Mechanisms for Dynamic Environments

David C. Parkes
Division of Engineering and Applied Sciences
Harvard University
http://www.eecs.harvard.edu/econcs

Outline

• Prior-Free Online Auction Design:
 - Non-reusable Goods, Finite time horizon.
• General characterization for truthful online auctions
• Prior-Free Online Auction Design:
 - Reusable Goods, infinite time horizon.
• Model-based Online Mechanisms.
• Future Directions.

Related Papers

Example 1: Last-Minute Tickets

Value: $100 $80 $60
Arrival: 11am 11am 12pm
Patience: 2hrs 2hrs 1hr

How should you bid?

“Please bid your value and your patience. A decision will be made by the end of your stated patience.”
Value $100 $80 $60
Arrival: 11am 11am 12pm
Patience: 2hrs 2hrs 1hr

If truthful, then:
{ <1, $80>,<2, $60> }
However, bidder 1 could
a) reduce bid price to $65
 {<2, $65>, <1, $60>}
 b) delay bid until 12pm
 {<2, $0>, <1, $60>}

Auction: sell one ticket in
each hour (given demand),
to the highest bidder at
second-highest bid price.

Dynamic allocation problems
...are everywhere in computer science
• MoteLab (Berkeley)
 - distributed sensor network testbed
 - researchers compete for the right to sense, aggregate and
 propagate readings
• PlanetLab (Princeton)
 - global overlay network on the Internet
 - supports network research, long-running services
• Grid computing
 - much of science research is now intensively computational
 - globally-distributed computational infrastructure
• Network resource allocation
 - e.g. dynamic negotiation for WiFi bandwidth

Many systems are simultaneously both computational and
economic systems.

Basic Model for Online Auctions
• Valuation \(\theta_i = (a_i, d_i, w_i) \). Discrete time periods.
• Arrival time: \(a_i \). Departure time: \(d_i \). Value, \(w_i \)
• Allocation schedule \(x \in X \).
• \(v_i(x) = w_i \), if \(x(t)=1 \) for some \(t \in [a_i,d_i] \)
• \(0 \), otherwise
• Quasi-linear utility: \(u_i(x,\text{price}) = v_i(x) - \text{price} \)
• Auction: \(A=\langle f, p \rangle \),
 - allocation rule, \(f : \Theta^n \rightarrow X \)
 - payment rule, \(p : \Theta^n \rightarrow \mathbb{R}^n \)
• Truthful auction: reporting value \(<a_i, d_i, w_i> \) immediately
 upon arrival is a dominant strategy equilibrium.
• Assume: cannot under-report \(a_i \).
Prior-Free: Key Variations

- Limited-supply ($k \geq 1$) of goods, sell in any period before time horizon, T.
 - single-unit demand
 - multi-unit demand

- Reusable goods, can sell up to k units in each time period. Finite time horizon, T.
 - single-period demand
 - multi-period demand

Prior-Free Auction Design

(c.f. Goldberg, Hartline et al.01)

- $v^{(m)}$ is m-th highest value
- $EFF(v) = \sum_{i \leq k} v^{(i)}$ "efficiency"
- $F^{(2)}(v) = \max_{2 \leq i \leq k} \{ i \cdot v^{(i)} \}$ "omniscient revenue"

<table>
<thead>
<tr>
<th>Value</th>
<th>$$500$</th>
<th>$$80$</th>
<th>$$60$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrival</td>
<td>11am</td>
<td>11am</td>
<td>12pm</td>
</tr>
<tr>
<td>Patience</td>
<td>2hrs</td>
<td>2hrs</td>
<td>1hr</td>
</tr>
</tbody>
</table>

EFF: $\$580$
OPT: $\$160$

- c-competitive for efficiency if $E[Val(Auc_v)] \geq 1/c \cdot EFF(v)$, for all v
- c-competitive for revenue if $E[Rev(Auc_v)] \geq 1/c \cdot F^{(2)}(v)$, for all v

Limited-Supply Auction

(Lavi & Nisan'00)

- Assume values in $[L,U]$. k-unit supply. Let $\phi = (U/L)$.
- Adversarial model: choose values and timing.
- Define a "price schedule": $p(j) = L \cdot \phi^{j/k+1}$, for jth unit.
- Sell units while bid value \geq price.

