)(1− κ2) +NUHF (S3)(1− κ1)(1− κ3) +NUHF (S4)(1− κ2)(1− κ3) +

NUHF (S5)(1− κ1) +NUHF (S6)(1− κ2) +NUHF (S7)(1− κ3) +NUHF (S8),

where WUHF (j) denotes the jth column of WUHF , and NUHF (Sj) is the number of UHF stations currently
in state Sj . The expected number of stations that end up in UVH is

EUVH =
∑

i∈UHF

Φr
i Γm

UHFWUHF (2) +
∑

i∈UV H

Φr
i Γm

UVHWUVH(1)

= NUHF (S1)(κ3 −
1

2
κ1κ3 −

1

2
κ2κ3 +

1

3
κ1κ2κ3) +NUHF (S3)(κ3 −

1

2
κ1κ3) +

NUHF (S4)(κ3 −
1

2
κ2κ3) +NUHF (S7)(κ3) +NUVH(S2)(1− κ1)(1− κ2) +

NUVH(S5)(1− κ1) +NUVH(S6)(1− κ2) +NUVH(S8)
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Finally, the expected number of stations that end up in the LVH band is

ELVH =
∑

i∈UHF

Φr
i Γm

UHFWUHF (3) +
∑

i∈UV H

Φr
i Γm

UVHWUVH(2) +
∑

i∈LV H

Φr
i Γm

LVHWLVH(1)

= NUHF (S1)(κ2 −
1

2
κ1κ2 −

1

2
κ2κ3 +

1

3
κ1κ2κ3) +NUHF (S2)(κ2 −

1

2
κ1κ2) +

NUHF (S4)(κ2 −
1

2
κ2κ3) +NUHF (S6)(κ2) +NUVH(S2)(κ2 −

1

2
κ1κ2) +

NUVH(S6)κ2 +NLVH(S5)(1− κ1) +NLVH(S8)

3.3 Percentile-based approach for price setting in each round

A very simple way to adjust prices across DCA rounds is to decrease each price by a given percentage—
starting from the upper bound of the support of the station’s valuation distribution support for each of
the options. We present experiments with that approach later on in the paper.

However, one can do better even within the percentile-based family by using the Markov chain approach
presented above. Suppose the auctioneer offers prices to the options so that the acceptance probabilities
of the three options are q1, q2 and q3. How should these probabilities be set so that, after m rounds, the
expected numbers of stations allocated to the bands match given targets? The auctioneer can solve for
(q1, q2, q3) so that the expected number of stations allocated to each band equals its target. For this, we
need to find these expectations. This involves finding the probability of the station ending in each band
after m rounds. We provide detailed calculation of these expectations in Appendix A.2.

3.4 Optimization model for price setting in each round

We consider the case where the auctioneer wants to offer different acceptance rates to different stations.
This will provide more flexibility and hence intuitively should lead to lower aggregate payment by the
auctioneer. Instead of aiming to find the same (q1, q2, q3) for all stations, we aim to find the optimal
(qi1, qi2, qi3) for each station i ∈ N .

For notational convenience we denote dik = (uik−lik). At round r, the offer price to station i and option

k is p
(1)
ik = lik+qikdik.9 If this option is still available at round (r+1), then the upper bound uil is updated

to p
(1)
ik and the new offer price p

(2)
ik = lik + qik(p

(1)
ik − lik) = lik + q2ikdik. Similarly, if option k is still active

for station i at round (r +m), then the offer price at that round will be p
(m)
ik = lik + qmikdik = lik + κikdik.

The payment vector CUHF ,i ∈ R8 for station i in UHF that corresponds to the 8 possible states is

CUHF ,i =
[
1
3 (p

(m)
i1 + p

(m)
i2 + p

(m)
i3 ) 1

2 (p
(m)
i1 + p

(m)
i2 ) 1

2 (p
(m)
i1 + p

(m)
i3 ) 1

2 (p
(m)
i2 + p

(m)
i3 ) p

(m)
i1 p

(m)
i2 p

(m)
i3 0

]
Similarly, the payment vector CUVH,i ∈ R4 for station i in the UVH band that corresponding to 4 possible

states is CUVH,i =
[
1
2 (p

(m)
i1 + p

(m)
i2 ) p

(m)
i1 p

(m)
i2 0

]
. The payment vector CLVH,i ∈ R2 for station i in the

LVH band that corresponding to 2 possible states is CLVH,i =
[
p
(m)
i1 0

]
.

The expected payment at round (r +m) is

E[c(p)] =
∑

i∈UHF
ΦriΓ

m
UHFCUHF ,i +

∑
i∈UVH

ΦriΓ
m
UVHCUVH,i +

∑
i∈LVH

ΦriΓ
m
LVHCLVH,i.

