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Abstract

A descending (multi-item) clock auction (DCA) is a mechanism for buying from multiple parties.

Bidder-specific prices decrease during the auction, and a bidder drops out when she is no longer will-

ing to sell. A DCA is planned for procuring spectrum from existing holders in the FCC’s incentive

auctions so spectrum can be repurposed to higher-value uses. We present, to our knowledge, the first

techniques for decrementing prices in a DCA. We develop natural percentile-based approaches and a

continuous optimization approach that minimizes expected payment by the auctioneer while stochas-

tically satisfying feasibility. We develop computational methods for solving the model and introduce

certain kinds of clique constraint into the continuous optimization that improve feasibility handling.

Experiments on homogeneous items and on incentive auctions with real interference data show that

this optimization approach significantly outperforms percentile-based approaches in minimizing final

payment and feasibly repacking more stations.

Keywords: Combinatorial Auction; Descending Clock Auction; Incentive Auction; Spectrum Auction;

Winner Determination; Pricing; Optimization.

1 Introduction

A descending (multi-item) clock auction (DCA) is a mechanism for buying items from multiple potential

sellers. In the DCA, bidder-specific prices are initialized at reserve prices and then decremented over the

course of the auction [18]. In each round, the auctioneer decrements the offer prices to the bidders, who

might accept or decline the offers. Accepting means that the bidder is willing to sell at that price. Rejecting

means that the bidder has to exit the auction permanently and cannot sell. This process is repeated until

the auctioneer’s target number of items to purchase would become infeasible if additional bidders were to

reject any new (lower) offers. At that point the auction ends and the current prices are paid.

We consider the following setting. The auctioneer wants to buy items from a pool, N , of n potential

sellers. Each seller i ∈ N has a specific type of item Gi and decides to sell it or not depending on the

offer price. The items from the sellers could be substitutable and complementary. The auctioneer has a
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target number of items to buy, T , and there is a feasibility function F : 2N → {0, 1} that specifies, for each

subset of potential sellers, S, whether the items from S can fulfill the target T or not; i.e. F (S) = 1 if the

combined items from {Gi, i ∈ S} fulfill the target.

A simple example of this is the case where the sellers have identical items and the auctioneer wants to

buy a target number T them. In this case, the feasibility is simply F (S) = 1 if |S| ≥ T , and F (S) = 0

otherwise. However, in real-world application such as the FCC spectrum reverse auctions discussed later,

the feasibility function can be highly complex. Often it cannot be given in closed form, but rather is stated

through constraints as an optimization problem.

In the DCA, the auctioneer sends offer prices to the sellers and checks whether they accept those prices.

Bidders who accept the offers are called active. If the combined items from the active bidders fulfill the

target, then the auctioneer reduces the prices further in the next round and repeats the process. If at some

point the items from the active bidders do not fulfill the target, then the auctioneer goes back to the last

step and conducts a last-round adjustment to offer higher prices to some declined bidders so that feasibility

is obtained. Algorithm 1 describes the general DCA framework.

ALGORITHM 1: Descending Clock Auction (DCA)

Input: A set of sellers N = {1, . . . , n} with goods {G1, . . . , Gn}, an auctioneer with a feasibility mapping

function F : 2N → {0, 1}. A target number of rounds allowed m. Initial value function estimates vi.

Output: A set of feasible sellers A ⊂ N , i.e., F (A) = 1, and the corresponding vector of offer prices p that aims

to minimize the expected payment that the buyer needs to pay.

1. Initialize the price vector p to the reserve prices. Let the set of active bidders be A(0) = N ;

for round r = 1...m do

2.1. Find a vector of prices p to offer the bidders;

2.2. Find the set of rejected offers R;

if F (A(r)\R) = 1 then

2.2.1. A(r+1) ← A(r)\R;

2.2.2. Update the distributions of the bidders’ values;

else

2.2.3. Enter the readjustment round in Step 3;

end

end

3. Readjust the prices for bidders in the last round to meet the target;

4. Pay winning bidders the offered prices;

A key challenge in a DCA lies in how to set the prices offered to the bidders. A natural approach is
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to set the offer price at some fixed percentile of the (buyer’s model of the) distribution of that bidder’s

valuation. For example, the prices could be set so that each bidder has the same probability of accepting

her offer. The choice of the percentile would depend on what the auctioneer aims for on the trajectory of

the sizes of sets of active bidders through the rounds. An example of the trajectory could be such that

the expected number of rejections in each round is distributed evenly throughout the auction. Another

example of the trajectory is to set a fixed percentage of rejection in each round, that is, the expected

number of rejections is proportional to the size of the remaining set of active bidders. We call this class of

methods percentile based and we will describe it formally later in Section 4.1.

Those methods have several drawbacks. First, having a fixed percentile means there is no way to

distinguish between bidders with high bid values and the rest; hence the final payment will likely be

unnecessarily high due to the probabilistic inclusion of high-priced bidders. More importantly, those

methods do not have any special treatment for the degree of interaction among the items in the feasibility

function.

This paper presents a significant improvement within the DCA by addressing these issues by designing

an optimization model for setting the prices. The model is designed to minimize the expected final payment

while ensuring feasibility in a stochastic sense. It is flexible in that it can incorporate bidder-specific

characteristics with respect to feasibility.

1.1 FCC Incentive Auctions

The current flagship application of DCAs is the Federal Communications Commission (FCC) incentive

auctions. The FCC has been selling radio spectrum licenses via auctions since 1994 [4, 17]—in recent

years via combinatorial auctions [6, 7]. However, there is not enough spectrum left to sell for the new

high-value spectrum uses that have arisen. The idea of incentive auctions, therefore, is to buy some of the

existing licenses back from their current holders, which frees up spectrum, and then to sell spectrum to

higher-value users. The idea of such incentive auctions was introduced in the 2010 National Broadband

Plan [9]. It is motivated by the fact that the demand and the value of over-the-air broadcast television has

been declining while the demand for mobile broadband and wireless services has increased dramatically

in recent years. Given the limited spectrum resources, incentive auctions were introduced as a voluntary,

market-based means of repurposing spectrum. This is done by creating a market that exchanges the usage

rights among the two groups of users: (a) existing TV broadcasters and (b) wireless broadband networks.

Three key players in this market are existing spectrum owners, spectrum buyers, and the FCC, which acts

as the intermediator.

An incentive auction consists of three stages [12] (see also a whitepaper about design choices by Hazlett
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et al. [14]):

1. Reverse auction: parts of the spectrum currently used by TV broadcasters is bought back.

2. Repacking : remaining broadcasters are reallocated to a smaller spectrum band.

3. Forward auction: freed spectrums is sold via a (combinatorial) auction for use in wireless broadband

networks.

In the reverse auction, we need to find a set of stations to be reallocated to lower-band channels and

a separate set of stations to be bought off the air, in order to achieve the following goals: (a) meet some

target on the number of contiguous channels freed on the higher spectrum band and (b) minimize total

payment by the FCC. The FCC is required to respect the broadcasters’ carry-right, which means, in the

context of a DCA, a station that rejects the offer still has the right to stay on the air, but possibly on a

lower spectrum band. This repacking stage needs to ensure that all the stations that rejected their offers

can be feasibly repacked into the allocated band without violating the engineering constraints, that is,

interference-free population coverage, as we will detail later in the paper.

Once the reverse auction phase is completed and the remaining stations are repacked, the FCC an-

nounces the cleared spectrum which is now available for purchase. Buyers then submit bids on bundles of

spectrum frequencies. The FCC solves a winner determination problem to decide which bids to accept or

reject. This does not involve the engineering constraints, so it is like a standard combinatorial auctions;

hence existing winner determination algorithms (e.g., [22, 23, 24, 25, 8, 21]) can be used for this. Therefore,

we focus on the reverse auction stage.

The FCC aims to free up a number of high spectrum channels—say between channel 32 and 51. In

order to do that, all stations need to be assigned to the lower band channels or give up their carry right

in exchange for some payment. The process of deciding which stations to retain, which stations to leave,

and at what prices, is done through the reverse auction. Within this stage, the repacking problem needs

to be solved in order to check whether the remaining stations can be feasibly reassigned to the targeted

lower-band channels. Other groups have recently also tackled the repacking part (e.g., Leyton-Brown [16]).

Two apparent options for the reverse auction design are a single-round Vickrey-Clarke-Groves (VCG)

auction or a DCA.1 In the VCG, stations submit sealed bids. The auctioneer then solves the winner

1Combinatorial reverse auctions have been extensively used for sourcing of various categories of goods and services in

industry and government [24, 20]. Typically, a pricing rule has been used where bidders pay the prices offered by them in

their winning bids. Normally, one to three rounds of bidding have been used, with feedback to bidders in between rounds,

but also continuous variants have been used for small numbers of items in the auction, where tentative winner determination

is conducted each time a bid is submitted or revised [24]. Feedback and bidder strategies in combinatorial auctions have also

been studied in laboratory experiments [1]. Combinatorial reverse auctions have also been proposed for sourcing carrier-of-
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determination problem (WDP) to determine the winning bids, that is, those stations that the FCC buys

back at their bid prices. Stations with rejected bids are repacked into the lower-band channels. Unfortu-

nately, solving this WDP is challenging because it involves thousands of binary variables and millions of

interference-avoidance constraints. In fact, the FCC has attempted to solve it, but according to Milgrom

and Segal [19], solving an instance of this problem with state-of-the-art optimization packages takes weeks

of compute time without finding the optimal solution. Also, even if the list of winners were available, solving

for the VCG payment for each winning bidder would involve solving a combinatorial problem similar to the

WDP. It is the same as the WDP except that a small portion of the binary variables are fixed. Furthermore,

a small approximation error in solving these problems can lead to significant over-payment [18].

