
Paths, Cycles and Mechanism Design

Rakesh V. Vohra

June 2007

2

Contents

1 Network Flow Problem 7
1.1 Network Flow Problem . 9
1.2 Flow Decomposition . 13
1.3 The Shortest Path Polyhedron 15

2 Incentive Compatability 19
2.1 Dominant Strategy Incentive Compatability 19

2.1.1 2-cycle Conditions . 24
2.1.2 Roberts’ Theorem . 27

2.2 Bayesian Incentive Compatability 32
2.3 Revenue Equivalence . 41

3 Optimality 47
3.1 An Example . 49
3.2 What is a Solution? . 50
3.3 One Dimensional Types . 51

3.3.1 A Formulation . 53
3.3.2 The Myerson Case . 55

3.4 Multidimensional Types . 56
3.4.1 Wilson Example . 56
3.4.2 Capacity Constrained Bidders 64

4 Rationalizability 75
4.1 The Quasi-linear Case . 75
4.2 The General Case . 76

3

4 CONTENTS

Introduction

The incentive compatability1 constraints of mechanism design (with quasi-
linear utilities) can be interpreted as being the dual inequalities of a shortest
path problem. I believe this interpretation provides an intuitive and pow-
erful lens through which to view the implications of incentive compatabil-
ity. This document provides an (incomplete) account of the main results
in mechanism design from this point of view. They assume familiarity with
mechanism design and basic linear programming and convex analysis. I wel-
come suggestions for additions, deletions and improvements to this material.

This point of view is the product of collaborations with many individu-
als. Amongst them Sushil Bikhchandani, Sven de Vries, Alexey Malakhov,
Rudolf Müller, Mallesh Pai and James Schummer. However they are not re-
sponsible for any errors of commision or omission. The impetus for putting
this down on paper in one place was an invitation from S. Pekec, L. Rigotti
and P. Lopomo to talk about these matters at Fuqua.

1Luca Rigotti noticed that this word was misspelt and surmised it was part of some
secret code. ‘Google’ the word yourself and draw your own conclusion.

5

6 CONTENTS

Chapter 1

Network Flow Problem

In this chapter a class of linear program’s called network optimization prob-
lems and their properties are discussed.

A graph is a collection of two objects. The first is a finite set V =
{1, ..., n} called nodes. The second is a set E of (unordered) pairs of
nodes called edges. As an example, suppose V = {1, 2, 3, 4} and E =
{(1, 2), (2, 3), (1, 3), (3, 4)}. A pictorial representation of this graph is shown
in Figure 2.1.

��
��

2 ��
��

3

��
��

1
�

�
�

�
�

�
�

�

��
��

4

Figure 2.1

A graph is called complete if E consists of every pair of nodes in V . The
end points of an edge e ∈ E are the two nodes i and j that define that
edge. In this case we write e = (i, j). The degree of a node is the number
of edges that contain it.

In the graph of Figure 2.1, the degree of node 3 is 3 while the degree of
node 2 is 2. A pair i, j ∈ V is called adjacent if (i, j) ∈ E.

7

8 CHAPTER 1. NETWORK FLOW PROBLEM

Fix a graph G = (V,E) and a sequence v1, v2, . . . , vr of nodes in G. A
path is a sequence of edges e1, e2, . . . , er−1 in E such that ei = (vi, vi+1).
The node v1 is the initial node on the path and vr is the terminal node.
An example of a path is the sequence (1, 2), (2, 3), (3, 4) in Figure 2.1. A
cycle is a path whose initial and terminal nodes are the same. The edges
{(1, 2)(2, 3), (3, 1)} form a cycle in Figure 2.1. A graph G is called con-
nected if there is a path in G between every pair of nodes. The graph of
Figure 2.1 is connected. The graph of Figure 2.2 below is disconnected. A
subset T of edges is called a spanning tree if the graph (V, T) is connected
and acyclic. In the graph of Figure 2.1, the set {(1, 2), (1, 3), (3, 4)} is a
spanning tree.

��
��

2 ��
��

3

��
��

1
�

�
�

�
�

�
�

�

��
��

4

Figure 2.2

If the arcs of a graph are oriented, i.e., and edge (i, j) can be traversed
from i to j but not the other way around, the graph is called directed. If
a graph is directed, the edges are called arcs. Formally, a directed graph
consists of a set V of nodes and set A of ordered pairs of nodes. As an exam-
ple, suppose V = {1, 2, 3, 4} and A = {(1, 2), (2, 3), (3, 1), (2, 4)}. A pictorial
representation of this graph is shown in Figure 2.3 below.

1.1. NETWORK FLOW PROBLEM 9

��
��

3 ��
��

2

��
��

1

�

?
�

�
�

�
�

�
�

�� �
�

�
�

�
�

�
��	

Figure 2.3

A path in a directed graph has the same definition as in the undirected
case except now the orientation of each arc must be respected. To emphasize
this it is common to call a path directed. In our example above, 1 → 3 → 2
would not be a directed path, but 1 → 2 → 3 would be. A cycle in a directed
graph is defined in the same way as in the undirected case, but again the
orientation of the arcs must respected.

A directed graph is called strongly connected if there is a directed
path between every ordered pair of nodes. It is easy to see that this is
equivalent to requiring that there be a directed cycle through every pair of
nodes. If each arc in a directed graph has a number (e.g. a cost, distance,
or capacity) associated with it, the directed graph is termed a network.

1.1 Network Flow Problem

Single commodity network flow models seek to prescribe the movement of a
homogeneous good, through a directed network from a set of source nodes
to a set of destination nodes. Consider, for eample, the network defined by
V = {s, x, y, t} and A = {(s, x), (s, y), (x, y), (x, t), (y, t)}. Figure 2.4 depicts
this network. The number associated with each arc in Figure 2.4 is an arc
length.

10 CHAPTER 1. NETWORK FLOW PROBLEM

��
��
s ��

��
x

?

8

��
��
y -

12

-
1

5

?