9The derivations in this section assume that the valuation distributions are uniform. The techniques can be generalized
to the nonuniform case, but the final optimization problem can end up having a higher-order polynomial objective and
higher-order polynomial constraints than the optimization problem we derive in this section. Also, note that one can use the
uniformity assumption in the price setting even if the assumption does not actually hold.
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Our OPT-SCHED model for minimizing expected payment while ensuring that the expected number
of accepted bidders in each band equals its target is

min
q

∑
i∈UHF

Φr
i Γm

UHFCUHF ,i +
∑

i∈UV H

Φr
i Γm

UVHCUVH,i +
∑

i∈LV H

Φr
i Γm

LVHCLVH,i,

s.t.
∑

i∈UHF

Φr
i Γm

UHFWUHF (1) ≤ CUHF∑
i∈UHF

Φr
i Γm

UHFWUHF (2) +
∑

i∈UV H

Φr
i Γm

UVHWUVH(1) ≤ CUVH∑
i∈UHF

Φr
i Γm

UHFWUHF (3) +
∑

i∈UV H

Φr
i Γm

UVHWUVH(2) +
∑

i∈LV H

Φr
i Γm

LVHWLVH(1) ≤ CLVH

(4)

This is a polynomial optimization problem where the objective function is of order 4m and the constraint
involve polynomials of order 3m. This is very challenging to solve. We can use the transformation of
decision variables from qik to κik. This will lead to a new polynomial optimization problem with the
objective function having degree 4 and the constraints having degree 3, which is much more manageable.
That fully expanded form is given in Appendix A.3. This problem has 3n continuous variables. Solving
this problem directly is still not easy due to nonlinearity and nonconvexity. However, the problem has a
separable objective and separable constraints. Hence we can apply Lagrangian relaxation. By introducing
notation g, h, and u, we can rewrite that problem (i.e., Problem (7)) as

min
κ

∑
i∈N fi(κi)

s.t.
∑
i∈N

gi(κi) ≤ CUHF

∑
i∈N

hi(κi) ≤ CUVH∑
i∈N

ui(κi) ≤ CLVH

(5)

Let λ = (λ1, λ2, λ3) be the Lagrangian multipliers for the three constraints in Model (5). The La-
grangian dual function is

L(λ,κ) =
∑
i∈N

fi(κi) + λ1

CUHF −∑
i∈N

gi(κi)

 + λ2

CUVH −∑
i∈N

hi(κi)

 + λ3

CLVH −∑
i∈N

ui(κi)


= λ1CUHF + λ2CUVH + λ3CLVH +

∑
i∈N

(fi(κi)λ1gi(κi) + λ2hi(κi) + λ3ui(κi))

The Lagrangian dual problem can be derived as

max
λ≥0

{
λ1CUHF + λ2CUVH + λ3CLVH +

∑
i∈N

min
0≤κi≤1

λ1gi(κi) + λ2hi(κi) + λ3ui(κi)

}

For each fixed set of Lagrangian multipliers, the Lagrangian dual problem includes n separable nonlinear
problems, each with three decision variables lying in the box [0, 1]3 and with an objective that is a 4th-order
polynomial that can be solved efficiently. (In the experiments, we used the Knitro nonlinear optimization
solver to do this.) As the “outer loop” around this subproblem, we apply a conjugate gradient method to
solve for the Lagrangian multipliers λ.

4 Finding the best assignment in the final round settlement

After the last round of the auction—i.e., the round where the packing ceases to be feasible—the auctioneer
has to decide an outcome for each bidder so as to minimize total payment. For each bidder, the outcome
has to be selected from among the options that the bidder’s bids indicate are still acceptable to her. In case
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none of the three options are acceptable, the bidder has to stay in its current band, but can be reallocated
to a different channel within the band.

We use the notation from Section 2.1 since the problem of finding the best assignment shares the set
of constraints with the feasibility problem. That is, zik is a binary variable that indicates whether station
i is assigned to channel k. We have

∑
k∈Ci zik ≤ 1 since each station will be assigned to at most one

channel. If
∑
k∈Ci zik = 0, then the station goes off-air and the auctioneer needs to pay the offer price

pi,OFF . Otherwise, the station needs to be assigned to one of the three bands. Let Cib ∈ Ci be the list
of feasible channels for station i in band b ∈ {LV H,UV H,UHF}. If

∑
k∈Cib zik = 1, the auctioneer will

pay pi,b to the station to be allocated into band b if that differs from the station’s current band. Thus, for
an UHF station i, the payment is pi,LVH

∑
k∈Ci,LVH zik + pi,UVH

∑
k∈Ci,UVH zik + pi,OFF (1 −

∑
k∈Ci zik).

The payment for a UVH station is pi,LVH
∑
k∈Ci,LVH zik + pi,OFF (1 −

∑
k∈Ci zik). The total payment for

an LVH stations is pi,OFF (1−
∑
k∈Ci zik). Summing the payments to individual stations provides us with

the objective function that the FCC wants to minimize. So, the overall final-round winner determination
problem is

min
z

∑
i∈N

pi,OFF (1−
∑
k∈Ci

zik) +
∑

i∈UV H,UHF

pi,LVH(1−
∑

k∈Ci,LVH

zik) +
∑

i∈UHF

pi,UVH(1−
∑

k∈Ci,UVH

zik)

s.t. z ∈ P(A, C); See (1) for a formulation of P(A, C). (6)

This is a mixed integer linear program with similar structure to the WDP in the VCG. It has 616,907
binary variables and 2.9× 106 constraints, which make it very difficult to solve. The FCC has attempted
to solve it, but according to Milgrom and Segal [17], solving an instance of it with a state-of-the-art integer
programming package takes weeks without finding an optimal solution.