The DCA was proposed by Milgrom and Segal [18], who have shown attractive features of the framework.

According to documents that the FCC uses to communicate with its stakeholders regarding incentive

auctions (wireless.fcc.gov/ incentiveauctions/learn-program), the DCA is the FCC’s design of choice.

However, there is a key missing piece in the DCA: how to determine what prices to offer to the different

bidders in the different rounds. In this paper we present a solution to this. To our knowledge, this is the

first paper on the topic.2

The importance of this question is highlighted on the FCC web site (wireless.fcc.gov/ incentiveauctions/learn-

program/rule-option/reverse-auction.html):

The algorithm that determines how prices are decremented for each station in each round ...

is an important part of the auction design. This algorithm will rely on a score for each bid

that accounts for factors like the potential interference created by a station and the population

served by the station, as well as the money amount of the bid. The use of population in scoring

could reflect the fact that the value of a broadcasting license depends in part on its population

served. Ranking bids and paying winning bidders in relation to their population served or other

indicators of value may reduce the amount that the Commission would have to pay to repurpose

broadcast television spectrum. The details of the scoring will need to be examined further.

This problem is also timely. The FCC was planning to run the first incentive auction in 2014, but

because the auction design was not ready, in December 2013 the FCC postponed the start of the incentive

auction to at least mid-2015 [26]. Recently the incentive auction has been further postponed to early 2016

because the design of the auction mechanism, including the methodology for adjusting prices across rounds,

has still not been finalized.

last-resort responsibility for universal service [15]. The descending clock auction is a different design where the prices are

non-combinatorial, that is, only individual items are priced.
2We submitted it to the FCC docket on March 25th, 2014 and presented it at the EC conference in June 2014.
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1.2 Contributions

The main contributions of this work include the following.

• We develop a natural percentile-based approach and optimization models for setting offer prices in

DCAs. We study analytical properties of the optimal solutions, as well as the computational methods

and their complexity. To the best of our knowledge, this is the first paper to investigate this topic.

• We provide numerical results for simulated auctions as well as for the actual ongoing incentive auctions

using real data. This is a very large-scale auction—both in the dollar value and the complexity of

the auctions.

• We show that our optimization models support flexibility in incorporating problem-specific informa-

tion. In the case of incentive auctions, adding certain kinds of clique constraint to the continuous

optimization problem captures feasibility better and yields better results (and reduces the possibility

of collusion among bidders). The advanced optimization-based approach significantly outperforms

the natural percentile-based approach both in terms of final payments and the number of stations

being feasibly repacked.

2 Techniques for Optimizing Offer Prices in the Descending Clock

Auction

A key component of a DCA is to set the prices to offer to the active bidders. The auctioneer needs to

consider the tradeoff between minimizing payment to the accepted bidders and fulfillment of the target

(i.e., repacking feasibility in the case of incentive auctions).

Furthermore, the pricing affects the speed of the auction in terms of the number of rounds. Therefore,

there is another tradeoff. On the one hand, if the offer prices are too high, many rounds are required, and

that may be undesirable from the perspective of minimizing logistical effort. On the other hand, if the

offer prices are too low, many bidders reject and the auction ends too quickly without properly serving its

price-discovery purpose.

In this section, we present a method for setting the offer prices. They should be dependent on (a) the

estimated value functions of the bidders, (b) the importance of the items for the target to be fulfilled, and

(c) how quickly/slowly the auctioneer wants the auction to run. We provide an optimization model that

incorporates these considerations.

Throughout this section, we assume the auctioneer’s target T is a given scalar number and the feasibility

mapping F is given in some specific form. Obviously these inputs are not readily available in many settings
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such as in incentive auctions: the feasibility function involves a complex repacking problem. Later in

Section 3 we show how to translate such a complex setting to the forms of T and F described in this

section.

2.1 Optimization Model for Price Setting in Each Round

Suppose each bidder has a threshold price vi below which it declines the offer. The auctioneer does not know

these threshold prices. Suppose, however, that the auctioneer has an estimate/belief that the threshold

price vi of bidder i follows some distribution on the support set [li, ui]. Assume that the auctioneer knows

these distributions.

Let Xi(pi) be the corresponding Bernoulli random variable that indicates whether bidder i will accept

the offer at price pi. The total payment is c(p) =
∑
i∈A(r)

Xi(pi)pi, where A(r) is the set of remaining active

bidders in the current round r. One objective of the auctioneer is to set the prices in such a way that

minimizes the expected payment which is equal to

E[c(p)] =
∑
i∈A(r)

E[Xi(pi)]pi. (1)

The expected payment is nondecreasing in the offer prices. So, setting low prices would lead to low expected

payment. However, doing this would lead to a high chance of reaching infeasibility too soon, so little price

discovery could be done. The auctioneer, therefore, needs to balance feasibility with low expected payment.

The bidders’ values are random to the auctioneer, so, for any fixed set of offer prices, the feasibility can

only be expressed in a stochastic sense. It is possible to apply ideas from stochastic programming to

model this as a chance constraint. However, this often leads to computational intractability since the

feasibility mapping tends to be a highly complex function of the prices. We propose a simpler measure

of the expected number of bidders accepting the offers N(p) as this is directly related to the chance of

feasibility, i.e., the larger the population of active bidders, the higher the chance of feasibility. We have

E[N(p)] =
∑
i∈A(r)

E[Xi(pi)]. The problem of minimizing the expected payment while ensuring the expected

number of accepted bidders to meet some target can be modeled as the following optimization problem:

min
p

∑
i∈A(r)

E[Xi(pi)]pi,

s.t.
∑
i∈A(r)

E[Xi(pi)] ≥ T (r),

li ≤ pi ≤ ui,∀i ∈ A(r),

(2)

where T (r) is the targeted number of active bidders at round r. The auctioneer has the flexibility in

choosing this target depending on how quickly or slowly the auctioneer wants to complete the auction.
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One possibility is to set

T (r) = n(r) − n(r) − T
m− r + 1

,

where n(r) is the number of active bidders remaining, T is the final target, and (m− r + 1) is the number

of remaining rounds. In this case, T (r) is set such that the size of the sets of active bidders reduces evenly

throughout the rounds.

Both the payment and feasibility are expressed in expectation due to the stochasticity of the bidders’

values. This means the actual number of accepted bidders might exceed or fall below the target T (r). That

potential disparity, and its effect on the later rounds, imply that better prices than those from Model 2 could

be obtained via a model that incorporates recourse. We present one such model in Appendix A.2. That

model is, however, computationally highly complex to solve and might not be appropriate in large-scale

DCA settings if quick rounds are needed.

The price-setting strategy in Model 2 simplifies one important fact about the dynamical nature of DCAs:

the choice of offer prices in round r will affect the population of active bidders in subsequent rounds as

well as the distribution of those bidders’ values. Thus, in principle, the pricing problem in DCAs should be

modeled as a dynamic program as presented in Appendix A.1. Solving it, however, would be prohibitively

complex. Instead, we simplify this process through a dynamic scheduling of the sizes of the sets of active

bidders T (r). Specifically, we schedule the size of the set of active bidders n(r) evenly in the last (m−r+1)

rounds. The simplicity of the models described in this section makes them appropriate in situations when

it is critical to offer prices to the bidders in a timely manner.

To simplify the notation in Model 2 a bit, let us denote by Fi(pi) the cumulative distribution of the

valuation of bidder i. It can also be interpreted as the probability that bidder i will accept offer price pi,

i.e., Fi(pi) ≡ δi ≡ E[Xi(pi)]. Model 2 can now be rewritten as

min
p

∑
i∈A(r)

Fi(pi)pi,

s.t.
∑
i∈A(r)

Fi(pi) ≥ T (r),

li ≤ pi ≤ ui,∀i ∈ A(r).

(3)
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2.1.1 Uniform Distribution on Bidder Values

We first consider the case where the bidders’ values are drawn from uniform distributions on [li, ui]. The

probability that bidder i will accept the offer price vi is,

δi(pi) = Fi(pi) =


0, if pi ≤ li,

pi−li
ui−li , if li ≤ pi ≤ ui,

1, if pi > ui.

(4)

Naturally, we can restrict the price to li ≤ pi ≤ ui. The expected payment is

E[c(p)] =
∑
i∈A(r)

Fi(pi)pi =
∑
i∈A(r)

(pi − li)pi
ui − li

.

The constraint on the expected number of stations accepting the offers is

E[N(p)] ≥ T (r) ⇔
∑
i∈A(r)

pi − li
ui − li

≥ T (r),

which is linear in the offer prices p. So, the problem of minimizing the expected payment while ensuring

the probabilistic constraints on feasibility can be modeled as the following quadratic program:

min
p

∑
i∈A(r)

(pi − li)pi
ui − li

,

s.t.
∑
i∈A(r)

pi − li
ui − li

≥ T (r),

li ≤ pi ≤ ui,∀i ∈ A(r).