Truthful.

$\ln(\phi)$-competitive w.r.t. efficiency and Vickrey revenue, Matching lower-bound, and good average-case performance in simulation.

Our model: Fixed, Unknown Distribution

(Hajiaghayi, Kleinberg, P., ACM'EC04)

- More realistic adversarial model: Lavi & Nisan allowed arbitrary sequencing of arbitrary values
- Instead, we model values as i.i.d. from some unknown distribution.
- Want good performance whatever the distribution.
- Should lead to an auction with better performance in practice.
Aside: The Online Selection Problem

- Remove incentives, and specialize to the case of disjoint arrival-departure intervals.

Reduces to the secretary problem:
- Interview \(n \) job applicants in random order, want to max prob of selecting best applicant (told \(n \))
- Told relative ordering w.r.t. applicants already interviewed, must hire or pass

Useful info

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>1</th>
<th>1</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>7</td>
<td>1,000</td>
<td>3</td>
</tr>
</tbody>
</table>

E.g., \(n=1, s^*=1, \Pr(\text{succ})=1 \)
\(n=5, s^*=3, \Pr(\text{succ})=0.433 \)
\(n=10, s^*=4, \Pr(\text{succ})=0.399 \)
\(n=20, s^*=8, \Pr(\text{succ})=0.384 \)
\(n=100, s^*=38, \Pr(\text{succ})=0.371 \)
\(n=1000, s^*=369, \Pr(\text{succ})=0.368 \approx 1/e \)
The Secretary Algorithm

- **Theorem** (Dynkin, 1962): The following stopping rule picks the maximum element with probability approaching $1/e$ as $n \to \infty$.
 - Observe the first $\lfloor n/e \rfloor$ elements. Set a threshold equal to the maximum quality seen so far.
 - Stop the next time this threshold is exceeded.

- Asymptotic success probability of $1/e$ is best possible, even if the numerical values of elements are revealed.
 - i.e. optimal competitive ratio in the large n limit

Straw model for an Auction

- **Auction**: $p(t)=\infty$, then set $p(t|\geq \tau) = \max_{i \leq j} w_i$ after $j=\lfloor n/e \rfloor$ bids received. Sell to first subsequent bid with $w_i \geq p(t)$, then set $p(t)=\infty$.
- **Not truthful**: Bidders that span transition, and with high enough values, should delay arrival.

Truthful Auction:
 - At time τ (for n/e arrival) let $p=q$ be the top two bids yet received.
 - If any agent bidding p has not yet departed, sell to that agent (breaking ties randomly) at price q.
 - Else, sell to the next agent whose bid is at least p (breaking ties randomly)

Adaptive Limited-Supply Auction

- At time τ, denoting arrival $j=\lfloor n/e \rfloor$, let $p=q$ be the top two bids yet received.
- If any agent bidding p has not yet departed, sell to that agent (breaking ties randomly) at price q.
- Else, sell to the next agent whose bid is at least p.

Agent 1	5
Agent 2	2
Agent 3	5
Agent 4	8
Agent 5	4
Agent 6	10

Agent 1 wins, pays 2
Adaptive Limited-Supply Auction

- At time τ, denoting arrival $j = \lceil n/e \rceil$, let $p \geq q$ be the top two bids yet received.
- If any agent bidding p has not yet departed, sell to that agent (breaking ties randomly) at price q.
- Else, sell to the next agent whose bid is at least p.