We present a custom mathematical programming technique to find a near-optimal solution. Although
the problem has a very large number of decision variables and a huge number of constraints, it has nice
underlying structure. Stations can be viewed as nodes and interference constraints as edges. The problem
becomes a generalized graph coloring problem with the following additional restrictions. First, each station
has a set of feasible channels that it can be allocated to. Second, the adjacency restrictions should be
represented by ‘dotted edges’ in the graph to indicate the certain pairs of stations cannot be allocated to
adjacent channels. Observe that the constraints are of knapsack form and many of them can be combined
by looking for all the maximal cliques as presented by Nguyen and Sandholm [19]. This reduces the number
of constraints and produces a stronger LP relaxation. In addition, with the underlying graph, we apply a
decomposition technique to divide the problem into smaller manageable subproblems through Lagrangian
relaxation. Although the algorithm may not produce an optimal solution even if we let it run a long
time, our experiments show that within a run-time limit of 10 minutes we usually obtain solutions that
are 85-90% of optimal. We find this performance acceptable for the purpose of comparing the percentile-
based approach and the optimization-based approach. (Without the decomposition, it took CPLEX 10-30
minutes to load the problem, not to talk about solving it.) The methods for decomposing the problem and
for solving the Lagrangian relaxation are described in Appendix A.4.

5 Experiments

We implemented our optimization-based price-decrementing technique and conducted experiments using
real FCC data. We compared the performance against the simple natural percentile-based method (de-
scribed in the beginning of Section 3.3).

Since no incentive auctions have yet been conducted, we have to use generated data on the bounds of the
bidders’ valuations. The bounds for the first experiment (symmetric bidders) are generated using a uniform
distribution where the upper and lower bound for the off-air option for bidder i are set to ui1 = (1 + δ)mi

and li1 = (1− δ)mi and where mi is a uniform random variable in [0, 1]. Here, δ = 0.2 is a measure of how
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good the auctioneer’s estimate of the bidders’ valuations is. For each station, the upper and lower support
bounds for the LVH option and the UVH option are set to 66.7% and 33.3% of the bounds for the off-air
option, respectively. These percentages are consistent with the FCC estimates FCC [10]. We then draw
random sample bid values from these ranges, that is, ξik ∼ U [lik, uik] for each bidder i = 1, . . . , n and for
each option k = {1, 2, 3}. We draw M = 10 valuation vectors. Each vector corresponds to a DCA instance.
The setting for the second experiment (asymmetric bidders) is similar except that the mean value mi is set
proportional to the population that station i serves [7]. In each experiment, the number of rounds allowed
is 50.

We tried a number of possible acceptance probabilities for the percentile-based method. Early ex-
periments showed that acceptance probabilities below 0.97 per round often make the DCA auctions end
prematurely while acceptance probabilities above 0.995 have little effect on the price discovery. Thus we
conducted detailed experiments with acceptance probabilities in {0.97, 0.975, 0.98, 0.985, 0.99, 0.995, 1}.

We also studied the role of final round settlement. Sections 5.1 and 5.2 assume that once encountering
infeasibility, the DCA stops. We then report the final payments that the auctioneer has to pay to all
active options of the second-to-last (i.e., last feasible) round. Section 5.3 studies the case with final round
settlement.

5.1 Incentive auctions with symmetric valuation distributions

Figures 3 shows that OPT-SCHED outperforms the percentile-based approach on all instances—with 27%
reduction in payment compared to the best choice of the per-round acceptance probability in the simple
percentile-based approach. The optimization-based approach is able to reject high-value bids taking into
account feasibility considerations.
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Figure 3: Final payments and active bidders in the symmetric valuations setting.

Figure 4-a illustrates how the auction proceeds across rounds. OPT-SCHED succeeds in proceeding
through more rounds before reaching infeasibility by being more intelligent about taking feasibility into
account in the pricing. It has a better way of rejecting high-priced bids and to balance payments against
feasibility constraints.

5.2 Incentive auctions with asymmetric valuation distributions

In the next experiment, we set the mean value mi proportional to the population that station i serves.
Figure 5 shows the performance over M = 10 generated auction instances. OPT-SCHED yields lower final
payment than the simple percentile-based approach for all choices of the fixed acceptance probability. It
results in 25% lower payment on average.

Figure 6 shows that, again, OPT-SCHED succeeds in proceeding through more rounds before reaching
infeasibility by more intelligently taking feasibility into account in the pricing.
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Figure 4: Auction trajectory on Instance 1 (a typical instance) in the symmetric valuations setting.
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Figure 5: Final payments and active bidders in the asymmetric valuations setting.
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Figure 6: Auction trajectory on Instance 1 (a typical instance) in the asymmetric valuations setting.

5.3 Effect of final round settlement

The results presented above in Sections 5.1 and 5.2 are measured based on the sum (or equivalently, the
average) of the payment to the active options of all bidders just before reaching repacking infeasibility.
Instead, the auctioneer can choose the best set of offers from the bidders’ active options in order to
minimize total payment while ensuring repacking feasibility by solving the final round settlement model
from Section 4. Figures 7 and 8 report results with final round settlement. (We do not show the results
of the percentile-based approach for some instances because on those instances the payment and sum of
bidders’ valuations are much larger than on the rest of the instances, and thus their inclusion would make
it difficult to visualize the rest of the results. These instances that are particularly bad for the percentile-
based approach include Instance 6 with p = 0.99, Instance 7 with p = 0.97, and Instance 9 with p = 0.97.)