(5)

The problem has a strictly convex separable quadratic objective and one joint constraint in addition

to lower and upper bound constraints. Thus, the problem has a unique optimal solution. In addition, the

expected payment increases with p while the expected number of rejected stations decreases with p. Thus,

we would expect the constraint to be tight at the optimal solution. Let λ be the Lagrangian multipliers

for the joint constraint
∑n
i=1

pi−li
ui−li ≥ T

(r). The Lagrangian dual function is

L(λ,p) =
∑
i∈A(r)

(pi − li)pi
ui − li

+ λ

T (r) −
∑
i∈A(r)

pi − li
ui − li


= T (r)λ+

∑
i∈A(r)

(pi − li)pi − λ(pi − li)
ui − li

.

The Lagrangian dual problem can be derived as

max
λ≥0

Tλ+
∑
i∈A(r)

min
li≤pi≤ui

p2
i − (λ+ li)pi + λli

ui − li

 .
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The problem is convex, so there is no duality gap when we take the Lagrangian relaxation. For each fixed

set of Lagrangian multipliers λ, the optimal prices can be derived:

p∗i =


li+λ

2 , if li ≤ λ ≤ 2ui − li,

li, if λ ≤ li,

ui, otherwise.

(6)

Proposition 1. [Symmetry] For any two bidders with the same valuation distribution, the optimal offer

prices must be the same.

Proof. Straightforward from Formulation 6. For any two bidders i, j with the same boundaries, i.e., li = lj

and ui = uj , any choice of λ leads to p∗i = p∗j .

The Lagrangian dual function can be calculated efficiently in O(n) for each fixed λ. The Lagrangian

dual problem is a piece-wise concave maximization problem with one scalar variable on the non-negative

orthant. One could apply a conjugate gradient method to solve this problem. Better still, we present an

algorithm that exploits the structure of the problem and is O(n log n):

Proposition 2. The optimal offer prices can be found—i.e., Model 5 can be solved—in O(n log n) opera-

tions.

Proof. The optimal offer price p∗i is a piece-wise linear function on λ with three pieces that are intersected

at two points li and (2ui − li). We can order all the 2n points {li, 2ui − li},∀i = 1, . . . , n on the vertical

axis in O(n log n). From that we obtain (2n + 1) pieces (some potentially with zero length). For λ that

falls within each piece, we have a corresponding linear mapping to the offer prices pi, i = 1, . . . , n. Thus,

the Lagrangian function on that piece can be calculated as a corresponding quadratic function on λ. The

optimum λ on each piece can therefore be calculated. The global optimal λ can be found by taking the

maximum Lagrangian function among all the (2n+ 1) pieces.

2.1.2 Heterogeneous Bidders with Respect to Target Feasibility

The feasibility constraint in Model 5 was for the homogeneous case. Consider now a heterogeneous case

where the item from each bidder would affect feasibility differently. For example, in incentive auctions,

depending on the current list of rejected stations, the repacking feasibility is highly sensitive to the choice

of new rejection due to engineering constraints. Suppose there is a weight vector ω = (ω1, . . . , ωn) that

represents the contribution from the bidders to the feasibility function F ; in Section 3 we will show how

to derive these weights for the case of incentive auctions. For now, we consider a simple example where
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bidders all share the same type of item but each of them will have a different number of items to sell. In

that case, ωi can represent the amount available from bidder i. We assume a setting where each bidder

considers its item as a single product and considers selling it or not depending solely on the offer price (to

avoid the combinatorial complexity). Now, Model 5 can be modified to

min
p

∑
i∈A(r)

(pi − li)pi
ui − li

,

s.t.
∑
i∈A(r)

ωi
pi − li
ui − li

≥ T (r),

li ≤ pi ≤ ui,∀i ∈ A(r).

(7)

Applying the same Lagrangian relaxation method as shown in solving Model 5,

p∗i =


li+ωiλ

2 , if li/ωi ≤ λ ≤ (2ui − li)/ωi,

li, if λ ≤ li/ωi,

ui, otherwise.

(8)

Similar to Model 6, the problem is strictly convex, so it has a unique optimal solution and there is no

duality gap when we take the Lagrangian relaxation.

Proposition 3.

a) [Symmetry] For any two bidders with the same valuation distribution and with the same weights, the

optimal offer prices must be the same.

b) [Monotonicity] For any bidders with the same valuation distribution, the optimal offer prices are

higher for those with higher weights.

Proof. In part (a), for any two bidders with identical value distributions and weights, any choice of λ would

lead to the same formulations for the offer prices (as shown in Formulation 8) for the two bidders, which

means the optimal offer prices are the same. Part (b) can be derived in the same way with a note that

both ω and λ are non-negative.

The implication of part (b) is that the auctioneer should offer higher prices to more ‘important’ bidders

to keep them active. We will show how this is applied to the case of incentive auction where the stations

affect the feasibility differently.

Proposition 4. The optimal offer prices can be found—i.e., Model 7 can be solved—in O(n log n) opera-

tions.

Proof. The proof is similar to that of Proposition 2.
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2.1.3 General Valuation Distributions

Now we drop the assumption that the bidders’ valuation distributions are uniform. In this setting, Model 7

generalizes to a nonlinear program:

min
p

∑
i∈A(r)

Fi(pi)pi,

s.t.
∑
i∈A(r)

ωiFi(pi) ≥ T (r),

li ≤ pi ≤ ui,∀i ∈ A(r).

(9)

Depending on the valuation distributions, this program might be non-convex and might be hard to

solve in general. The attractive part of this model, however, is that it has a separable objective function

and only one joint constraint. Using the same Lagrangian relaxation method, we obtain the following

Lagrangian dual problem:

max
λ≥0

{
T (r)λ+

∑
i∈A(r)

min
li≤pi≤ui

(Fi(pi)pi − λωiFi(pi))
}
.

For each fixed Lagrangian multiplier λ, the optimal prices p of the inner problem can be found by solving

n nonlinear sub-problems, each with a single scalar variable. In the case where the distribution of the value

function is piecewise linear, the inner problem is a piecewise cubic function where the optimal solution of

each piece can be found efficiently.

The problem might be non-convex so the Lagrangian relaxation method might produce some optimality

gap. The Lagrangian relaxation method has been shown to perform well empirically, that is, with small

optimality gaps, for a number of combinatorial problems (see Fisher [13] for details about the method and

successful applications). The offer prices found, however, might not be optimal. In what follows we present

a method that could either be used as a stand-alone method for finding the optimal offer prices or can be

used in combination with the Lagrangian relaxation method to enhance the performance. This method

takes advantage of the discreteness property of the decision variables, the separability of the objective

function, and the single joint constraint. Consider an auction design where the offer price for bidder i must

take discrete values in a given set {Pi1, . . . , Pik}. This restriction often holds in practical auction settings

because (1) allowing fractional bids can increase hassle (e.g., bookkeeping), and (2) allowing unimportant

digits to be expressed opens the door for collusion among bidders. Such collusion has been observed in

FCC auctions and the FCC has subsequently practiced, for example, “click-box” bidding where bidders
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have to select their bids from a small set of discrete values [5, 2]. The problem becomes

min
p

n∑
i=1

Fi(pi)pi,

s.t.

n∑
i=1

ωiFi(pi) ≥ T,

pi ∈ {Pi1, . . . , Pik},∀i = 1, . . . , n.

(10)

This is a mixed-integer nonlinear program. They are generally very difficult to solve. However, this one

has a knapsack-type structure so a dynamic program can be utilized:

Proposition 5. Optimal offer prices for Model 10 can be found in O(KLn2) operations, where K is the

maximum number of discrete price levels and L is the number of precision points in the range [0, 1] used

to calculate the cumulative values Fi(·).

The proof of Proposition 5 is presented in Appendix A.3. Here we discussed the problem in the

first round where A(1) = N and has the largest size. Results for other rounds can be derived similarly.

Also, it is possible to combine the idea from Lagrangian relaxation and dynamic programming to improve

the computational performance further. This can be done by using the approximated results from the

Lagrangian relaxation method and using it to guide the discretization of the feasible space for p before

applying the dynamic program. For example, the discretization around the solution suggested by the

Lagrangian relaxation could be more refined than elsewhere.

2.2 Updating Value Function Distributions

The auctioneer utilizes the price discovery feature of the DCA to update the estimated value functions in

Step 2.2.2 of Algorithm 1. Suppose that, at the beginning of round r, the auctioneer has a belief that the

random threshold price vi for bidder i follows a distribution on the support set [li, ui] with a cumulative

distribution Fi(·). Once the auctioneer has made an offer p
(r)
i to i, there are two cases. In the first case, i

rejects the offer. The rejected list is updated and i is no longer active (except in the last round when the

target is not met). In the second case, i accepts the offer and stays active. The auctioneer needs to update

the belief about the threshold price of bidder i based on the fact that the bidder accepted. We need to

find the conditional distribution for (vi | vi ≤ p(r)
i ), which can be calculated as follows:

Prob(vi ≤ a | vi ≤ p(r)
i ) =


0, if a ≤ li,

1, if a > p
(r)
i ,

Prob(vi≤a)

Prob(vi≤p(r)i )
≡ Fi(a)

Fi(p
(r)
i )

, if li ≤ a ≤ p(r)
i .

(11)
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The auctioneer then uses this new set of beliefs on the value functions and the new set of active bidders to

run a new auction round.