Agent 1: 5
Agent 2: 2
Agent 3: 5
Agent 4: 8
Agent 5: 4
Agent 6: 10

Analysis: Truthfulness

- If agent i wins, the price charged to her does not depend on her reported valuation.
- $P_r(\text{agent } i \text{ wins})$ is (weakly) increasing in w_i, hence no incentive to understate w_i.
- Reporting $w_i' > w_i$ cannot increase the probability that agent i wins at a price $\leq w_i$, hence no incentive to overstate w_i'.
- Price facing agent i is never influenced by d_i, so no incentive to misstate d_i.
- Just need to check effect of arrival time.

Analysis: Truthfulness

- Claim: Given two arrival times $a_i < a_i'$, it’s always better to report a_i if possible.
- Let r, s be the $\lceil n/e \rceil$-th and $\lceil n/e \rceil$-th arrival times excluding agent i.

Agent 1: 5
Agent 2: 2
Agent 3: 5
Agent 4: 8
Agent 5: 4
Agent i: 10
Analysis: Truthfulness

• Stating true arrival, agent 2 defines transition. Offered price $5 on transition.

Analysis: Truthfulness

• Stating arrival time in \((a_i, r]\) changes nothing. Offered price $5 on transition.

Analysis: Truthfulness

• Stating arrival time in \([a_i, r]\) changes nothing.
• Stating arrival time in \((r, s)\) influences the transition time \(\tau\) but not the pricing. Still offered price $5.

Analysis: Truthfulness

• Stating arrival time in \([a_i, r]\) changes nothing.
• Stating arrival time in \((r, s)\) influences the transition time \(\tau\) but not the pricing.
• Stating arrival time \(\geq s\) influences the transition, but price not improved.
Analysis: Competitive Ratio

- **Claim**: Competitive ratio for efficiency is $e + o(1)$, assuming all valuations are distinct.
- **Case 1**: Item sells at time t. Winner is highest bidder among first $\lfloor n/e \rfloor$. With probability $\approx 1/e$, this is also the highest bidder among all n agents.
- **Case 2**: Otherwise, the auction picks the same outcome as the secretary algorithm, whose success probability is $\approx 1/e$.

Analysis: Competitive Ratio

- **Claim**: Competitive ratio for revenue (wrt Vickrey) is $e^2 + o(1)$, assuming all valuations are distinct.
- Estimate probability of selling to highest bidder at second-highest price. Use same two cases as before.
 - **Case 1**: Probability $\approx 1/e^2$.
 - (prob $1/e$ that second highest also is in first half)
 - **Case 2**: Probability $(1/e)(1/e)$.
 - (prob. that highest in first-half is the second-highest overall is $1/e$ conditioned on highest in second-half; prob. that choose highest in case 2 is $1/e$)

- $4 + o(1)$-competitive for revenue (and also efficiency), by setting transition time at $n/2$.
- Lower-bounds of 2-competitive for efficiency, 1.5-competitive for revenue (in our model).

General approach -- Two phase

- "Learning phase"
 - use a sequence of bids to set price for rest of auction

Transition:
 - be sure that remains truthful for agents on transition

- "Accepting phase"
 - exploit information, retain truthfulness

Multi-Item Online Auction ($k>1$)

- Adopt a variation on the Dual-Price Sampling Optimal Threshold (DSOT) auction (Goldberg, Hartline et al'01; also Segal'03).
 - (Learning) Choose pivotal bidder, $j \sim \text{Binom}(n, \frac{1}{2})$.
 - (Transition) Sell up to $s = \lceil k/2 \rceil$ items at time τ, to agents present and bidding above $(s+1)$-st bid price so far.
 - (Accepting) After τ, set price to be the revenue-optimizing fixed price, p^{opt} for bids in first half. Sell item to bid $\geq p^{opt}$ while supply.