OPT-SCHED outperforms the percentile-based approach for all choices of acceptance probabilities in

15



1 2 3 4 5 6 7 8 9 10
120

130

140

150

160

170

180

Instance number

F
in

al
 p

ay
m

en
ts

 

 

1 2 3 4 5 6 7 8 9 10
100

110

120

130

140

150

160

170

180

Instance number

S
um

 o
f b

id
de

rs
’ v

al
ua

tio
ns

 

 
OPT−SCHED

p=0.97

p=0.98

p=0.99

Figure 7: Results with final round settlement in the symmetric valuations setting.
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Figure 8: Results with final round settlement in the asymmetric valuations setting.

the asymmetric setting. In the symmetric setting, it almost always outperforms (except on Instance 4 with
acceptance probability 0.99). The average payment by OPT-SCHED is 695 while that of the percentile-base
approach is 1182, 823, and 1450 for the per-round acceptance probabilities 0.97, 0.98, and 0.99, respectively.
In summary, OPT-SCHED dramatically outperforms the percentile-based approach.

5.3.1 Repacking solution

We report the OPT-SCHED repacking solution for Instance 1. The pattern on the other nine instances
was similar.

In the asymmetric setting, among the 1647 UHF stations, 1278 were repacked to a UHF channel
(channels 14-31), 57 were repacked to a UVH channel (7-13), 65 were repacked to an LVH channel (2-6),
and 247 went off-air. Among the 428 UVH stations, 346 were repacked to a UVH channel, 21 were repacked
to an LVH channel, and 61 went off-air. Among the 55 LVH stations, 49 were repacked to an LVH channel
and 6 went off-air.

In the symmetric setting, among the 1647 UHF stations, 1277 were repacked to a UHF channel, 54 were
repacked to a UVH channel, 56 were repacked to an LVH channel, and 260 went off-air. Among the 428
UVH stations, 341 were repacked to a UVH channel, 20 were repacked to an LVH channel, and 67 went
off-air. Among the 55 LVH stations, 53 were repacked to a LVH channel and 2 went off-air.

6 Conclusions

We presented a multi-option DCA framework in which each bidder may be able to sell one from a set
of options to the auctioneer. We developed a Markov chain model for representing the dynamics of each
bidder’s state in the auction, as well as an optimization model and technique for finding prices to offer to
the different bidders for the different options in each round—using the Markov chain. The optimization
minimizes total payment while ensuring feasibility in a stochastic sense. We also introduced percentile-based
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approaches to decrementing prices. Experiments with real FCC incentive auction interference constraint
data revealed that the optimization-based approach dramatically outperforms the simple percentile-based
approach both under symmetric and asymmetric bidder valuation distributions—because it takes feasibility
into account in pricing. Both of our pricing techniques scale to the large.
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APPENDIX

A.1 Incorporating a one-way hierarchy of options

Very recently (in December 2014), the FCC put up for comment a specific proposal for the DCA to be used
for the reverse auction part of the imminent incentive auction, including a sketch of a price adjustment
method [10]. It is much more rigid than what we propose in this paper. Also, the pricing heuristic does not
take feasibility into account to nearly the same extent as our pricing technique does. To our knowledge,
no theory or experiments have been published so far to analyze the design choices.

There is also another confining—but potentially interesting—aspect of that DCA design. The options
are considered to form a hierarchy. A bidder has to declare a preferred option (which is the option that he
might get) at each point in the auction. A bidder is allowed to move the declared preferred option only
downward in the hierarchy. So, a bidder can go from off-air to a lower band to an even lower band and
then to accepting no offer, but not in the other direction. Also, a bidder is allowed to only move downward
in the hierarchy from the option that she holds before the auction begins. Our Markov modeling and
optimization techniques can be adapted to that setting as well. In the rest of this appendix we describe
how to do that.

We denote by k = {1, 2, 3} the options that correspond to Off-air, LVH and UVH. We denote by pik
the price the auction offers to station i for option k. For simplicity, here we assume the vik are uniformly
distributed with support [lik, uik].

At the beginning of each DCA round, the station receives offer prices for its active options and evaluates
its surplus (pik− vik) for each option k. Whenever the station switches its preferred option, options higher
in the hierarchy become permanently inactive.

Figure 9: Markov chain on bidder status.

Figure 9 shows the states and transition probabilities for a station that is currently in the UHF band.
Each node represents a state and the words inside describe the options that are still active. One of these
active options is written in bold and underlined to highlight it as the preferred option. This preferred
option is always the highest of the remaining active ones in the hierarchy. There are eight states which
include:

• State S1 with all three options still active and with off-air being the preferred option.

• State S2 with options off-air and LVH still active and with off-air being the preferred option.

• State S3 with options off-air and UVH still active and with off-air being the preferred option.
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• State S4 with options LVH and UVH still active and with LVH being the preferred option.

• State S5 with the only option off-air still active which is also the preferred option.

• State S6 with the only option LVH still active which is also the preferred option.

• State S7 with the only option UVH still active which is also the preferred option.

• State S8 with none of the options active.

We observe that the four states of S1, S2,S3 and S5 still have off-air as an active and the preferred
option. The transition among these four states requires at least two conditions: (a) off-air is still active
and (b) off-air is still the best option among those available. The remaining four states of S4, S6, S7 and
S8 do not include the off-air option. This mean that transition from states (S1, S2, S3, S5) to the four
states of (S4, S6, S7, S8) requires at least either (a) off-air no longer being active or (b) off-air still being
acceptable but not as attractive as some other options and hence the station requested a switch. In the
latter case, the switch would require delisting the off-air option and going down the hierarchy.