�
�

�
�

�
�

�
��	

3

��
��
t

Figure 2.4

A network flow problem that will play an important role in what is to
come is the shortest path problem. This problem is to find the minimum
length (sum of arc lengths) path from node s to node t in the network. It
is easy to see that in this case the shortest path from s to t proceeds from
nodes s to x to t and has a total length of 9 units. The problem can be
rephrased as finding the cheapest way to route one indivisible unit of flow
from s to t

To model the good’s movement on a given directed network with node
set V and arc set A, let xij , for each arc (i, j) ∈ A, denote the flow in an
appropriately defined unit of measurement of the good on that arc. We
assume conservation of flow requiring that the total flow out of any node i
minus the total flow

∑
j xij into that node must equal the net demand bi at

the node, i.e.
−

∑
j:(i,j)∈A

xij +
∑

k:(k,i)∈A

xki = bi ∀i ∈ V.

In addition to the conservation equations, network flow constraints also
include lower bounds and capacities imposed upon arc flows:

lij ≤ xij ≤ uij ∀(i, j) ∈ A.

These flow bounds might model physical capacities, contractual obligations,
or simply operating ranges of interest. Frequently, the given lower bound
capacities are all zero; lij = −∞ and uij = +∞ are possibilities as well.

For easy reference, we distinguish three types of nodes: the set S ⊆ V
of source, origin, or supply nodes i with bi < 0, the set T ⊆ V of terminal,

1.1. NETWORK FLOW PROBLEM 11

destination, or sink nodes i with bi > 0, and the set I ⊂ V of intermediate
or transshipment nodes i with bi = 0. Note that, by convention, at any
terminal node i, −bi > 0 is the net demand for flow.

Figure 2.5 illustrates a small network flow distribution system with 2
sources, 2 destinations, and 1 intermediate node. All lower bounds on flow
are zero and, except for arc (3,4), are uncapacitated with upper bounds on
flow equal to +∞.

��
��

1 ��
��

4

?

��
��

2 -

6

��
��

3

-

@
@

@R

�
�

��

�
�

�	

@
@

@I

?

��
��

5

Figure 2.5

V = {1, 2, 3, 4, 5}, A = {(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 5), (3, 4), (3, 5), (4, 5)}
S = {1, 2}, I = {3} and T = {4, 5}.
The flow constraints for this model are:

−x12 − x13 − x14 + x21 = −2

x12 − x21 − x23 − x25 = −3

x13 + x23 − x34 − x35 = 0

x14 + x34 − x45 = 4

x25 + x35 + x45 = 1

xij ≥ 0 ∀(i, j) ∈ A

x34 ≤ 3

In order to represent network flow constraints more compactly we use a
node-arc incidence matrix N = {nia} with one row for each node i of the
network and one column for each arc a ∈ A. The entry nia = −1 if arc a

12 CHAPTER 1. NETWORK FLOW PROBLEM

is directed out of node i, equal to +1 if arc a is directed into node i and
zero otherwise. In other words N is the matrix of the coefficients of the flow
conservation constraints. As an example the node-arc incidence matrix for
the network of Figure 2.5 would be:

(1, 2) (1, 3) (1, 4) (2, 1) (2, 3) (2, 5) (3, 4) (3, 5) (4, 5) arc′s

−1 −1 −1 −1 0 0 0 0 0 node 1
1 0 0 −1 −1 −1 0 0 0 node 2
0 1 0 0 1 0 −1 −1 0 node 3
0 0 1 0 0 0 1 0 −1 node 4
0 0 0 0 0 1 0 1 1 node 5


Letting l and u denote vectors of lower bounds and capacities on arc

flows and letting b denote the vector of supplies/demands at the nodes, we
see that in matrix form the constraints imposed upon the vector x or arc
flows becomes

Nx = b, l ≤ x ≤ u.

Call a vector x a feasible flow or is a feasible solution if it satisfies these
flow balance and lower and upper bound conditions.

Each variable xij appears in two flow conservation equations, as an out-
put from nodeiwith a −1 coefficient and as an input to node j with a +1
coefficient, each column of N contains exactly two nonzero coeffcients, a +1
and a -1. For now, let us make three observations.

Observation 1: Summing the conservation equations eliminates all the
flow variables and gives

0 =
∑
j∈V

bj ⇒
∑
j∈S

−bj =
∑
j∈T

bj .

Consequently, total supply must equal total demand if the conservation
equations Nx = b are to have a feasible solution.

Observation 2: If total supply equals total demand, then summing all
conservation equations gives the zero equation 0 · x = 0. Equivalently, any
equation is redundant being equal to minus the sum of all other equations.

Observation 3: Let µ be a cycle in G and xµ its incidence vector. If
x is a feasible flow, ε ∈ R and l ≤ x + εxµ ≤ u, then x + εxµ is a feasible
flow as well. To see why, consider any node i on the cycle µ and suppose

1.2. FLOW DECOMPOSITION 13

(p, i), (i, q) ∈ µ. We have to verify flow conservation at node j.

−
∑

j:(i,j)∈A

[xij+εx
µ
ij]+

∑
k:(k,i)∈A

[xki+εx
µ
ki] = −

∑
j:(i,j)∈A

xij−
∑

k:(k,i)∈A

xki−ε[xµ
iq−x

µ
pi] = bi,

where the last equation follows from the fact that xµ
iq = xµ

pi = 1.
If to each feasible flow x there is an associated cost, profit, or some

other measure of performance, we may wish to find a feasible flow that is
best with respect to that measure. In particular, if the function g assigns a
real number g(x) to each feasible network flow x, we may wish to solve the
following optimization problem:

min g(x)

s.t. Nx = b

l ≤ x ≤ u

Of particular importance is the case when g is a linear function of x. Note
also that one can, without loss, assume that l = 0. This is because we can
replace the variable x by y + l where 0 ≤ y ≤ u− l.