- Truthfulness: have $p(s+1) \leq p^{opt}$
- Constant-competitive with $\mathcal{F}(2)$ for revenue.
- Constant-competitive for efficiency (and also revenue), by setting $s = \lceil k/3 \rceil$, and adopting $p(t) = (s+1)$-st bid in accepting phase. (i.e. a lower price.)
Characterization of Truthful auctions

Definition. Allocation rule \(f: \Theta^n \to \{0,1\}^n \) is monotonic if for every agent \(i \) and every \((\theta, \theta') \in \Theta^n\) with \([a'_i, d'_i] \subseteq [a_i, d_i]\), and \(w_i \geq w'_i \), we have \(f_i(\theta) \geq f_i(\theta') \).

Definition. The “critical value” price is:
\[
\psi_i(a_i, d_i, \theta_{-i}) = \min w'_i \text{ s.t. } f_i(a_i, d_i, w'_i, \theta_{-i}) = 1 \quad \infty, \quad \text{if no such } w'_i \text{ exists}
\]

Definition. The “critical period” is the first \(t \in [a_i, d_i] \) with minimal \(\psi_i(a_i, t, \theta_{-i}) \).

Theorem. An online auction is truthful if and only if the allocation rule, \(f \), is monotonic, sets payment equal to critical value, and assigns item after the critical period.

Via an Agent-independent Price Schedule

• Define an agent-independent price schedule, \(\psi_i(t, \theta_{-i}) \) for allocation in period \(t \)
• Allocate good to agent if and only if \(\psi_i(t', \theta_{-i}) \leq w_i \) for some \(t' \in [a_i, d_i] \), at price \(\psi_i(a_i, d_i, \theta_{-i}) = \min_{t' \in [a_i, d_i]} \psi_i(t', \theta_{-i}) \).
• Allocate no earlier than period \(t' \) for which \(\psi_i(t', \theta_{-i}) \) is minimal in \([a_i, d_i] \).

Prior-Free: Key Variations

• Limited-supply (\(k \geq 1 \)) of goods, sell in any period before time horizon, \(T \).
 - single-unit demand
 - multi-unit demand

• Reusable goods, can sell up to \(k \) units in each time period. Finite time horizon, \(T \).
 - single-period demand
 - multi-period demand

Via an Agent-independent Price Schedule

• Define an agent-independent price schedule, \(\psi_i(t, \theta_{-i}) \) for allocation in period \(t \)
• Allocate good to agent if and only if \(\psi_i(t', \theta_{-i}) \leq w_i \) for some \(t' \in [a_i, d_i] \), at price \(\psi_i(a_i, d_i, \theta_{-i}) = \min_{t' \in [a_i, d_i]} \psi_i(t', \theta_{-i}) \).
• Allocate no earlier than period \(t' \) for which \(\psi_i(t', \theta_{-i}) \) is minimal in \([a_i, d_i] \).

Example: single-unit auction. Let \(j = \lfloor n/e \rfloor \), and use “outside bid” refer to a bid from an agent \(\neq i \).
\[
\psi_i(t, \theta_{-i}) = \begin{cases}
\infty & \text{for } < j - 1 \text{ outside bids} \\
\frac{b^{(0)}_{j-1}}{i} & \text{for } j - 1 \text{ outside bids} \\
\frac{b^{(1)}_{j-1}}{i} & \text{for } \geq j - 1 \text{ outside bids, before item sells} \\
\infty & \text{otherwise}
\end{cases}
\]
Formal Model: Re-usable Goods

- One good in each time slot (can extend to \(k > 1\)).
- Agent value \(<a_i, d_i, w_i>\). Value for one time slot in \([a_i, d_i]\).
- No-late departures (i.e. \([a'_i, d'_i] \subseteq [a_i, d_i]\))
 - (WiFi) suppose can verify presence, and fine an agent that reports \(d'_i > d_i\) but leaves at \(d_i\).
 - (Grid) reasonable to hold result until time \(d'\) with some small probability.
- Necessary to assume NLD to achieve a bounded competitive ratio on efficiency (Lavi & Nisan’05)

Theorem. Online auction is truthful if and only if the allocation rule, \(f\), is monotonic, sets payment equal to critical value. Can assign at any time in interval w/ NLD.