If Fi(pi) is piece-wise linear at iteration r, then the updated cumulative distribution is also piece-wise

linear at iteration (r+1). In the special case of a uniform distribution, the updated distribution is uniform

on [li, p
(r)
i ], that is, we simply update the upper bound to be p

(r)
i .3

2.3 Final-Round Settlement

In Step 3 of Algorithm 1, the auctioneer selects the winners of the auctions after having undertaken the

price discovery through the multiple rounds of the DCA. Let p be a vector of prices that the auctioneer

offers to the bidders in the last round. Given the offer prices, the bidders might accept or reject the

offers. The auctioneer then updates the upper bounds on the bidders’ values: upper bounds for bidders

that accepted will be updated to the offer prices and those of the bidders who rejected remain unchanged.

After the final round, the auctioneer does not have any further opportunity to conduct price discovery,

and has to decide which bidders are the final winners to meet the target. In the simple setting where the

auctioneer’s target is to obtain T items out of a pool of n homogeneous items, the auctioneer chooses T

bids with the smallest updated upper bounds and pays each of those bidders that price. For the weighted

case, the auctioneer solves the following knapsack problem to determine a set of winners that meets the

target with the least total payment (recall that ui is the most up-to-date upper bound on the valuation of

i):

min
z

∑
i∈A(m)

uizi,

s.t.
∑

i∈A(m)

wizi ≥ T,

zi ∈ {0, 1},∀i ∈ A(m),

(12)

where zi indicates whether bid i should win.

2.4 DCA with Homogeneous Items

In this section we study a relatively simple auction with n bidders, each of whom has one item to be sold.

The objects are identical from the auctioneer’s point of view, and the auctioneer has a target of buying T

objects. In this case, the feasibility function is F (A) = 1 if |A| ≥ T , and F (A) = 0 otherwise.

3In general, there could also be other factors to take into account when updating the value function distribution. For one,

the auctioneer might want to update the bounds based on how other bidders have responded to offers. This, and DCAs in

general, beget interesting questions for future research related to interdependent valuations. Within the scope of this paper,

our focus is, however, on how to set offer prices given the beliefs.
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To apply the general DCA framework of Algorithm 1 to this relatively simple setting, we need to adapt

Algorithm 1 in Step 2.1 and set the target number of accepting bidders to T (r) = n(r)−(n(r)−T )/(m−r+1),

where n(r) = |A(r)|, and solve Model 9 to find a vector of prices p to offer the bidders. In this step, we

assume the auctioneer first aims for a trajectory of the sets of active bidders and then optimizes the prices

correspondingly. Another strategy that the auctioneer could adopt is to first try to ‘foresee’ the offer prices

in the final round by solving Model 9 for T (r) = T , and then shrink these final prices to the upper bound

by taking advantage of the multi-round guessing in price discovery. We present details about this strategy

in Appendix A.4. We also need to adapt Step 3 of Algorithm 1 by solving Formulation 12. Details about

this and other steps are presented in Algorithm 2.

ALGORITHM 2: A DCA Framework using Optimal Price Setting for the Homogeneous Setting

Input: A set of sellers N = {1, . . . , n} with goods {G1, . . . , Gn}, an auctioneer with a target T . A target number

of rounds allowed m. Initial valuation estimates vi.

Output: A set of feasible sellers A ⊂ N , i.e., |A| = T , and the corresponding offer price vector p that aims to

minimize the expected payment.

1. Let the set of active bidders be A(r) = N ;

for round r = 1...m do

2.1. Set the target number of accepting bidders T (r) = n(r) − (n(r) − T )/(m− r) where n(r) = |A(r)| and solve

Model 9 to find a vector of prices p to offer the bidders;

2.2. Find the set of rejected offers R;

if |(A(r)\R| ≥ T then

2.2.1. A(r+1) ← A(r)\R;

2.2.2. Update the distributions of the bidders’ valuations using Formulation 11;

else

2.2.3. Enter the adjustment round in Step 3;

end

end

3. Adjust the prices for bidders in the last round to meet the target by solving Formulation 12;

4. Pay winning bidders the offer prices;

3 DCA in FCC Incentive Auctions

In this section we conduct experiments with a model of the FCC incentive auction that uses real FCC

data regarding the feasibility. A key feature of reverse auctions in incentive auctions is that the feasibility

function is highly sensitive to the set of rejected bids. This is due to a large set of engineering constraints
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between the stations that restricts them from being assigned to the same or adjacent channels. This

means the inclusion of a set of stations in a current reject list would make the characteristics of remaining

stations totally different from each other. We first describe these interference constraints and the feasibility

function. We then show how the general DCA framework can be applied to incentive auctions.

3.1 Interference Constraints in Repacking and Feasibility Checking

The description of the FCC incentive auction DCA setting with the engineering constraints is available in

detailed files on the FCC web site, which we used [11]. There are two csv data files which include

• A domain file called “Domain-2013July15.csv”, of size 306KB, that specifies the feasible channels for

each station.

• An interference file called “Interference-Paired-2013July15.csv”, of size 6219KB, that specifies the

interference constraints that the repacking must meet. This includes:

– Pairs of (station, station) that must not be assigned to the same channel (among a given list of

channels).

– Pairs of (station, station) that must not be assigned to adjacent channels (among a given list of

channels).

Let S be a set of stations that needs to be repacked into a list of channels in set C. We use i, j as indices

for stations and use k as indices for channels. Let Ci ⊂ C, i ∈ S, be the list of feasible channels to station

i. Let Ic be the list of triplets (i, j, k) such that stations i and j cannot be assigned to the same channel

k. Let Ia be the list of triplets (i, j, k) such that stations (i, j) cannot be assigned to channel (k, k + 1)

respectively. Data for Ci, Ic and Ia are available from the domain file and the interference-paired file.

From a given list of channels C, we say the set S of stations is feasible with respect to C if the stations

can be packed into the channels without violating any of the constraints.

Let zik be a binary variable that indicates whether station i is assigned to channel k. We say z is an

assignment to the repacking problem. For z to be feasible, we need the following: (a) all the indicator

variables zik are binary, (b) each station is assigned to exactly one channel, and (c) no pairs of stations that

might interfere with each other can be assigned to the same or adjacent channels. The feasibility function

can be defined as

F (S) =

 1, if P(S, C) 6= ∅,

0, otherwise,
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where P(S, C) is the set of feasible assignments of stations in the set S to a list of available channels C and

is defined as

P(S, C) =


z :

zik ∈ {0, 1},∀i ∈ S and k ∈ Ci,∑
k∈Ci

zik = 1,∀i ∈ S,

zik + zjk ≤ 1,∀(i, j, k) ∈ Ic(S),

zik + zjk+1 ≤ 1,∀(i, j, k) ∈ Ia(S)


, (13)

where Ic(S) and Ia(S) are corresponding subsets of Ic and Ia that involves only stations in S.

To summarize the data and the feasibility problem, there are n = 2177 stations and m = 49 channels

available (ranging from channel 2 to channel 51, with channel 37 not available). Figure 1-a shows the

list of channels that range from 2 to 51 and the number of stations currently allocated to each channel.

As described in [9], these channels are divided into two bands; very-high frequency (VHF) band between

54-216 MHz and ultra-high frequency (UHF) band between 614-698 MHz. These correspond to channels

2-13 in the VHF and channels 14-51 in the UHF. The VHF band is further divided into two bands; the

Lower VHF, denoted as LVH, with channels 2-6 and the upper VHF, denoted as UVH, with channels 7-13.

As can be seen in Figure 1-a, most of the stations are currently allocated in the UHF band (shown in cyan

color). Figure 1-a shows the physical locations of all the stations that are currently allocated to channel

13.
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Figure 1: Statistic of current channel allocation (source [10]).

The aim of reverse auctions is to clear a number of channels in the high-frequency band, say channels

33-51. This means all stations that are currently in this band need to either go off-air or be reallocated

to lower-frequency channels 2-32. To avoid interference, stations who are currently in channels 2-32 also

needs to either go off-air or be reallocated to different channels. The average number of feasible channels
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that each station can be allocated to is 44.15 (out of 49 channels) with most of the channels being freely

allocated to any available channels. However, some stations only have a limited number of feasible channels

(that is, there are stations with only three possible channel assignments).

The repacking problem can be viewed as a generalized graph-coloring problem where the nodes represent

the stations, the edges represent the interfering constraints and the colors represent the channels. Let

G(N,E) denote the corresponding graph. This network has 2177 nodes and 3908 edges. Here, an edge

is formed if there is any possible interference through any pairs of channels, i.e. could be the same or

adjacent channels. Roughly speaking, the repacking problem is similar to a generalized graph-coloring

problem where each node is assigned to a color among a predefined set of colors in such a way that no

neighboring nodes have the same color. To model the interfering constraint in the repacking problem, the

graph-coloring problem needs to be generalized to include constraints; one such constraint, for instance, is

that some neighboring nodes cannot be colored with adjacent colors. Here, ‘adjacency’ is with respect to

a predefined order of colors.

Figure 2-a shows the adjacency matrix of G(N,E). Each dot at row i and column j in Figure 2-a

appears if there is potential interference between stations i and j. Figure 2-b show the same interference

matrix after the stations has been reorder in such a way that the non-zeros appear mostly on the diagonals.

Figure 2: Interference matrix on the original ranking of stations from 1-2177 (on the left) and after our

reordering (on the right).

There are a large number—up to 2.9×106—of constraints requiring pairs of stations not to be allocated

in the same or adjacent channels. Although this is smaller than 2mn2 = 493 × 106 in the worst case,

i.e., when interference matrices are fully dense, it is still a very large number. This makes checking the
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assignment feasibility very challenging for the full problem when all 2177 stations are rejected. In our

experiments, however, the largest number of stations being rejected among all the instances tested is less

than 1000 and hence CPLEX can still handle the feasibility problem. The feasibility problem does not

involve an objective function and hence is much easier to solve than the winner determination problem in

a VCG setting.