In the shortest path problem, g(x) =
∑

(i,j)∈A cijxij where cij is the
length of arc (i, j). We set lij = 0 and uij = +∞ for all (i, j) ∈ A. Finally,
bs = 1, bt = −1 and bi = 0 for all i 6∈ {s, t}. In addition we would require
the flow variables xij to be integral. This integrality requirement introduces
no added difficulties and can be relaxed, since, as we establish later in this
chapter, the fact that all supplies and demands and all (finite) capacities
are integer implies that there is an integral optimal solution.

1.2 Flow Decomposition

We have modeled the network flow problem in terms of arc flows xij . An
alternate representation for the problem that is useful is to view the supply
and demand requirements as being satisfied by flow along paths joining the
source and sink nodes.

Let P denote the set of directed paths joining the source and sink nodes
and let C denote the directed cycles in the network. Let hρ be the magnitude
of the flow along path ρ ∈ P and gµ be the magnitude of the flow along the
cycle µ ∈ C. To convert these path and cycle flows into arc flows we add,
for each arc, the flow on all paths and cycles through that arc. Formally,

xij =
∑
ρ∈P

δij(ρ)hρ +
∑
µ∈C

δij(µ)gµ.

14 CHAPTER 1. NETWORK FLOW PROBLEM

Here δij(ρ) = 1 if (i, j) ∈ ρ and zero otherwise. Similarly δij(µ) = 1 if
(i, j) ∈ µ. and zero otherwise. When arc flows are expressed in terms of
path and cycle flows in this way, we say that the arc flows are decomposed
as the sum of path and cycle flows.

Of course, the arc flows xij corresponding to any given path and cycle
flows need not satisfy the conservation equations Nx = b. They will, though,
if the sum of the flows on paths originating from any source node equals its
supply and the sum of the flows on paths terminating with any sink equals
its demand. In this case, we say that the path and cycle flows satisfy supply
and demand requirements.

The following result shows that network flow problem can be modeled
in terms of arc flows or path and cycle flows. That is, not only can we
define arc flows in terms of given path and cycle flows, but given an arc flow
representation, we can find corresponding path and cycle flows.

Theorem 1.2.1 Flow Decomposition. An assignment of path and cycle
flows satisfying supply and demand requirements corresponds to a unique
assignment of arc flows satisfying the conservation equations Nx = b. Any
arc flows fulfilling the conservation equations can be decomposed as the sum
of path and cycle flows for some assignment of path flows hρ and cycle flows
gµ that satisfy supply and demand requirements.

Proof: The observations preceding the theorem establish the first state-
ment. To establish the second, we describe a procedure for converting arc
flows to path and cycle flows. The procedure successively reduces arc flows
by converting them into path and cycle flows. We start in step (1) with all
path and cycle flows set equal to zero and with arc flows at the values given
to us.

1. If all arc flows as modified thus far by the procedure are equal to zero,
then stop; the current path and cycle flows give the desired represen-
tation of arc flows. Otherwise, select some arc (i, j) with xij > 0,
choosing, if possible, i as a source node with bi < 0. Let ρ be a path
with the single arc (i, j)

2. Add to path ρ one node and arc at a time, choosing at each step any
arc (k, l) directed from the last node k on path p and with xkl > 0. If,
at any step, node k is a terminal node with bk > 0, we go to step (3);
if node k appears on path ρ twice, we go to step (4). Otherwise, by
conservation of flow we can find an arc (k, l) with xkl > 0 to extend
the path.

1.3. THE SHORTEST PATH POLYHEDRON 15

3. ρ is a directed path from source node i to terminal node k and xuv > 0
for every arc (u, v) on the path. Let h be the minimum of these arc
flows and of −bi and bk. Set hp = h, redefine xuv as xuv − h for every
arc on ρ and redefine bi as bi + h and bk as bk − h. Return to step (1)
with this modified data.

4. The nodes and arcs from the first and second appearance of node k
on ρ define a cycle µ along which all arc flows xuv are positive. Let g
be the minimum of these arc flows. Set gµ = g redefine xuv as xuv − g
for every arc on µ, and return to step (1) with the modified data.

If the procedure terminates in step (1), the path and cycle flows satisfy
supply and demand requirements and the arc flows are decomposed as the
sum of these path and cycle flows. Each time step (3) or (4) is invoked
either some source or terminal node becomes a transshipment node in the
modified network, or some arc flow becomes zero. Consequently, since no
transshipment node ever becomes a source or terminal node and since we
never add flow to any arc, in a finite number of steps, we must terminate in
step (1).

The theorem makes no assertion about the uniqueness of the path and
cycle decomposition of given arc flows. As an illustration, there are two
decompositions for the arc flows in Figure 2.5, namely path 1-2-4 and cycle
1-4-3-1 each with a flow of one unit, or path 1-4 and cycle 1-2-4-3-1 each
with a flow of one unit.

1.3 The Shortest Path Polyhedron

Let N be the node-arc incidence matrix of a network G = (V,A) with source
node s and sink node t. Assume there is at least one s − t path. Let cij
be the length of arc (i, j). Let bs,t be the vector such that bs,ti = 0 for all
i ∈ V \ {s, t}, bs,ts = −1 and bs,tt = 1. The shortest path polyhedron is
{x : Nx = bs,t, x ≥ 0}.

Theorem 1.3.1 Every extreme point of {x : Nx = bs,t, x ≥ 0} is integral.

Proof: Let x∗ be an extreme point of the polyhedron. Hence there is a c
such that x∗ ∈ arg min{cx : Nx = bs,t, x ≥ 0}.

Since x∗ is a feasible flow, by flow decomposition, we can express x∗ as
the sum of positive flows around a set of cycles, C, and flows along a set of
paths from s to t, P, say. For each µ ∈ C let gµ be the quantity of flow

16 CHAPTER 1. NETWORK FLOW PROBLEM

around the cycle c and for each ρ ∈ P let hρ be the quantity of flow on this
path. Denote by c(µ) the sum of arc lengths around the cycle and by c(ρ)
the sum of arc lengths along the path ρ. Hence

cx∗ =
∑
µ∈C

c(µ)gµ +
∑
ρ∈P

c(ρ)hρ.