Example: Grid scheduling

<table>
<thead>
<tr>
<th>Value</th>
<th>$100</th>
<th>$80</th>
<th>$60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrival</td>
<td>11am</td>
<td>11am</td>
<td>12pm</td>
</tr>
<tr>
<td>Patience</td>
<td>2hrs</td>
<td>2hrs</td>
<td>1hr</td>
</tr>
<tr>
<td>Duration</td>
<td>1hr</td>
<td>1hr</td>
<td>1hr</td>
</tr>
</tbody>
</table>

Allocation rule: In each period, \(t\), allocate the good to the highest unassigned bid.

Payment rule: Pay smallest amount could have bid and still received good (in some period).

monotone: smaller \([a'_i, d'_i]\), smaller \(w'_i\), cannot help.

reduces to seq. of Vickrey for impatient bidders.

Efficiency: Competitive Analysis

2-competitive wrt efficiency, (maximum-weighted matching in bipartite graph).

(Tight. But, 1.618 poss. without incentives!)

Extends to \(k > 1\) case (still 2-competitive).

Revenue Analysis: Consider VCG

\(n\) slots, \(n+1\) bids

\(n-1\) high bidders
Revenue Analysis: VCG

VCG: \(V^* = 2(n-1) + 1 \)

- \(V = 2(n-2) + 2 \)
- \(V - 3 = 2(n-2) + 2 \)
- \(V - 4 = 2(n-2) + 2 \)

n slots, n+1 bids

n-1 high bidders
Revenue Analysis: VCG

VCG:

V* = 2(n-1) + 1
V - 2 = 2(n-2) + 2
V - 3 = 2(n-2) + 2
V - 4 = 2(n-2) + 2
V - 5 = 2(n-2) + 2
V - 6 = 2(n-1) + 1

n slots, n+1 bids

Revenue(VCG) = 1(n-1) + 1

Revenue: Competitive Analysis

VCG:

V* = 2(n-1) + 1
V - 2 = 2(n-2) + 2
V - 3 = 2(n-2) + 2
V - 4 = 2(n-2) + 2
V - 5 = 2(n-2) + 2
V - 6 = 2(n-1) + 1

n slots, n+1 bids

Revenue(VCG) = 1(n-1) + 1
Revenue(Auc) = 1
\Rightarrow \text{competitive ratio can be arbitrarily bad!}
• Actually, have a general negative result available for the revenue-competitiveness of a deterministic online auction for this problem.

Can achieve $O(\log_2(\phi))$ competitive with a randomized auction, for $\phi=(U/L)$, even with unknown bounds.

Prior-Free Online Auction Design:
- Non-reusable Goods, Finite time horizon.
- General characterization for truthful online auctions
- Prior-Free Online Auction Design:
- Reusable Goods, infinite time horizon.
- Model-based Online Mechanisms
- Future directions.

Model-Based Online Mechanisms
(P. & Singh'03, P., Singh & Yanovsky'04)

- Agents, and the auctioneer, have a common prior.
- θ iid from distribution $g(\theta)$.
- Mechanism makes a sequence of decisions $\{k_1,k_2,\ldots\}$
- Agents $\theta_i=[a_i,d_i,v_i]$. $v_i(k)\geq 0$.
- Goal: maximize the expected sequential value.

As a Markov Decision Process

- State: $h_t=(\theta_1,\ldots,\theta_t; k_1,\ldots,k_{t-1})$. Time horizon T.
- Model: $\Pr(h_{t+1}|h_t,k_t): R(h_t,k_t)=\sum_i[v_i(k_t)-v_i(k_{t+1})]$.
- Policy: $\pi=(\pi_1,\ldots,\pi_T)$, $\pi_t: H_t \rightarrow K_t$
- $V(\pi(h_t))=E_\pi[R(h_t,\pi(h_t))+R(h_{t+1},\pi(h_{t+1}))+\ldots+R(h_T,\pi(h_T))$]

- Efficient policy, π^*, maximizes MDP value in all states; value $V^*(h_t)$.
- Solve via dynamic programming, policy iteration, linear programming, etc.