In the experiments, we used CPLEX to solve the repacking feasibility problem. We could also use a

satisfiability (SAT) formulation for this purpose as has been done by Leyton-Brown [16]. Our choice of

CPLEX here was for the convenience of implementation of the whole DCA process and due to some special

network structural properties of the repacking problem that CPLEX could exploit. However, a discussion

on the comparison between the performance of SAT and CPLEX is out of the scope of this manuscript

since our focus is on the price setting and not on computational method for solving the feasibility problem.

3.2 Adapting the DCA to FCC Reverse Auctions Using OPT-SCHED

We adapt the general DCA framework of Algorithm 1 to incentive auctions. First, as in the homogeneous

setting, we need to adapt Step 2.1 and set the target number of accepting bidders to T (r) = n(r) − (n(r) −

T )/(m− r), where n(r) = |A(r)|, and solve the following model

min
y

∑
i∈A(r)

yi
(
yi(ui − li) + li

)
,

s.t.
∑
i∈A(r)

(1− yi) ≤
nr − T

m− r + 1
,

0 ≤ yi ≤ 1,∀i ∈ A(r),

(14)

to find a vector of prices to offer the bidders. Here, yi = (pi− li)/(ui− li) is a transformed variable that can

be interpreted as the acceptance probability given the offer price pi. The key difference between incentive

auctions and the homogeneous setting is in the feasibility function. Specifically, the feasibility function in

incentive auctions is a complicated function that is highly sensitive to the set of rejected stations. We need

to adapt Step 2.2. of Algorithm 1 to find the set of new rejections and check the feasibility on the updated

set of rejected stations. Details about this and other steps are presented as Algorithm 3.4

In order to apply the models developed in Section 2 to finding the offer prices in each round, we need

to modify the feasibility constraint. As the bidders’ true values are random variables and unknown to the

4In Step 3 of Algorithm 3, it is possible to do an improvement and select a smaller set of winners by solving a winner

determination problem constrained by having R(r) as a subset of rejected bids. That problem, however, has a similar structure

to a winner determination problem arising from a single-round, sealed-bid auction and is difficult to solve due to the large

set of engineering constraints.
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ALGORITHM 3: A DCA Framework using Optimal Price Setting for Incentive Auctions

Input: A set of stations N = {1, . . . , n}, an auctioneer with a feasibility function F : 2N → {0, 1}. A target

number of rounds allowed m. Initial valuation function estimates vi.

Output: A set of feasible stations to reject R ⊂ N , i.e. F (R) = 1, and the corresponding offer price vector p

that aims to minimize the expected payment on the remaining stations.

1. Set the initial prices p at the reserves. Let the set of rejected bidders be R(r) = ∅;

for round r = 1...m do

2.1. Set the target number of accepting bidders T (r) = n(r) − (n(r) − T )/(m− r) where n(r) = |A(r)| and solve

Model 14 to find a vector of prices p to offer the bidders;

2.2. Find the set of rejected offers R;

if F (R(r) ∪R) = 1, i.e. via solving 13, then

2.2.1. R(r+1) ←R(r) ∪R;

2.2.2. Update the distributions of the bidders’ valuations using Formulation 11;

else

2.2.3. Enter the final Step 3;

end

end

3. Set all remaining bidders N\R(r) as winners and pay them their offer prices;

auctioneer, any fixed set of offer prices leads to a stochastic set of rejected bidders and hence the repacking

feasibility is also stochastic.

However, at the beginning of each round, we could simulate the feasibility problem to draw a curve

that shows the probability of having feasible repacking as a function of the number of new stations added.

We could then choose a target T (r) so that the chance of feasibility when adding T (r) new stations is at

some threshold (say 99% chance of feasibility). Once a target T (r) has been determined, we can then solve

Model 5 to obtain the offer price. The choice of the feasibility probability (and hence T (r)) would depend

on how quickly or slowly the auctioneer wants to run the auction. For example, at the beginning of the

auction, the auctioneer might want to have small T (r) for more accurate price discovery but then increase

T (r) toward the end of the auction to lower the expected payment faster.

Here we present a simple algorithm for price setting in incentive auctions. Within the scope of this

paper, we do not undertake extensive simulation to obtain a cumulative function of the feasibility with

respect to the number of new stations, T (r), added in each round. Instead, we use an estimated T = 1177

number of stations in the final set of active bidders, that is, to have U = 1000 stations feasibly rejected.5

5This choice of U comes from the prior experiments we have on the feasibility problem.
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We compare the performance of our optimization model with the percentile-based method where both use

the same U .

To deal with the heterogeneity of the stations with respect to the feasibility function, we propose to

associate each active station with a weight that is proportional to the possibility of causing interference on

other stations, especially those that have already been rejected. One possibility for setting such a weight

vector is to set

wi = di(N ) + di(R(r)),∀i ∈ (N\R(r)), (15)

where di(N ) is the number of stations in the entire set of stations N that i might interfere with, and

di(R(r)) is the number of stations in the current rejected list that i might interfere on. By setting the

weights higher for stations with a higher potential of interference on others, we essentially try to avoid

having these stations rejected in the next rounds by offering them higher prices (recall Equation 8 and

Proposition 3).

3.3 Advanced Model for Optimizing DCA Prices in FCC Reverse Auctions

The OPT-SCHED model shown in 14 proved to perform well when the bids are uniformly distributed among

all bidders, as we show in the experimental results in Section 4.2.1 (Figure 5). We show in Section 4.2.2

that this is no longer the case if a large group of highly interfering stations, e.g. those from the same

physical area, request large bids together. In that case, OPT-SCHED will attempt to reject these bids

which could lead to infeasibility at the early rounds and hence the premature end of the auction.

To demonstrate this, consider the largest clique in the graph G(N,E) described in Section 3.1 which is

of size 46. In this case, we cannot reject all the stations in that large clique if we have less than 46 channels

available. In general, consider a clique of stations Q = {S1, S2, . . . , Sk} where any pair of stations cannot be

assigned to the same channel. From any such clique, there are, at most, |C| stations that can be assigned to

|C| channels available. In each round, if we have already rejected ∆r stations, then the maximum number

of remaining stations that we can reject is |C| −∆r. We introduce the following constraint to Model 14:∑
i∈Q

(1− yi) ≤
(

nr − T
m− r + 1

)(
|Q|
nr

)(
|C| −∆r

|C|

)
. (16)

We call this a clique constraint and its interpretation is as follows. The first component of the R.H.S of

Inequality 16 is very similar to that shown in the OPT-SCHED model. The second component is basically

used to scale down the first term as the constraint is applied to stations in the clique of size |Q| instead of

to all the active bidders. The third component of the clique constraint is the interesting part. If none of

of the stations {S1, S2, . . . , Sn} in clique Q has been rejected, then ∆r = 0 and the third component does
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not have any effect. However, as ∆r gets larger through the rounds due to some of these stations being

rejected, then the third component becomes smaller which effectively results in yi, i ∈ Q getting larger in

the optimal solution. In other words, as there are more and more stations in the cliques get rejected, the

offer prices to the remaining stations should be high enough to avoid further rejection because, otherwise,

infeasibility is likely to occur.

The clique constraints essentially avoid the rejection of too many stations in the same large clique.

For each clique, depending on how many stations in that clique have been rejected, the prices offered to

the remaining stations would be adjusted accordingly. The following model, which we call OPT-SCHED-

CLIQUES, shows the complete formulation after these clique constraints are added,

min
y

∑
i∈A(r)

yi
(
yi(ui − li) + li

)
,

s.t.
∑
i∈A(r)

(1− yi) ≤
nr − T

m− r + 1
,

∑
i∈Q

(1− yi) ≤
(

nr − T
m− r + 1

)(
|Q|
nr

)(
|C| −∆r,Q

|C|

)
,∀Q ∈ Q

0.5 ≤ yi ≤ 1,∀i ∈ A(r),

(17)

where Q is the set of all cliques, C is the number of channels available, and ∆r,Q is the number of stations

in clique Q that has been rejected by round r. In the last set of constraints in Model 17, we basically

restrict the offer prices’ reduction in each round to be no more than 50%. This makes the algorithm to

behave more stably, especially in the initial rounds when the adjustment term
(
|C|−∆r

|C|

)
does not have

much influence.

In the implementation of the algorithm, we use the Matlab code written by [27], which claims to

implement the Bron-Kerbosch algorithm [3], to generate cliques. Since finding the set of all cliques for this

entire graph of 2177 nodes would be too time-consuming, we decompose the network into seven subnetworks

shown in Table 1. The numbers of stations and cliques in each subnetwork are shown in the third and

the fourth columns, respectively. We then find the cliques within each subnetwork to form a total of 4263

cliques ranging in size from three to 46 (here we do not use cliques of size two).