We show that c(µ) = 0 for all µ ∈ C. If c(µ) > 0 for some µ ∈ C, reduce
the flow around the cycle µ by ε > 0. This results in a new feasible flow
of lower cost contradicting the optimality of x∗. Feasibility follows from
observation 3. If c(µ) < 0, increase the flow around µ by ε so generating a
new feasible flow with lower cost. Again, a contradiction.

Now suppose there exist two paths ρ, ρ′ ∈ P with c(ρ) < c(ρ′). Decrease
the flow along ρ′ by ε and increase the flow on ρ by the same amount.
This produces a new feasible flow with lower cost, a contradiction. Hence
c(ρ) = c(ρ′). Let x1 be formed by transferring ε units of flow from ρ′ to ρ.
Let x2 be the formed by transferring ε units of flow from ρ to ρ′. Notice
that x1 and x2 both lie in the shortest path polyhedron. It is easy to see
that x∗ = 1

2x
1 + 1

2x
2 contradicting the fact that x∗ is an extreme point.

Therefore x∗ can be decomposed into a flow of one unit along a single
s− t path, i.e., x∗ is the incidence vector of the shortest s− t path. Hence
x∗ is integral.

It is useful to compare this result with the resolution theorem. That
theorem says that any point in a polyhedron can be expressed (decomposed)
into a convex combination of the polyhedron’s extreme points and a non-
negative linear combination of its extreme rays. The import of Theorem
2.2.2 is that the extreme points of the shortest path polyhedron correspond
to s− t paths and extreme rays correspond to cycles in the network.

Corollary 1.3.2 Let G = (V,A) be a network with source s ∈ V , sink
t ∈ V and arc length vector c. A shortest s− t path (wrt c) exists in G iff.
G contains no negative length cycles.

Proof: If a shortest path in G exists, its incidence vector x∗ is an optimal
extreme point of the corresponding shortest path polyhedron. Suppose G
has a negative length cycle, µ. Let xµ be the incidence vector of this cycle.
Then x∗ + εxµ is a point in the shortest path polyhedron by observation 3.
However cx∗ + εcxµ < cx∗, contradicting optimality of x∗.

1.3. THE SHORTEST PATH POLYHEDRON 17

Since the shortest path problem on G with arc length vector c can be
written as min{cx : Nx = bs,t, x ≥ 0}, it has a dual:

max yt − ys

s.t. yN ≤ c

The dual variables are called node potentials. The dual has one constraint
for each arc. From the structure ofN , we see that the typical dual constraint
looks like:

yj − yi ≤ cij

where (i, j) ∈ A. By observation 2, we know that any one of the primal
constraints is redundant. Hence we can always set one of the dual variables
to zero. If we set ys = 0 the dual becomes max{yt : yN ≤ c, ys = 0}. Let
y∗ be an optimal solution to the dual. Hence, y∗t is, by the duality theorem,
the length of the shortest path from s to t. For any other node i, y∗i is the
length of the shortest path from s to the node i. Indeed, given any feasible
dual solution, yi is bounded above by the length of the shortest s− i path.

The dual of the shortest path problem is relevant in analyzing the feasi-
bility of a certain class of inequalities. To describe it let V be a finite set of
indices and A a set of ordered pairs of elements of V . Associated with each
pair (i, j) ∈ A is a number wij . The system is:

xj − xi ≤ wij ∀(i, j) ∈ A. (1.1)

We can associate a network with (1.1) in the following way. Each element
of V is a node, and to each ordered pair (i, j) ∈ A we associate a directed
arc from node i to node j. Each arc (i, j) ∈ A is assigned a length of wij .

This system (1.1) is feasible iff. the associated network contains no
negative length cycle.1 Second, if the system is feasible, one solution is
to set each xj equal to the length of the shortest path from an arbitrarily
chosen source node to node j.

1If the direction of the inequality in (1.1) is reversed, then the system is feasible iff.
the network has no positive length cycle.

18 CHAPTER 1. NETWORK FLOW PROBLEM

Chapter 2

Incentive Compatability

Any direct mechanism can be decomposed into two parts: an allocation
rule and a payment rule. The allocation rule determines the allocation of
resources as a function of the profile of reported types. The payment rule
determines the payment each agent must make as a function of the profile
of reported types. In this chapter we show how to characterize dominant
strategy as well as Bayesian incentive compatible mechanisms in environ-
ments with quasi-linear utilities and multi-dimensional types. Attention is
confined to direct revelation mechanisms where types are private. With a
change in notation the results would extend to the interdependent value
setting and ex-post incentive compatibility.

2.1 Dominant Strategy Incentive Compatability

Let T be a set of types. Denote by Tn the set of all n-agent profiles of types1

An element of Tn will usually be written as (t1, t2, . . . , tn) or t. Let Γ be
the set of outcomes. An allocation rule is a function

g : Tn 7→ Γ.

Let Rα = {t ∈ Tn : g(t) = α} ∀α ∈ Γ.
A payment rule is a function

P : Tn 7→ Rn,

that is, if the reported profile is (t1, . . . , tn) agent i makes a payment of
Pi(t1, . . . , tn).

1The type space need not be identical across agents. The assumption is for simplicity
of notation only.

19

20 CHAPTER 2. INCENTIVE COMPATABILITY

Utilities are quasi-linear. The value that agent i with type t ∈ T assigns
to an allocation α ∈ Γ is denoted vi(α|t).

Here are three examples.

1. Homogenous, multi-item auctions with additive valuations.
Suppose we have k units of a homogenous good to allocate. The type
of an agent is a vector in Rk

+ whose jth component is the marginal
value for the jth unit. Each α ∈ Γ can be represented by an integral
vector in Rk

+ whose ith component represents the quantity allocated
to agent i and sum of components is k. The ith component will be
denoted αi, and vi(α|t) =

∑αi
j=1 tj .

2. Combinatorial Auctions. We have a set M of distinct goods to
allocate. The type of an agent is a vector in R2|M|

+ with one component
for each subset of M that corresponds to the value assigned to that
subset. If the allocation α assigns the set S ⊆M to agent i with type
t then vi(α|t) = tS . The vector representation is given by the unit
vectors in R2|M|

.