Due to the inclusion of the preferred option which could change throughout the auction, the transition
among states is now different. We use the same notation of q1, q2, and q3 being the acceptance probabilities
to offer to the three options of off-air, LVH and UVH. We aim to derive the transition probabilities as a
function of (q1, q2, q3). Let us denote by pij the transition probability from state Si to state Sj .

First let us consider the transition from state S1 to S2. This occurs under the following conditions: the
UVH option is no longer attractive while the off-air and LVH options are still acceptable with off-air being
the preferred option. This transition probability is calculated as

p12 = Prob(pi1 − vi1 ≥ pi2 − vi2 ≥ 0 ≥ pi3 − vi3)

= Prob(pi1 − vi1 ≥ pi2 − vi2 ≥ 0)Prob(pi3 − vi3 ≤ 0)

We observe that (pik − vik) is a uniform random variable with support [pik − uik, pik − lik]. Thus,
Prob(pi3 − vi3 ≤ 0) = ui3−pi3

ui3−li3 . In addition,

Prob(pi1 − vi1 ≥ pi2 − vi2 ≥ 0) =

∫ min(pi1−li1,pi2−li2)

0

[∫ pi1−li1

x

1

d1
dy

]
1

d2
dx

=

{
1

d1d2

∫ pi2−li2
0

[pi1 − li1 − x] dx, if pi2 − li2 ≤ pi1 − li1
1

d1d2

∫ pi1−li1
0

[pi1 − li1 − x] dx, otherwise

=

{
1

d1d2

(pi2−li2)(2(pi1−li1)−(pi2−li2))
2 , if pi2 − li2 ≤ pi1 − li1

1
d1d2

(pi1−li1)2
2 , otherwise

Thus,

p12 =

{
ui3−pi3
ui3−li3

1
d1d2

(pi2−li2)(2(pi1−li1)−(pi2−li2))
2 , if pi2 − li2 ≤ pi1 − li1

ui3−pi3
ui3−li3

1
d1d2

(pi1−li1)2
2 , otherwise

Similarly, we can derive

p13 =

{
pi2−li2
ui2−li2

1
d1d3

(pi3−li3)(2(pi1−li1)−(pi3−li3))
2 , if pi3 − li3 ≤ pi1 − li1

pi2−li2
ui2−li2

1
d1d3

(pi1−li1)2
2 , otherwise
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The transition from state S1 to S4 occurs when off-air is not as attractive as LVH while both LVH and
UVH are acceptable, that is,

p14 = Prob(pi1 − vi1 < pi2 − vi2 and 0 ≤ pi2 − vi2 and 0 ≤ pi3 − vi3)

= Prob(pi3 − vi3 ≥ 0)Prob(pi1 − vi1 < pi2 − vi2 and 0 ≤ pi2 − vi2)

=
pi3 − li3
ui3 − li3

Prob(pi1 − vi1 < pi2 − vi2 and 0 ≤ pi2 − vi2)

=
pi3 − li3
ui3 − li3

∫ pi2−li2

0

[∫ min(x,pi1−li1)

pi1−ui1

1

d1
dy

]
1

d2
dx

=
pi3 − li3
ui3 − li3

1

d1d2

∫ pi2−li2

0

[min(x, pi1 − li1)− (pi1 − ui1)] dx

=
pi3 − li3
ui3 − li3

1

d1d2

{
(pi2−li2)(2(ui1−pi1)+(pi2−li2))

2 , if pi2 − li2 ≤ pi1 − li1
d1((pi2 − li2)− (pi1 − li1)) + (pi1−li1)(2(ui1−pi1)+(pi1−li1))

2 , otherwise

Similarly, we can derive

p15 = Prob(pi1 − vi1 ≥ 0 and pi2 − vi2 ≤ 0 and pi3 − vi3 ≤ 0)

=
pi1 − li1
ui1 − li1

ui2 − pi2
ui2 − li2

ui3 − pi3
ui3 − li3

p16 = Prob(pi1 − vi1 ≤ 0 and pi2 − vi2 ≥ 0 and pi3 − vi3 ≤ 0)

=
ui1 − pi1
ui1 − li1

pi2 − li2
ui2 − li2

ui3 − pi3
ui3 − li3

p17 = Prob(pi1 − vi1 ≤ 0 and pi2 − vi2 ≤ 0 and pi3 − vi3 ≥ 0)

=
ui1 − pi1
ui1 − li1

ui2 − pi2
ui2 − li2

pi3 − li3
ui3 − li3

p18 = Prob(pi1 − vi1 ≤ 0 and pi2 − vi2 ≤ 0 and pi3 − vi3 ≤ 0)

=
ui1 − pi1
ui1 − li1

ui2 − pi2
ui2 − li2

ui3 − pi3
ui3 − li3

From state S2:

p25 = Prob(pi1 − vi1 ≥ 0 and pi2 − vi2 ≤ 0)

=
pi1 − li1
ui1 − li1

ui2 − pi2
ui2 − li2

p26 = Prob(pi1 − vi1 ≤ 0 and pi2 − vi2 ≥ 0)

=
ui1 − pi1
ui1 − li1

pi2 − li2
ui2 − li2

p28 = Prob(pi1 − vi1 ≤ 0 and pi2 − vi2 ≤ 0)

=
ui1 − pi1
ui1 − li1

ui2 − pi2
ui2 − li2
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We can derive p22 in a similar way or we can simply use the formulation p22 = 1− p25 − p26 − p28.
From state S3:

p35 = Prob(pi1 − vi1 ≥ 0 and pi3 − vi3 ≤ 0)