Note that combining cliques from the subnetworks will exclude some cliques from the original big

network (i.e. those cliques that join stations from more than one subnetworks). However, this exclusion

is not a big issue since stations are usually located in large cities which means large cliques are usually

formed by stations from the same areas. Decomposing the network into groups of states as shown in Table 1

results in not many large cliques being missed. Equally important, the division into subnetworks allows us

to decompose the constraint set in Model 17 into seven subsets of separable constraints, one for the cliques

in each subnetwork. From that, we can use a decomposition technique to solve Model 17 more efficiently.
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Subnetwork States # Stations # Cliques

1 WA, OR, ID, MT, WY, ND, SD, NE, MN, IA, GU, WI 363 437

2 CA, NV, AZ, UT, CO, NM, KS, OK, TX, AK, HI 602 566

3 ME, NH, VT, MA, RI, CT, NY 160 323

4 FL, GA, AL, MS, LA, PR 335 872

5 AR, SC, KY, TN, NC 238 610

6 OH, IL, IN, MI, MO 283 1008

7 PA, NJ, DE, MD, DC, WV, VA 196 447

Table 1: Network decomposition

It is also noted that the resulting model corresponds to a strictly convex quadratic program and hence

the uniqueness property of the offer prices still reserves. In addition, we can also show the symmetry and

monotonicity of the optimal solution in some senses. For example, any two stations that share symmetric

characteristic on their value distributions and their interference constraints should be offered at the same

prices. If everything is the same for two stations except for their upper bounds u, then the one with a

higher upper bound should be offered at the higher price. Similar statement on the lower bounds can also

be derived. A more interesting monotonicity property w.r.t the interference constraints can be stated as

follows. For any two stations with the same value distribution while the set of clique constraints in one

stations is ‘contained’ in the other, then the offer price to the station with more interference constraints

should be higher than that of the other station. All these properties can be proven by exploiting the strict

convexity of the objective function, the linearity of the constraints, and the positive sign of the coefficients

that appear in the clique constraints. The proofs are, therefore, skip for the brevity of the paper.

3.4 Final Round Settlement in Incentive Auctions

Suppose that at round r, the set of rejected stations R(r) can still be feasibly repacked, i.e. F (R(r)) = 1.

The auctioneer then offers prices p(r+1) to the remaining active bidders A(r). Let Rn be the set of newly

rejected stations. The new set of all rejected stations is R(r+1) = R(r)∪Rn. If these stations are repackable,

i.e. if F (R(r+1)) = 1, then we move to the next auction round. Otherwise, the auction goes to the final

round settlement. There are several possible ways to settle here. One such way is to simply set stations

in A(r) as the winners and pay them the offer price p(r). A better way is to work with stations in the

considering set Rn and find some intermediate offer prices within [p(r+1), p(r)]. That way of settlement is,

however, very problem-specific. For simplicity and consistency in comparison, we assume the settlement is
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designed in the following way. Among the set of all considering stations Rn, the auctioneer will choose a

subset X ⊂ Rn to reject such that F (R(r) ∪X) = 1. Note that F (R(r)) = 1 and hence X = ∅ is a feasible

solution. However, we would also like to find X such that the payment to stations in A(r)\X is minimized;

or equivalently, the payment to X is maximized.

For all stations i ∈ (R(r) ∪Rn), let zik be a binary variable that indicates whether station i is assigned

to channel k. The following model solves for the optimal choice of X in the final round settlement,

min
z

∑
i∈R(r)∪R

pi

(
1−

∑
k∈Ci

zik

)
,

s.t.
∑
k∈Ci

zik = 1,∀i ∈ R(r),

∑
k∈Ci

zik ≤ 1,∀i ∈ Rn,

zik + zjk ≤ 1,∀(i, j, k) ∈ Ic, ∈ R(r) ∪Rn,

zik + zjk+1 ≤ 1,∀(i, j, k) ∈ Ia, ∈ R(r) ∪Rn,

zik ∈ {0, 1},∀i ∈ R(r) ∪R, k ∈ Ci.

(18)

Here, the first set of constraints ensures that each station in the existing list of rejected stations R(r) needs

to be reallocated to a channel. The second set of constraints is similar except that the reallocation is

optional to stations in R. The next two sets of constraints ensure that there is no interference among the

repacked stations.

Problem 18 is very similar to the winner determination problem for reverse auctions in a VCG setting.

The problem size here is, however, much smaller and hence CPLEX is able to handle it efficiently.

4 Experiments

In this section we instantiate the methodology in two settings, and present optimization experiments in

both. We start with a setting where the items are homogeneous. We then proceed to the reverse auction

in incentive auctions, using real FCC data.

We compare the performance of our method with a natural percentile-based method where the prices

at round r are set to

p
(r)
i = l

(r)
i + αi(u

(r)
i − l

(r)
i ), (19)

where αi = 1− M
nr

and M = nr−T
(m−r+1) is the expected number of rejections per round. This essentially aims

to distribute the expected number of rejections evenly among m rounds.
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This percentile-based pricing scheme needs to be incorporated into a DCA such as in Step 2.1 of Algo-

rithm 1. When we refer to a percentile-based method for the homogeneous setting, we mean Algorithm 2

with Step 2.1 being replaced by the pricing from Equation 19. Similarly, when we refer to a percentile-based

method for incentive auctions, we mean Algorithm 3 with Step 2.1 replaced by the percentile-based pricing

from Equation 19.

One can develop other percentile-based methods such as setting the offer prices at a fixed percentile in

the bidders’ value distributions, for example, either always aiming for a fixed 5% of rejection at each round

or dynamically adjusting this percentile to be dependent on the current number of active bidders and the

number of rounds remaining. We conducted extensive tests using these percentile-based methods. Their

performance was almost the same on average as the percentile-based method described above. Therefore,

we only present the performance of that percentile-based method in comparison with our optimization-

based method.

4.1 DCA with Homogeneous Items

In the experiments, we let there be n = 100 bidders. We check the performance of the algorithms for

various choices of the target T . We first generate random bounds for the bidders’ valuations. The upper

and lower bounds for bidder i are set to ui = (1 + δ)mi and li = (1− δ)mi, where mi is a uniform random

variable in [0, 1]. Here, δ is a measure of how good the auctioneer’s estimate of the bidders’ values is. We

vary δ between 10% and 50%. We then draw M = 10 sample valuation vectors with bidder valuations

from these ranges, that is, ξ
(k)
i ∼ U [li, ui] for k = 1, . . . ,M , and for each bidder i = 1, . . . , n. That gives

us M auction instances to run on6. We report the average of them in the figures.

For convenience in reference, in the rest of the paper, we use the label ‘OPT-SCHED’ to refer to

DCAs that make use of the price optimization method suggested by Model 9. These include output from

Algorithm 2 for the homogeneous case and Algorithm 3 for incentive auctions (presented later in Section 3).

Figures 3-a and 3-b show the performance of the DCA for the setting where the number of rounds

allowed m = 50, the weights wi = 1 for all bidders i, the target T = 50, and δ = 20%.

The horizontal axis is the round number in the DCA. The vertical axis shows the number of active

bidders, the total payment the auctioneer would pay if the auction ended at that round, the total value of

the active bidders, and the optimal (lowest) payment, OPT , with which the auctioneer could procure the

needed items if he knew the bidders’ valuations.

The number of active bidders, the total payment, and the total values decrease during the DCA as we

6Throughout the experiments, we use the first M fixed random seeds ranging from 1 to M for generating random samples.

The usage of these fixed random seeds allows us to easier regenerate test instances in future work.
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(a) OPT-SCHED algorithm
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(b) Percentile-based algorithm

Figure 3: Comparison between OPT-SCHED and the percentile-based algorithm in terms of price discovery.

expected. The total payment is always above the total value, and the total value is always higher than the

optimal value. Comparing the final payments at the last round, one can see that our optimization-based

approach significantly outperforms the percentile-based approach.

Figure 4 shows the final payoff as a function of the number of rounds allowed—for different targets T

using the same parameters described earlier.

One can see that our optimization-based approach significantly outperforms the percentile-based ap-

proach across the board. Surprisingly, the final payment does not decrease when increasing the number

of rounds allowed. This surprising finding does not always occur: we can find settings where the final

payments for both the percentile-based method and the optimization-based method do keep decreasing

as we allow more rounds. We can also design a specific percentile-based method that avoids this strange

behavior completely, for example, by reducing offer prices of only the bidder with the highest upper bound

first. However, that percentile-based method will not be effective in minimizing the final total payment.
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Figure 4: Comparison between OPT-SCHED and the percentile algorithm in terms of the final DCA

payments for a varying number of rounds allowed.

We phrase the surprising behavior as a paradox and then proceed to explain it.

Paradox 1. Having more refined offer prices can lead to a higher total payment.

Explanation of the paradox : Throughout the multi-round auction, there are two essential effects on the

final payment:

• Desirable effect (price discovery): The prices offered to the remaining active bidders keep decreasing;

this lowers the final payment.

• Undesirable effect: Some lower-priced bidders are ‘accidentally’ rejected as their offer prices keep

decreasing.

The first, desirable effect occurs in both the percentile-based method and the optimization-based method for

price setting (OPT-SCHED). The second, undesirable effect occurs more in the percentile-based method

and than in OPT-SCHED because the objective function in Model 10 has already aimed to lower this

expected payment and hence high-priced bids are supposed to be rejected before others. This leads to

overall better performance of OPT-SCHED compared to the percentile-based method, as shown in Figure 4.

To summarize, the reason behind the paradox is that, due to the randomness of the bid values, having

more rounds allow a higher chance of rejecting good bids before the final adjustment round. Once the good

choices are excluded through more rounds, the less choice we have in solving the final settlement problem

shown in Model 12, and thus the payment that the model is trying to minimize is higher.