3. Unrestricted Preferences. Following the previous example, but
now we want to allow for the possibility that an agents payoff depends
not just on the goods assigned to him, but the goods assigned to
other agents as well. In this case a type would be a vector with one
component for each allocation, i.e. in R|Γ|

+ .

An allocation rule g is dominant strategy incentive compatible
(DSIC) if there exists a payment rule P such that for all agents i and all
types s 6= t:

vi(g(t, t−i)|t)− Pi(t, t−i) ≥ vi(g(s, t−i)|t)− Pi(s, t−i) ∀ t−i. (2.1)

It would be more correct to refer to g as being implementable in dominant
strategies, but this is a mouthful.

The constraints (2.1) have a network interpretation. To see this it is will
be useful to rewrite (2.1) as

Pi(t, t−i)− Pi(s, t−i) ≤ vi(g(t, t−i)|t)− vi(g(s, t−i)|t) ∀ t−i. (2.2)

Which coincide with the constraints of the dual of the shortest path
problem. Given this observation, a natural step is to associate with each i
and t−i a network with one node for each type t ∈ T and a directed arc

2.1. DOMINANT STRATEGY INCENTIVE COMPATABILITY 21

between each ordered pair of nodes. Define the length of the arc directed
from type s to type ti by

`(s, t|t−i) = vi(g(t, t−i)|t)− vi(g(s, t−i)|t).

Call this network Tg(t−i). Following Corollary 1.3.2, if this network has no
negative length cycles, then shortest path lengths exist. Choose any one
of the nodes as a source node and set Pi(t, t−i) equal to the length of the
shortest path from the source to node t. A direct application of Corollary
1.3.2 is not possible because it assumes a finite number of nodes. In the
present case the network has as many nodes as there are elements in T ,
which could be infinite.

In the sequel we fix an agent i and a profile of types for the other n− 1
agents. For this reason we suppress dependence on the index i and t−i in
unless we say otherwise.

If we restrict our attention to agent i, we will always identify allocations
between which agent i is indifferent. By this we can assume that for all
α 6= β of Γ there exists a type t such that v(α|t) 6= v(β|t). Furthermore,
we will for fixed t−i restrict to Γ = {α|∃t ∈ T such that g(t, t−i) = α}.
Accordingly, from now on Rα = {t|g(t, t−i) = α}. Under this convention
inequality (2.1) becomes

v(g(t)|t)− P (t) ≥ v(g(s)|t)− P (s). (2.3)

The constraints (2.2) become

P (t)− P (s) ≤ v(g(t)|t)− v(g(s)|t). (2.4)

Define the length of the arc directed from type s to type t by

`(s, t) = v(g(t)|t)− v(g(s)|t),

and call this network Tg.2

Theorem 2.1.1 (Rochet(1987)) Let T be any type space, n ≥ 2 be the
number of agents with quasi-linear utilities over a set Γ of outcomes and
f : Tn 7→ Γ an allocation rule. The following statements are equivalent:
(1) g is (DSIC).
(2) For every agent i, for every report t−i, the corresponding graph Tg does
not have a finite cycle of negative length.

2For technical reasons we allow for loops. But observe that `(t, t) = 0.

22 CHAPTER 2. INCENTIVE COMPATABILITY

Proof: (2) ⇒ (1)
Let t0 ∈ T be an arbitrary, but fixed type. Define

P (t) = inf{
k∑

i=0

`(ti, ti+1)|k ≥ 0, t1, . . . , tk+1 ∈ T, tk+1 = t}.

Set P (t0) = 0 and observe that P (t) is larger than or equal to −`(t, t0), and
thus larger than −∞. If not Tg would have a negative cycle. Finally for
every t, t′ ∈ T :

P (t′) ≤ P (t) + `(t, t′) = P (t) + v(g(t′)|t′)− v(g(t)|t).

(1) ⇒(2)
Let t1, . . . , tk, tk+1 = t1 be a finite cycle. Since g is dominant strategy
incentive compatible there exists a payment function P such that:

k∑
i=1

`(ti, ti+1) =
k∑

i=1

v(g(ti+1)|ti+1)− v(g(ti)|ti+1) ≥
k∑

i=1

P (ti+1)− P (ti) = 0.

A straight forward conseqence of Theorem 2.1.1 is what is called the
taxation principle. If g is DSIC, then we know there exist appropriate
payments. Notice also, if g(t) = g(s) then P (t) = P (s). For this reason
we can express payments as a function of allocation rather than types, i.e.,
P (t) = Pα for all t ∈ Rα. Revert to the notation involving the full profile
of types we can state the taxation principle as the following.

Lemma 2.1.2 If g is DSIC then there exists a payment function P such
that:

g(t) ∈ arg max
α∈Γ

[tiα − Pα
i (t−i)] ∀i.

The taxation principle allows us to interpret a mechanism as offering a
menu (one for each t−i) consisting of a list of allocations and corresponding
prices to be paid. Specifically, if agent i chooses allocation α she must pay
Pα

i (t−i).
Theorem 2.1.1 is useful in that it places conditions on the allocation rule

rather than on the utilities that the agents derive. It is problematic in that
one must verify non-negativity of a rather large number of cycles. Here is
one application of the result.

2.1. DOMINANT STRATEGY INCENTIVE COMPATABILITY 23

Theorem 2.1.3 Suppose T,Γ ⊆ R1, g(t) ∈ R1, v(x|t) is non-decreasing in
x for each fixed t and satisfies strict increasing differences (supermodularity).
Then g is DSIC iff g is non-decreasing.