=
pi1 − li1
ui1 − li1

ui3 − pi3
ui3 − li3

p37 = Prob(pi1 − vi1 ≤ 0 and pi3 − vi3 ≥ 0)

=
ui1 − pi1
ui1 − li1

pi3 − li3
ui3 − li3

p38 = Prob(pi1 − vi1 ≤ 0 and pi3 − vi3 ≤ 0)

=
ui1 − pi1
ui1 − li1

ui3 − pi3
ui3 − li3

We have p33 = 1− p35 − p37 − p38.

p46 = Prob(pi2 − vi2 ≥ 0 and pi3 − vi3 ≤ 0)

=
ui2 − pi2
ui2 − li2

ui3 − pi3
ui3 − li3

p47 = Prob(pi2 − vi2 ≤ 0 and pi3 − vi3 ≥ 0)

=
ui2 − pi2
ui2 − li2

pi3 − li3
ui3 − li3

p48 = Prob(pi2 − vi2 ≤ 0 and pi3 − vi3 ≤ 0)

=
ui2 − pi2
ui2 − li2

ui3 − pi3
ui3 − li3

We have p44 = 1− p46 − p47 − p48.
From state S5:

p58 = Prob(pi1 − vi1 ≤ 0)

=
ui1 − pi1
ui1 − li1

p55 = Prob(pi1 − vi1 ≥ 0)

=
pi1 − li1
ui1 − li1

From state S6:

p68 = Prob(pi2 − vi2 ≤ 0)

=
ui2 − pi2
ui2 − li2
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p66 = Prob(pi2 − vi2 ≥ 0)

=
pi2 − li2
ui2 − li2

From state S7:

p78 = Prob(pi3 − vi3 ≤ 0)

=
ui3 − pi3
ui3 − li3

p77 = Prob(pi3 − vi3 ≥ 0)

=
pi3 − li3
ui3 − li3

Figure 10 shows the state transition for stations that are currently in the LVH and UVH bands. For
UVH stations, the Markov chain contains four states S2, S5, S6 and S8. The transition probabilities among
these states are equal to those in the Markov chain for an UHF station. Similarly the Markov chain for an
LVH station contains two states S7 and S8, also with the same transition probabilities

Figure 10: Markov chain on bidder status.

One disadvantage of this new setting with a preferred option and a hierarchy is that the resulting
optimization model will be of more complicated form as a result of the new transition probabilities. We
leave the computational approach for future research. However, a nice property of the new setting is that
the auctioneer pays each station the price of the preferred option and hence we do not have to introduce
the weight matrices presented in Section 3.2. In addition, since we know which band each station will be
allocated to, the expected number of stations allocated to each band can be calculated with certainty.

A.2 Method for optimizing percentiles

Recall that for the purposes of this appendix, the auctioneer is trying to solve for (q1, q2, q3) such that the
expected number of stations allocated to each band (UHF, UVH, and LVH) equals its target. Denote these
targets by Cb, b ∈ {UHF, UVH,LVH}.

We get three equations that correspond to three bands and three unknowns. The issue is that these
expected values are polynomial of degree 3m in the unknown, and numerical methods for solving these
might lead to approximation errors. We resolve this challenge by observing that the decision variables
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(q1, q2, q3) can be replaced by (κ1, κ2, κ3) and we arrive at the following system of three equations for three
unknowns (κ1, κ2, κ3):

CUHF = NUHF (S1)(1− κ1)(1− κ2)(1− κ3) +

NUHF (S2)(1− κ1)(1− κ2) +NUHF (S3)(1− κ1)(1− κ3) +NUHF (S4)(1− κ2)(1− κ3) +

NUHF (S5)(1− κ1) +NUHF (S6)(1− κ2) +NUHF (S7)(1− κ3) +NUHF (S8)

CUVH = NUHF (S1)(κ3 −
1

2
κ1κ3 −

1

2
κ2κ3 +

1

3
κ1κ2κ3) +

NUHF (S3)(κ3 −
1

2
κ1κ3) +NUHF (S4)(κ3 −

1

2
κ2κ3) +NUHF (S7)(κ3) +

NUVH(S2)(1− κ1)(1− κ2) +NUVH(S5)(1− κ1) +NUVH(S6)(1− κ2) +NUVH(S8)

CLVH = NUHF (S1)(κ2 −
1

2
κ1κ2 −

1

2
κ2κ3 +

1

3
κ1κ2κ3) +

NUHF (S2)(κ2 −
1

2
κ1κ2) +NUHF (S4)(κ2 −

1

2
κ2κ3) +NUHF (S6)(κ2) +

NUVH(S2)(κ2 −
1

2
κ1κ2) +NUVH(S6)κ2 +NLVH(S5)(1− κ1) +NLVH(S8).

We observe that the right-hand sides of these equalities include polynomials of degree 3. Hence we can
apply a numerical method—such as the Newton-Raphson’s method—to solve for (κ1, κ2, κ3) easily. We

then set qi = κ
1/m
i ,∀i ∈ {1, 2, 3}.