We demonstrate this paradox through a specific example. Consider the following simple case with n = 3

bidders and a target number T = 2 items to be procured. Suppose all the bidders are still active at round

r where the current offer prices are p
(r)
i . Consider the following two strategies:
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• Strategy 1: Reduce all the prices in round (r + 1) by the amounts δi for bidder i.

• Strategy 2: Reduce all the prices in round (r + 1) by smaller amounts βi < δi first, observe the

bidders’ responses, and then reduce the price by the additional amounts (δi − βi) in round (r + 2).

Consider the following scenario. Bidder 1 accepts new price (p
(r)
1 − δ1) but Bidders 2 and 3 do not accept

(p
(r)
2 −β2) and (p

(r)
3 −δ3). In this case, the number of acceptances is one for both strategies, so the auctions

proceeds to the adjustment round.

• For Strategy 1, the adjustment round involves solving a knapsack problem to choose the two smallest

offers among three choices (p
(r)
1 − δ1, p

(r)
2 , p

(r)
3 ).

• For Strategy 2, the adjustment round involves solving a knapsack problem to choose the two smallest

offers among three choices (p
(r)
1 − β1, p

(r)
2 , p

(r)
3 ).

4.2 DCA in Incentive Auctions

Since no incentive auctions have yet been conducted, we have to use simulated data on the bounds of the

bidders’ valuations. The bounds for the first experiment are generated using a uniform distribution where

the upper and lower bound for bidder i are set to ui = (1 + δ)mi and li = (1 − δ)mi and where mi is a

uniform random variable in [0, 1]. Here, δ = 0.2 is a measure of how good the auctioneer’s estimate of the

bidders’ valuations is. We then draw random sample bid values from these ranges, that is, ξi ∼ U [li, ui] for

each bidder i = 1, . . . , n. We draw M = 10 valuation vectors. Each vector corresponds to a DCA instance.

Each instance has one valuation per bidder. The setting for the second experiment is similar except that

the mean value mi is set proportional to the population that station i serves. Data for the populations

served is obtained from [10].

4.2.1 Incentive Auctions with Homogeneous Bids

Figure 5 compares the average performance among OPT-SCHED, OPT-SCHED-CLIQUES, and Percentile-

based for different choices on the number of rounds allowed. Figure 5-a shows the average final payoff to

bidders versus the number of rounds allowed. One can see that both OPT-SCHED and OPT-SCHED-

CLIQUES outperform the percentile-based approach on average for all choices of the number of rounds

allowed. OPT-SCHED and OPT-SCHED-CLIQUES provide around 23% and 40% reduction, respectively,

in the final payment compared to that of the percentile-based approach. These are results from the

capability of the optimization-based approaches in rejecting high-value bids.

In Figure 5-b, the paradox of having the final payment increase as we increase the number of rounds

allowed is again observable. It is noted though that, for all the three strategies, the sizes of the active bidders
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show decreasing trends as we increase the number of rounds allowed, as we expected. This is because the

more rounds allowed, the higher refinement we have on the offer prices and hence the auctioneer has better

knowledge of the truth bidders’ values.

Figure 5-b also shows that the smallest average size of the active bidders in the percentile-based approach

is 1650 while those for OPT-SCHED and OPT-SCHED-CLIQUES are 1550 and 1330, respectively. In other

words, while the percentile-based approach is able to repack (2177− 1650 = 527) stations into 31 channels

available, OPT-SCHED and OPT-SCHED-CLIQUES are able to repack 627 and 847 stations, respectively,

into the same band of channels.
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Figure 5: Final payments and active bidders using our optimization-based pricing strategies versus those

of the percentile-based method—using real FCC engineering constraints data and using homogeneous bids.

Figures 6-a, 6-b and 6-c compare the performance of the DCA when using our optimization-based

price-setting methods versus the percentile-based method, for the bids generated uniformly in [0, 1], for the

first sample DCA instance among M random instances generated. The number of rounds allowed is 50.

The horizontal axes of Figures 6-a, 6-b and 6-c show the round number in the DCA. The vertical axes

in the three sub-figures show the number of active bidders, the total payment the auctioneer would pay if

the auction ended at that round, and the total actual values of the active bidders, respectively. In each

triplet of these curves, the dashed curves correspond to the percentile-based method, the dot-dashed curves

to the OPT-SCHED, and the solid curves to the OPT-SCHED-CLIQUES. Because of the great overlaps

between these curves, their ended points which correspond to the final rounds are marked with a circle (o),

a star (∗) and a square box (�) respectively so that we can distinguish between them better. As can be
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Figure 6: Comparison between optimization-based pricing strategies and those of the percentile-based

method for one instance—using real FCC engineering constraints data and using homogeneous bids.

seen, the number of active bidders, the payments and the total actual values decrease through the rounds.

The payment is always above the total actual values, as we expected. Comparing the final payments at

the last round, one can see that OPT-SCHED results in more stations to be reallocated and also in a

lower final payment compared to the percentile-based approach. The lower final payment of OPT-SCHED

was partially due to it having more auction rounds before encountering infeasibility: the percentile-based

method encountered infeasibility at round 12 while OPT-SCHED and OPT-SCHED-CLIQUES encountered

it at rounds 21 and 43, respectively. The better performance of OPT-SCHED in dealing with infeasibility

is due to the added weighted constraints which essentially avoid rejecting stations that are likely to cause

interference. OPT-SCHED-CLIQUES further improves this by adding the clique constraints. Another

reason why OPT-SCHED outperforms the percentile-based method is that it has a better way of rejecting

high-priced bids. This effect can be seen in each fixed number of rounds. For example, if both algorithms

are terminated at round 10, the payment for OPT-SCHED is 1070 while that for the percentile-based

method is 1150.7

4.2.2 Incentive Auctions with Heterogeneous Bids

We now present a setting where OPT-SCHED has some issues when high-valued stations interfere with

each other; for example, when groups of stations in the same area request high values. We demonstrate

7In the incentive auction setting we do not include data for the optimal payment if the auctioneer knew the bidders’

valuations since the WDP is too difficult to solve to optimality according to Milgrom and Segal [19].
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this through an experiment where the mean value mi is set proportional to the population that station i

serves. Figure 7 shows the average performance over M = 10 randomly generated auction instances.
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Figure 7: Final payments and active bidders using our optimization-based pricing strategies versus those of

the percentile-based method—using real FCC engineering constraints data and using heterogeneous bids.

In this case, OPT-SCHED yields higher payments on average than the percentile-based approach (al-

though it yielded lower payments on the first two instances). In what follows, we provide some explanation

for this. When setting the bids to be proportional to the population served, the bids from the stations

in large cliques (e.g., stations in large cities) are often large since the populations served are large. If

the number of rejected large bids is greater than the number of channels available, then we will reach

infeasibility in repacking. Note that this issue is problematic for general DCAs where many small subsets

of bidders can significantly affect the feasibility function. Among the random instances generated, the

performance of the percentile-based approach was less affected by this because it uses a very conservative

approach of gradually lowering prices for all bidders in the same way. By adding clique constraints on

these subsets of bidders to ensure that no more than a certain number of stations in each large clique

is rejected, the OPT-SCHED-CLIQUES resolves this issue and produces lower final payments and higher

numbers of stations being repacked. Figures 8 and 9 show the same set of data compared to Figure 6

for two instances among M instances generated. OPT-SCHED performs better than the Percentile-based

in the first instance shown in Figure 8 but the opposite is seen in the third instance shown in Figure 9.

OPT-SCHED-CLIQUES outperforms both OPT-SCHED and the percentile-based approach in both cases.

We have also run experiments with other bidders’ value distribution such as to set mi = Popi/degi;
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Figure 8: Comparison between optimization-based pricing strategies and those of the percentile-based

method for instance number one—using real FCC engineering constraints data and using heterogeneous

bids.
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Figure 9: Comparison between optimization-based pricing strategies and those of the percentile-based

method for instance number three—using real FCC engineering constraints data and using heterogeneous

bids.

i.e. the average bidders’ values are proportional to the share of the population in the area. We find

OPT-SCHED-CLIQUES outperforms the percentile-based approach. Figure 10 shows the performance
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comparison between the percentile-based approach and the OPT-SCHED-CLIQUES.
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Figure 10: Final payments and active bidders using our optimization-based pricing strategies versus those

of the percentile-based method—using real FCC engineering constraints data and using heterogeneous bids:

POP/Size.

It is clear from Figure 10 that OPT-SCHED-CLIQUES outperforms Percentile-based in both the final

payment and the number of stations feasibly repacked.
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5 Conclusions and Discussion

A descending (multi-item) clock auction (DCA) is a mechanism for buying items from multiple potential

sellers. DCAs have been proposed as the method for procuring spectrum from existing spectrum holders

in the FCC’s imminent incentive auctions so spectrum can be repurposed to higher-value uses. However,

the DCA design has lacked a way to determine the prices to offer the bidders in each round. This is a

recognized, important, and timely problem.

We presented, to our knowledge, the first techniques for this. We develop a percentile-based approach

which provides a means to naturally reduce the offer prices to the bidders through the bidding rounds.

We also develop a continuous optimization model for setting prices so as to minimize expected payment

while stochastically satisfying the feasibility constraint. (The DCA has a final adjustment round that

obtains feasibility after feasibility has been lost in the final round of the main DCA.) We proved attractive

properties of this, such as symmetry and monotonicity. We developed certain kinds of clique constraint to

add to the continuous optimization problem that capture feasibility better (and reduce the possibility of

collusion among bidders). We developed computational methods for solving the model and very efficient

polynomial-time algorithms. (We also developed optimization models with recourse, but they are not

computationally practical.)