Proof: Suppose g is DSIC and for a contradiction is decreasing somewhere.
Then there exists r, s ∈ T such that r ≤ s and g(r) > g(s). DSIC implies
that

P (r)− P (s) ≤ v(g(r)|r)− v(g(s)|r).
Increasing differences implies that the right hand side of the above is strictly
less than v(g(r)|s)− v(g(s)|s). Hence

P (r)− P (s) < v(g(r)|s)− v(g(s)|s),

which violated DSIC.
Now suppose that g is non-decreasing. We show that g is DSIC. Increas-

ing differences implies that for all t > s we have

`(s, t) = [v(g(t)|t)− v(g(s)|t)] ≥ [v(g(t)|s)− v(g(s)|s)] = −`(t, s).

Hence `(s, t)+ `(t, s) ≥ 0, i.e., all cycles on pairs of nodes have non-negative
length. To show that all cycles have non-negative length we use induction.
Suppose all cycles with k or fewer nodes have non-negative length. For
a contradiction suppose there is a cycle, C, of k + 1 nodes with negative
length. Let that cycle consist of the nodes t1, t2, . . . , tk+1. Without loss we
may suppose that tk+1 > tj for all j < k + 1.

If we can show that `(tk, tk+1)+ `(tk+1, t1) ≥ `(tk, t1), then the length of
C is bounded below by the length of the cycle t1 → t2 → . . .→ tk → t1. By
the induction hypothesis this would contradict the fact that C is a negative
cycle.

Suppose `(tk, tk+1) + `(tk+1, t1) < `(tk, t1). Then

v(g(tk+1)|tk+1)−v(g(tk|tk+1)+v(g(t1)|t1)−v(g(tk+1)|t1) < v(g(t1)|t1)−v(g(tk)|t1).

The right hand side of this inequality can be written as

v(g(t1)|t1)− v(g(tk+1)|t1) + v(g(tk+1)|t1)− v(g(tk)|t1).

Substituting it in we get

v(g(tk+1)|tk+1)− v(g(tk)|tk+1) < v(g(tk+1)|t1)− v(g(tk)|t1),

which cannot be by increasing differences.

The proof is instructive in that it suggests that sometimes it is suffi-
cient to verify non-negativity of cycles on pairs of nodes. This is what we
investigate next.

24 CHAPTER 2. INCENTIVE COMPATABILITY

2.1.1 2-cycle Conditions

Reversing the roles of t and s in (2.3) implies

v(g(s)|s)− P (s) ≥ v(g(t)|s)− P (t). (2.5)

Adding (2.3) to (2.5) yields

v(g(t)|t) + v(g(s)|s) ≥ v(g(s)|t) + v(g(t)|s).

Rewriting:

v(g(t)|t)− v(g(s)|t) ≥ −[v(g(s)|s)− v(g(t)|s)]. (2.6)

We call (2.6) a 2-cycle inequality. An allocation rule that satisfies the
2-cycle inequality for every pair s, t ∈ T is said to satisfy the 2-cycle con-
ditions. Bikhchandani, Chatterji, Lavi, Mu’alem, Nisan and Sen (2006) use
the term weak monotonicity instead. That the 2-cycle condition holds
is a necessary condition of dominant strategy incentive compatibility. We
show that under certain conditions it is a sufficient condition.

First, we suppose that |Γ| is finite. In this case we can assume that
T ⊆ R|Γ| and we interpret the ith component of any t ∈ T as the value that
type t places on outcome i ∈ Γ. Therefore, if g(t) = α we interpret tα to be
v(g(t)|t).

When Γ is finite it is more convenient to work with a different but related
network, called the allocation network. We associate with each element
α ∈ Γ a node. The length, `(α, β) of an arc directed from allocation α to
allocation β is given by

`(α, β) = inf
s∈Rβ

[v(β|s)− v(α|s)] = inf
s∈Rβ

sβ − sα.

Symmetrically, we associate an arc directed from β to α with length:

`(β, α) = inf
t∈Rα

tα − tβ .

Denote the graph by Γg. Notice that if the 2-cycle condition holds,

`(α, β) + `(β, α) ≥ 0 ∀α, β ∈ Γ. (2.7)

From Rochet’s theorem or Corollary 1.3.2 we obtain the following.

2.1. DOMINANT STRATEGY INCENTIVE COMPATABILITY 25

Corollary 2.1.4 Let T be any type space, n ≥ 2 be the number of agents
with quasi-linear utilities over a set Γ of outcomes and g : Tn 7→ Γ an
allocation rule. The following statements are equivalent:
(1) g is DSIC.
(2) For every agent, for every report t−i, the corresponding graph Γg does
not have a finite cycle of negative length.

If (2.7) holds the set Rα is contained in a polyhedron Qα for all α ∈ Γ,
and these polyhedra can be chosen such that the intersection of T with the
interior, I(Qα), of Qα is contained in Rα. Observe that for t ∈ Rα we have

tα − tβ ≥ inf
x∈Rα

[xα − xβ] = `(β, α). (2.8)

Thus Rα is a subset of

Qα = {x ∈ Rk : xα − xβ ≥ `(β, α) ∀β 6= α}.

Now assume I(Qα) 6= ∅ and consider a t of T ∩ I(Qα). We show that
t ∈ Rα. Observe that for all β 6= α, t 6∈ Rβ. Indeed, otherwise we get the
contradiction3

tβ − tα < `(α, β) < tβ − tα.

Notice that there is a one-to-one correspondence between the constraints
of these polyhedra and arcs of Γg. Specifically, the constraint xβ − xα ≥
`(α, β) corresponds to the arc (α, β).

Theorem 2.1.5 (Saks and Yu (2005)) Suppose |Γ| is finite, T ⊆ R|Γ| is
convex and g is onto. Then, g is DSIC iff

v(g(t)|t)− v(g(s)|t) ≥ −[v(g(s)|s)− v(g(t)|s)] ∀t, s ∈ T.

Proof: We confine ourselves to the case when |Γ| = 3.4 Suppose Γ =
{α, β, γ}. Assume then that Γf has the negative cycle α → γ → β → α.
Let F be the feasible region associated with the system below.

xα − xβ > `(β, α) (2.9)

3We make use of v(α|.) 6= v(β|.) for α 6= β. This ensures that inequality (2.8) has non-
zero left-hand-side, and thus every point in the interior of Qα satisfies (2.8) with strict
inequality.