“Stalling” == “Action space rich enough that cannot improve policy by delaying the arrival of an agent.”

- How to handle self-interest?
An Online VCG Mechanism

- Receive reports. Implement \(\pi^*(h'_i) \).
- Payment: \(p_i = v_i'(k^*) - \{V^*(h_{a_i}) - V^*(h_{a'_i})\} \)

Theorem. Given a correct model, and a policy with stalling, the online VCG is Bayes-Nash IC and implements the efficient policy.

EU(\(\theta_i' \)) = \(v_i(\pi^*(h_{a_i})) + V^*(h_{a_i}) - v_i'(\pi^*(h_{a_i})) - V^*(h_{a'_i}) \)

Remarks.

- BNIC not DSIC. Correctness of \(\pi^* \) requires correct model \(f(\theta) \), which requires other agents play equilibrium.
- c.f. offline VCG, where the center can make the value-maximizing choice (based on reports), whatever the reports.
Remarks.

• BNIC not DSIC. Correctness of π^* requires correct model $f(\theta)$, which requires other agents play equilibrium.
• c.f. offline VCG, where the center can make the value-maximizing choice (based on reports), whatever the reports.

• ex post individual-rational given "value monotonicity", i.e. addition of an agent has a (weakly) +ve effect on total MDP value.
• ex ante no-deficit given "no positive externalities", i.e. addition of an agent has a (weakly) -ve effect on MDP value to others.

Algorithmic Remark: Sparse-Sampling:

$V^{ss}(h) = \max_k \{R(k) + \mathbb{E}_{\text{child}} V^{ss}(\text{child})\}$

Policy π^{ss}, estimate $V^{ss}(h)$:

$|V'(h) - V^{ss}(h)| \leq \varepsilon$

$|V'(h) - \mathbb{E}(V^{ss}(h))| \leq \varepsilon$

in time $O((K \cdot w)^T)$, with $w = poly(K, 1/\varepsilon, R_{max}, T)$, for R_{max} bound on reward in a state.

Example: Eff, Rev in WiFi problem

Eff, Rev in WiFi problem (P., Singh & Yanovsky'04)

5 channels

Revenue and value normalized by the unlimited supply value.
Future Direction: Introduce Learning.

- What if center has only a distribution on priors, and a MLE of the model, denoted $f'(\theta)$?
- Would like to converge to optimal π^* over time.

Main problems:
(A1) retaining incentive-compatibility with respect to time despite the adaptiveness of the policy.
(A2) retaining incentive-compatibility despite an approximate policy.

Remark: the online VCG mechanism is not BNIC with an approximate model.
Future Direction: Introduce Learning.

- What if center has only a distribution on priors, and a MLE of the model, denoted $f'(0)$?
- Would like to converge to optimal π^* over time.
- Main problems:
 (A1) retaining incentive-compatibility with respect to time despite the adaptiveness of the policy.
 (A2) retaining incentive-compatibility despite an approximate policy.
- Remark: the online VCG mechanism is not BNIC with an approximate model.
- Current work: focus on a “single-minded domain”. In that domain, optimal policies are monotonic, whatever the model ⇒ can get a positive result.
- General problem of learning + MDPs is open.

Summary

- Many computational systems present dynamic resource allocation problems.
- Need to extend MD to handle dynamics.
- Two styles of analysis.
- Prior-free: DSIC mechanisms with online competitive results for non-reusable and reusable-good scenarios.
- Model-based: BNIC mechanisms to implement optimal MDP policies.
- Future direction: Allow for learning.