In the case where the auctioneer sets the same acceptance rates for the three options, let q = q1 = q2 = q3
and r = qm. Then the expected numbers of stations in the bands are

EUHF =
∑

i∈UHF
ΦriΓ

m
UHFWUHF (1)

= NUHF (S1)(1− r)3 +NUHF (S2, S3, S4)(1− r)2 +NUHF (S5, S6, S7)(1− r) +NUHF (S8)

EUVH =
∑

i∈UHF
ΦriΓ

m
UHFWUHF (2) +

∑
i∈UVH

ΦriΓ
m
UVHWUVH(1)

= NUHF (S1)(r − r2 +
1

3
r3) +NUHF (S3, S4)(r − 1

2
r2) +NUHF (S7)r +

NUVH(S2)(1− r)2 +NUVH(S5, S6)(1− r) +NUVH(S8)

ELVH =
∑

i∈UHF
ΦriΓ

m
UHFWUHF (3) +

∑
i∈UVH

ΦriΓ
m
UVHWUVH(2) +

∑
i∈LVH

ΦriΓ
m
LVHWLVH(1)

= NUHF (S1)(r − r2 +
1

3
r3) +NUHF (S2, S4)(r − 1

2
r2) +NUHF (S6)r +

NUVH(S2)(3/2r − r2) +NUVH(S6)r +NLVH(S5)(1− r) +NLVH(S8)

We can then solve for r that minimizes the sum of square errors, i.e.,
∑
b(Eb − Cb)2.

A.3 Expanded form of the OPT-SCHED model

Let UHF (Sj) (and similarly UV H(Sj), LV H(Sj)) denote the list of UHF (UVH, LVH) stations that
are currently in state Sj . The problem of minimizing the expected payment while ensuring the expected
number of stations allocated to each band does not exceed the band capacity can be formulated as
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min
κ

f(κ)

s.t.
∑

i∈UHF (S1)

(1− κi1)(1− κi2)(1− κi3)+

∑
i∈UHF (S2)

(1− κi1)(1− κi2) +
∑

i∈UHF (S3)

(1− κi1)(1− κi3) +
∑

i∈UHF (S4)

(1− κi2)(1− κi3)+

∑
i∈UHF (S5)

(1− κi1) +
∑

i∈UHF (S6)

(1− κi2) +
∑

i∈UHF (S7)

(1− κi3) +
∑

i∈UHF (S8)

1 ≤ CUHF ,∑
i∈UHF (S1)

(κi3 −
1

2
κi1κi3 −

1

2
κi2κi3 +

1

3
κi1κi2κi3)+

∑
i∈UHF (S3)

(κi3 −
1

2
κi1κi3) +

∑
i∈UHF (S4)

(κi3 −
1

2
κi2κi3) +

∑
i∈UHF (S7)

(κi3)+

∑
i∈UVH(S2)

(1− κi1)(1− κi2) +
∑

i∈UVH(S5)

(1− κi1) +
∑

i∈UVH(S6)

(1− κi2) +
∑

i∈UVH(S8)

1 ≤ CUVH ,∑
i∈UHF (S1)

(κi2 −
1

2
κi1κi2 −

1

2
κi2κi3 +

1

3
κi1κi2κi3)+

∑
i∈UHF (S2)

(κi2 −
1

2
κi1κi2) +

∑
i∈UHF (S4)

(κi2 −
1

2
κi2κi3) +

∑
i∈UHF (S6)

(κi2)+

∑
i∈UVH(S2)

(κi2 −
1

2
κi1κi2) +

∑
i∈UVH(S5)

κi2 +
∑

i∈LVH,Φi=S6

(1− κi1) +
∑

i∈LVH,Φi=S8

1 ≤ CLVH ,

(7)

where

f(κ) =
∑

i∈UHF
Φr

i Γm
UHFCUHF ,i +

∑
i∈UVH

Φr
i Γm

UVHCUVH,i +
∑

i∈LVH
Φr

i Γm
LVHCLVH,i,

=
∑

i∈UHF (S1)

1

3
κi1κi2κi3(

3∑
k=1

lik + κikdik) +
1

2
κi1κi2(1− κi3)(

∑
k=1,2

lik + κikdik)+

1

2
κi1(1− κi2)κi3(

∑
k=1,3

lik + κikdik) +
1

2
(1− κi1)κi2κi3(

∑
k=2,3

lik + κikdik)+

κi1(1− κi2)(1− κi3)(li1 + κi1di1) + (1− κi1)κi2(1− κi3)(li2 + κi2di2)+

(1− κi1)(1− κi2)κi3(li3 + κi3di3)+∑
i∈UHF (S2)

κi1κi2
1

2
(
∑

k=1,2

lik + κikdik) + κi1(1− κi2)(li1 + κi1di1) + (1− κi1)κi2(li2 + κi2di2)+

∑
i∈UHF (S3)

κi1κi3
1

2
(
∑

k=1,3

lik + κikdik) + κi1(1− κi3)(li1 + κi1di1) + (1− κi1)κi3(li3 + κi3di3)+

∑
i∈UHF (S4)

κi2κi3
1

2
(
∑

k=2,3

lik + κikdik) + κi2(1− κi3)(li2 + κi2di2) + (1− κi2)κi3(li3 + κi3di3)+

∑
i∈UHF (S5)

κi1(li1 + κi1di1) +
∑

i∈UHF (S6)

κi2(li2 + κi2di2) +
∑

i∈UHF (S7)

κi3(li3 + κi3di3)+

∑
i∈UVH(S2)

1

2
κi1κi2(

∑
k=1,2

lik + κikdik) + κi1(1− κi2)(li1 + κi1di1) + (1− κi1)κi2(li2 + κi2di2)+

∑
i∈UVH(S5)

κi1(li1 + κi1di1) +
∑

i∈UVH(S6)