4This theorem subsumes earlier results due to Bikhchandani, Chatterji, Lavi, Mu’alem,
Nisan and Sen (2006) and Gui, Müller and Vohra (2004).

26 CHAPTER 2. INCENTIVE COMPATABILITY

xγ − xα > `(α, γ) (2.10)

xβ − xγ > `(γ, β) (2.11)

Since the network associated with (2.9, 2.10, 2.11) has no positive length
cycle, F 6= ∅. Notice that (2.9) implies that x 6∈ Rα, (2.10) implies that
x 6∈ Rγ and (2.11) implies that x 6∈ Rβ . Therefore F ∩ T = ∅, recall that
T = Rα ∪Rβ ∪Rγ .

By the separating hyperplane theorem we can separate F from T by a
hyperplane, ∑

θ∈Γ

dθxθ > C (2.12)

say. All x ∈ F satisfy (2.12) and all x ∈ T violate (2.12).
Now (2.12) can be obtained or dominated by an inequality generated by

taking a non-negative linear combination of the inequalities in (2.9, 2.10,
2.11). Specifically

w1(xα−xβ)+w2(xγ−xα)+w3(xβ−xγ) > w1`(β, α)+w2`(α, γ)+w3`(γ, β).

Any such inequality formed by taking all wi > 0 is dominated by one where
at most two of the wi are positive. This is because the the left hand sides
of (2.9-2.11) add up to zero while the right hand side adds up to something
negative. Hence, wlog we can take w1, w2 > 0 and w3 = 0. Thus, our
separating hyperplane becomes:

w1(xα − xβ) + w2(xγ − xα) > w1`(β, α) + w2`(α, γ). (2.13)

By our assumption, every x ∈ T must violate (2.13). Pick an ε sufficiently
small and choose x ∈ Rγ such that xγ − xα = `(α, γ) + ε. We claim that
xα − xβ ≥ `(β, α). Suppose not. Then

`(β, γ) ≤ xγ − xβ = xγ − xα + xα − xβ < `(α, γ) + ε+ `(β, α).

Since α→ γ → β → α is a negative length cycle, for ε sufficiently small

0 > `(β, α) + `(α, γ) + `(γ, β) + ε > `(β, γ) + `(γ, β) ≥ 0,

a contradiction.
Since our chosen x ∈ Rγ satisfies xγ − xα > `(α, γ) and xα − xβ ≥

`(β, α) it follows that x satisfies (2.13). This contradicts the existence of the
negative cycle α→ γ → β → α.

2.1. DOMINANT STRATEGY INCENTIVE COMPATABILITY 27

The theorem is false when |Γ| is not finite. An additional integrability
condition is needed (see Rochet (1987)). We postpone discussion of this
issue when we take up the case of Bayesian incentive compatibility. The
assumption that g is onto is not without loss since it rules out allocation rules
that could, for example, break ties between outcomes based on preferences
over irrelevant outcomes. Convexity of the type space is essential, otherwise
the theorem is false. For example, when the type space is discrete.

2.1.2 Roberts’ Theorem

In this section we give a proof of a theorem of Kevin Roberts (1979) that
gives a characterization of DSIC allocation rules as solutions to maximiza-
tion problems. The proof is a reinterpretation of the original emphasizing
the underlying network structure.5

Theorem 2.1.6 (Roberts’ Theorem) Suppose |Γ| is finite and at least
3. Let T = R|Γ| and g be DSIC and onto . Then there exists a non-zero,
non-negative w ∈ Rn and |Γ| real numbers {Dγ}γ∈Γ such that

g(t) ∈ arg max
γ∈Γ

n∑
i=1

wit
i
γ −Dγ .

The class of allocation rules described in the theorem above are called affine
maximizers.

Fix a non-zero and nonegative vector w. We associate a network with
w called Γw. The network will have one node for for each γ ∈ Γ. For each
ordered pair (β, α) where β, α ∈ Γ introduce a directed arc from β to α of
length

lw(β, α) = inf
t:g(t)=α

n∑
i=1

wi(tiα − tiβ).

If there is a choice of w for which Γw has no negative length cycles, Roberts
theorem is proved. We will prove the following,

Theorem 2.1.7 Let g be DSIC, onto and |Γ| ≥ 3. Then there exists a
non-zero, non-negative w ∈ Rn such that Γw has no negative length cycles.

In what follows we can assume wlog that w ≥ 0 and
∑
wi = 1. Such a

vector w will be called feasible.
First we give an outline of the proof. Suppose a cycle C = α1 → . . . →

αk → α1 through the elements of Γ. From each αj pick a profile t[j] such
5See also Lavi, Mu’alem and Nisan (2004) and Meyer-ter-Vehn and Moldovanu (2002).

28 CHAPTER 2. INCENTIVE COMPATABILITY

that f(t[j]) = αj . We associate with the cycle C a vector b whose ith

component is

bi = (tiα1
[1]− tiαk

[1]) + (tiα2
[2]− tiα1

[2]) + . . .+ (tiαk
[k]− tiαk−1

[k]).

Let K ⊆ Rn be the set of vectors that can be associated with some cycle
through the elements of Γ. Theorem 2.1.7 asserts the existence of a feasible
w such that w · b ≥ 0 for all b ∈ K. The major milestones of the proof are
as follows.

1. If b ∈ K is associated with the cycle α1 → . . . → αk → α1 then b is
associated with the cycle α1 → αk → α1. In words, each element of
K is associated with a cycle through a pair of elements of Γ.

2. If b ∈ K is associated with a cycle through (α, β) then b is associated
with a cycle through (γ, θ) for all (γ, θ) 6= (α, β). In words attention
can be restricted to just one cycle.

3. Show that K is convex.

4. Finally, it suffices to note that K is disjoint from the negative orthant.
Theorem 2.1.7 follows by invoking the separating hyperplane theorem.