We presented experiments both on the homogeneous items case and the case of FCC incentive auctions,

where we used real FCC interference constraint data to get a fully faithful model of feasibility. The ex-

periments showed that our optimization-based price-setting approach significantly outperforms the natural

percentile-based approaches in minimizing the final payment by the auctioneer. In incentive auctions, the

optimization model helps feasibly repack more stations. An unexpected paradox on the performance of

DCAs was that sometimes when the number of rounds allowed increases, the final payment can actually

increase. We provided an explanation of this paradox.

There are a number of future research directions that can follow from this work. First, we find the

paradox concerning the relationship between the expected payment and the number of rounds allowed quite

intriguing. Further research on when this would occur, and on quantification of these relationships, would be

interesting. In this paper, we have only considered the case where bidders’ values are independent. It would

be interesting to extend the techniques to settings with interdependent valuations. Further study to draw

comparisons between this and the classical DCA framework is needed. Regarding the implementation of the

reverse auctions DCA for the FCC incentive auctions, having extensive simulation for better estimation

of the feasibility chance would improve the performance. Other ideas mentioned in the paper, such as

using stochastic programming and chance constraints for the feasibility constraints, as well as approximate

dynamic programming techniques, may also be worth pursuing for such a high-stakes setting. As has been
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done in all prior papers on incentive auctions, we studied the canonical problem where stations can either

sell or keep their licenses. Recently is has become likely that the FCC will offer stations additional options

as well during the reverse auction—in particular, moving to lower frequency bands. Those options may

well have intermediate prices associated with them, and it is an important topic for future research how

those prices, too, should be adjusted across rounds of the auction. We expect that optimization-based

approaches may outperform simple heuristic approaches in that richer settings as well.
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APPENDIX

A.1 A Dynamic Programming Model for Optimal Price Setting in DCA

In each round of the descending clock auction, the auctioneer needs to offer each active bidder a price, i.e.,

to do Step 2.1. of Algorithm 1. Here we show a dynamic programming model that the optimal set of offer

prices should solve.

Let V (m,S,u, l) be the minimum expected payment that the auctioneer needs to pay to the bidders in

a descending clock auction with m rounds, with a set of active bidders S, with upper bounds u and lower

bounds l within which the bidders’ valuations lie. Let ξ be a realization of the bidders’ values. For any

offer prices p in the first round, the state of the auction by the end of that first round will be as follows.

• The number of rounds left will be (m− 1).

• The remaining active bidders will be S(p, ξ). This includes bidder i if the offer price pi is no smaller

than the bidder’s value ξi, i.e., pi ≥ ξi.

• A new vector of upper bounds u(p, ξ) which updates the upper bound of any remaining active bidder

i to xi.

• Unchanged lower bounds l.
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The minimum expected value that the auctioneer needs to pay under the new state of the auction will be

V (m−1,S(p, ξ),u(p, ξ), l). Thus, the auctioneer’s problem in the first round is to choose p that minimizes

the expectation of V (m− 1,S(p, ξ),u(p, ξ), l). We have the Bellman optimality equation

V (m,S,u, l) = min
p

E[V (m− 1,S(p, ξ),u(p, ξ), l)].

Solving this dynamic program would be extremely difficult. In fact, just finding V (m,S,u, l) for the case

m = 1 would be very difficult as shown in a simple case below.

A.2 Optimal Price Setting in the Last Round with Recourse Action

Consider the problem of setting prices in the final round of a descending clock auction. Assume that the

actual bid values are uniformly distributed random variables, i.e., ξi ∼ U [li, ui], where (li, ui), i = 1, . . . , n

are known. Let p be a vector of prices that the auctioneer offers to the bidders. Given the offer prices,

the bidders might accept or reject the offers. The auctioneer then updates the best upper bounds on the

bids values, that is, upper bounds for accepting bidders will be updated to the offer prices while those of

rejected bidders will remain unchanged. The auctioneer chooses T bids with the smallest updated upper

bounds and pays each of these bidders those prices. Since the bidders’ values are random variables, the

acceptance of the bidders for each set of offer prices p will also be stochastic, so the final payment is

stochastic. We consider the problem of finding the optimal offer prices p such that the expected final

payment is minimized. Here expectation is taken over the randomness of the bidders’ valuations.

For convenience in notation, we perform a linear transformation on the price vectors p to x where

xi = pi−li
ui−li , that is, xi ∈ [0, 1] can be interpreted as the target chance of acceptance for bidder i. We also

have pi = li + xi(ui − li). Let us denote by f(x) the stochastic payment.

Let us first consider the simple case where T = 1 and n = 2. Here the payment is min(u1, u2) if both

bidders reject the offers, min(p1, p2) if both of them accept, and pi, i = {1, 2} if only bidder i accepts the

offer. The probability for each of these four events can be calculated as functions of x. For example, the

chance of rejecting both offers is (1− x1)(1− x2). Putting all of these together, we have

f(x) =



min(u1, u2), w.p. (1− x1)(1− x2),

min(l1 + x1(u1 − l1), l2 + x2(u2 − l2)), w.p. x1x2,

l1 + x1(u1 − l1), w.p. x1(1− x2),

l2 + x2(u2 − l2), w.p. (1− x1)x2.
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The expected payment is

E[f(x)] = (1− x1)(1− x2)min(u1, u2) + x1x2min(l1 + x1(u1 − l1), l2 + x2(u2 − l2)) +

x1(1− x2)(l1 + x1(u1 − l1)) + (1− x1)x2(l2 + x2(u2 − l2)).

The problem of determining the optimal offer prices can therefore be formulated as

min
x1,x2

E[f(x)]

s.t. 0 ≤ xi ≤ 1,∀i = 1, 2,

which is a non-convex quadratic optimization problem. If we extend the problem to the case n > 2, the

problem becomes a polynomial optimization problem as follows;

min
x

∑
S⊂N ,S6=∅

∏
i∈S

xi
∏
i 6∈S

(1− xi) min
i∈S
{li + xi(ui − li)}

+
∏
i∈N

(1− xi) min
i∈N

ui

s.t. 0 ≤ xi ≤ 1,∀i = 1, . . . , n,

which is very difficult to solve. Notice that we have considered only the simple case of T = 1 and also

considered finding the optimal decision in the last round only.

A.3 Proof of Proposition 5

Proof. For each m ∈ {0, 1, . . . , n} and for each budget B ≥ 0, let us define

V (m,B) = min
p

m∑
i=1

Fi(pi)pi,

s.t.

m∑
i=1

ωiFi(pi) ≥ B,

pi ∈ {Pi1, . . . , Pi,k},∀i = 1, . . . ,m.

Then we have

V (m,B) = min
pm

Fm(pm)pm + V (m− 1, B − Fm(pm)),

s.t. pm ∈ {Pm1, . . . , Pm,k},
(20)

where V (0, B) = 0,∀B. Suppose Fj(pj) receives one of (L+ 1) values in the set {0, 1/L, . . . , 1}. Then we

can calculate V (1, B) for all B ∈ {0, 1/L, . . . , 1}. If we knew V (m− 1, B),∀B ∈ {0, 1/L, . . . ,m− 1}, then

we can plug this in into Formulation 20 and obtain V (m,B) by taking K calculations for Fm(pm)pm +

V (m− 1, B − Fm(pm)) for each pm ∈ {Pm1, . . . , Pm,k} and then choose the minimum, i.e., 2K operations

in total. To obtain V (m,B) for all possible B ∈ {0, 1/L, . . . ,m}, we would need to repeat this Lm times,

which means the total operations incurred for each m is 2KLm. Summing this for all m ∈ {1, . . . , n} would

require KLn(n− 1) operations. Thus the complexity of the algorithm is O(KLn2).
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A.4 Approximation Method for the Multi-Round Case

First, assuming that the auctioneer has only one round left. Then the optimal prices to offer to the bidders

will be the solution of Model 9 for the continuous case (or 10 for the discrete case). Now, given that the

auctioneer has multiple rounds to do price discovery, he would not offer these ‘optimal prices’ right away.

Instead, a set of higher prices will be offered first to learn more about the bidders’ valuations and to update

the bounds.

A simple way that the auctioneer can do this is to discretize the prices into m equal intervals between

the uppers bounds and p∗ and offer these to the bidders sequentially until feasibility does not hold.

A better way is to do this dynamically as shown in Algorithm 4. Here, after solving Model 9 (or 10)

in Step 1, the auctioneer can offer a guess pi =
ui+(m−1)p∗i

m to bidder i and see how the bidder responds.

This price is obtained under the expectation that the offer price in the next m rounds will be distributed

evenly within the range [p∗i , ui]. Notice, however, that once the auctioneer has offered the prices to the

bidders and received their responses to form the new state of the auction, the auctioneer now has better

information and can repeat Step 2.1 of Algorithm 1 to find the new set of offer prices, that is, to run

Algorithm 4 again with the updated information. Formally:

ALGORITHM 4: Finding Offer Prices in Round m

Input: Current round r, a current set of active bidders A(r), most up-to-date valuation estimates vi.

Output: An offer price vector p.

1. Solve Model 9 to obtain the optimal offer prices p∗ as if this were the last round;

2. Divide the range [p∗i , ui] into m equal intervals and set the actual offer prices pi =
ui+(m−1)p∗i

m
;
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