κi2(li1 + κi2di2) +
∑

i∈LVH(S2)

κi1(li1 + κi1di1)

(8)

A.4 Network decomposition and Lagrangian relaxation

An interesting observation about the network of stations is that it contains many subnetworks, each cor-
responding to a physical region, where the interference constraints form cliques. These small subnetworks
are linked together but these links are sparse, that is, parts of the network share only a few (or no) nearby
stations and hence share few binding constraints from an optimization perspective. For example, consider
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the reordering of the network so that an interference matrix can be viewed in sub-figure (b) of Figure (11).
If we divide the network into two groups, group A with stations 1-381 in the ordered list and group B
with the remaining stations, then there is only one pair of stations from A and B that cannot co-share
a channel. Without this binding constraint, the problem is separable and can be solved by solving two
smaller problems. With the presence of binding constraints, a Lagrangian dual problem can be formulated
and solved by using a conjugate gradient method. The method often works well if the number of binding
constraints is small (e.g., in the above case with only one constraint)

Figure 11-a shows the adjacency matrix of G(N,E). A dot at row i and column j in Figure 11-a appears
if there is potential interference between stations i and j. Figure 11-b show the same interference matrix
after we reordered the stations in a way that the non-zeros appear mostly on the diagonals.

Figure 11: Interference matrix on the original ranking of stations from 1-2177 (left) and after reordering
(right).

We need to divide the original network into G > 2 sub-networks. Having larger G implies smaller sub-
problems and hence there is a better chance that the integer program solver (CPLEX in our experiments)
can handle the case. However, having larger G often leads to more binding constraints to be relaxed and
hence can beget a larger optimality gap. Thus, we need a good way to divide the network that balances
between the sizes of the subproblems and the number of constraints relaxed. Finding a division of the
network into two parts with the lowest number of binding constraints is equivalent to the Mincut-Maxflow
problem and can be solve efficiently. However, the optimal divisions often contains unbalanced subgraphs
with a very large subproblem and the decomposition does not help. Therefore, we need to solve a network
partitioning problem to divide the network into G subnetworks with similar sizes.

Suppose we divide the network of stations into G subgroups of stations S1, . . . ,SG. Let us define zg
to be the vector of decision variables that involve only stations in group Sg. The objective function is
linear and hence is separable to decision variables zg. The constraint set will contain two groups: (a)
constraints that involves only decision variables in one of the subgroups and (b) constraints that involves
decision variables from two subgroups. The constraints in (b) corresponds to edges that link stations
in different groups. The idea of the Lagrangian relaxation technique is to formulate a Lagrangian dual
problem where constraints in (b) are relaxed and are pushed into the objective function. The constraint
set is now separable in zg and the problem is separable for each fixed set of Lagrangian multipliers. In
what follows we describe the algorithm in detail.
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Let us define

Icg = {(i, j, k) ∈ Ic : i ∈ Sg, } ,
Iag = {(i, j, k) ∈ Ia : i ∈ Sg, } ,

and

Icx = {(i, j, k) ∈ Ic : ∃g1, g2 ∈ 1, . . . , G, g1 6= g2, i ∈ Sg1 , j ∈ Sg2 , } ,
Iax = {(i, j, k) ∈ Ia : ∃g1, g2 ∈ 1, . . . , G, g1 6= g2, i ∈ Sg1 , j ∈ Sg2 , } ,

Let λ and γ be the Lagrangian multipliers for co-channel constraints involving set Ccx and for adjacent-
channel constraints involving set Cax, respectively. The Lagrangian dual function is

L(z,λ,γ) =

n∑
i=1

(1−
∑
k∈Ci

zik)bi +

∑
(i,j,k)∈Icx

(1− zik − zjk)λijk +
∑

(i,j,k)∈Icx

(1− zik − zjk+1)γijk

=

n∑
i=1

|Ci|bi +
∑

(i,j,k)∈Icx

λijk +
∑

(i,j,k)∈Iax

γijk −

n∑
i=1

∑
k∈Ci

zik

bi +
∑

j:(i,j,k)∈Icx

λijk +
∑

j:(i,j,k)∈Iax

γijk +
∑

j:(j,i,k−1)∈Iax

γijk


=

G∑
g=1

Lg(zg,λ,γ)

Let us define

Fg(C) =

{
zg :

zik ∈ {0, 1},∀i ∈ Sg and k ∈ Ci,
∑
k∈Ci zik = 1,∀i ∈ Sg,

zik + zjk ≤ 1,∀(i, j, k) ∈ Icg, zik + zjk+1 ≤ 1,∀(i, j, k) ∈ Iag

}
as the set of constraints that involve stations in group Sg, g = 1, . . . , G, only. The constraint set of the
relaxed problem is {zg ∈ Fg(C),∀g = 1, . . . , G} which is separable in zg. The Lagrangian dual problem is
therefore equivalent to

max
λ,γ

min
z∈F(C)

L(z,λ,γ) = max
λ,γ

 ∑
g∈1,...,G

{
min

zg∈Fg(C)
Lg(zg,λ,γ)

}
For each fixed set of Lagrangian multipliers λ and γ, the Lagrangian dual problem can be solved by

solving G subproblems. If the sizes of the subgroups are reasonable such that the subproblems can be solved
efficiently, we can apply a sub-gradient method to find the optimal set of the Lagrangian multipliers. The
final solution provides us an upper bound to the original problem.
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