Let U(β, α) = {d ∈ Rn : ∃t ∈ Tn s.t. g(t) = α, s.t. di = tiα − tiβ ∀i}.
Since g is onto, U(β, α) 6= ∅ for all α, β ∈ Γ. Notice that lw(β, α) =
infd∈U(β,α)w · d.

Lemma 2.1.8 Suppose g(t) = α and s ∈ Tn such that si
α − si

β > tiα − tiβ
for all i. Then g(s) 6= β.

Proof: This lemma is a consequence of the 2-cycle inequality and we leave
its proof as an exercise.

A consequence of Lemma 2.1.8 is that U(β, α) is upper comprehensive
for all α, β ∈ Γ.

For every pair α, β ∈ Γ define

h(β, α) = inf
t∈T n:g(t)=α

max
i
tiα − tiβ = inf

d∈U(β,α)
max

i
di.

Lemma 2.1.9 For every pair α, β ∈ Γ, h(β, α) is finite.

2.1. DOMINANT STRATEGY INCENTIVE COMPATABILITY 29

Proof: Suppose not. Fix a pair α and β for which the lemma is false. Then
h(β, α) can be made arbitrarily small. Since U(β, α) is upper comprehensive
this would imply that U(β, α) = Rn.

Choose d ∈ U(α, β). Then there is an s ∈ Tn such that si
β − si

α = di

for all i and g(s) = β. Since U(β, α) = Rn there is a t ∈ Tn such that
tiα − tiβ < −di for all i and g(t) = α. Since tiβ − tiα > si

β − si
α for all i it

follows from Lemma 2.1.8 that g(t) 6= α, a contradiction.

Since U(α, β) 6= Rn it follows that the complement of U(α, β) must
contain all vectors x such that −x ∈ U(β, α). In particular this means that
int[U(α, β) + U(β, α]) does not contain the origin. In addition, if for some
t ∈ Tn we have that tiα − tiβ < h(β, α) for all i then g(t) 6= α.

Lemma 2.1.10 For all α, β ∈ Γ, h(α, β) + h(β, α) = 0.

Proof: Suppose first that h(α, β) + h(β, α) > 0. Choose t ∈ Tn to satisfy

tiα − tiβ < h(β, α) ∀i (2.14)

tiβ − tiα < h(α, β) ∀i (2.15)

tiγ − tiα < h(α, γ) ∀i ∀γ 6= α, β (2.16)

It is is easy to see that the network associated with this system has no
negative length cycle. So, it has a solution. Now (2.14) implies that g(t) 6= α.
Similarly (2.15) implies that g(t) 6= β. Together with (2.16) we deduce that
g(t) 6∈ Γ a contradiction.

Now suppose that h(α, β) + h(β, α) < 0. Choose t ∈ Tn to satisfy

tiβ − tiα > h(α, β) ∀i (2.17)

tiα − tiβ > h(β, α) ∀i (2.18)

tiγ − tiα < h(α, γ) ∀i ∀γ 6= α, β (2.19)

It is easy to see that the system has a solution. Now (2.19) implies that
g(t) ∈ {α, β}. However (2.18) coupled with Lemma 2.1.8 means that g(t) 6=
α. But, (2.17) and lemma 2.1.8 imply that g(t) 6= β a contradiction.

Denote the vector all of whose components equal 1 by û.

Lemma 2.1.11 If dγ,β ∈ U(γ, β), dβ,α ∈ U(β, α) then for all ε > 0

dγ,β + dβ,α + εû ∈ U(γ, α).

30 CHAPTER 2. INCENTIVE COMPATABILITY

Proof: Choose t ∈ Tn to satisfy the following.

tiα − tiβ = di
β,α + ûε/2 ∀i (2.20)

tiβ − tiγ = di
γ,β + ûε/2 ∀i (2.21)

tiθ − tiα < h(α, θ) ∀θ 6∈ {α, β, γ}, ∀i (2.22)

Since the network associated with the system has no cycle the system has
a solution. Inequality (2.22) combined with the definition of h implies that
g(t) ∈ {α, β, γ}. Inequality (2.21) and Lemma 2.1.8 imply that g(t) 6= γ.
Inequality (2.20) combined with Lemma 2.1.8 imply that g(t) 6= β. Hence
g(t) = α. Observe that tiα− tiγ = di

β,α + di
γ,β + ε for all i and this proves the

lemma.

If the length function lw is is well defined for all arcs of Γw the conclusion
of Lemma 2.1.11 can be restated as

lw(α, β) ≤ lw(α, γ) + lw(γ, β) + ε.

In words, lw satisfies the triangle inequality.

Lemma 2.1.12 Suppose for some feasible w we have that lw(α, β)+lw(β, γ) ≥
0 for all α, β ∈ Γ. Then Γw has no negative length cycles.

Proof: The condition that lw(α, β) + lw(β, γ) ≥ 0 for all α, β ∈ Γ implies
that the length function lw is finite. To prove the lemma it suffices to show
that lw satisfies the triangle inequality. This follows from Lemma 2.1.11.

Lemma 2.1.13 For any dγ,α ∈ U(γ, α) dα,β ∈ U(α, β) and dβ,α ∈ U(β, α)
we have

dγ,α + dα,β + dβ,α + 2ûε ∈ U(γ, α).

Proof: Lemma 2.1.11 implies that dγ,α +dα,β + ûε ∈ U(γ, β). Lemma 2.1.11
implies that

dγ,α + dα,β + ûε+ dβ,α + ûε ∈ U(γ, α).

Lemma 2.1.14 int[U(α, β) + U(β, α)] is convex for all α, β ∈ Γ.

2.1. DOMINANT STRATEGY INCENTIVE COMPATABILITY 31

Proof: Pick di
α,β ∈ U(α, β) and di

β,α ∈ U(β, α) for i = 1, 2. It suffices to
prove that (d1

α,β+d1
β,α)/2+((d2

α,β+d2
β,α)/2 ∈ int[U(α, β)+U(β, α)]. Suppose

not. Then, without loss, we may suppose that (d1
α,β + d2

α,β)/2 6∈ intU(α, β).
Hence −(d1

α,β + d2
α,β)/2 ∈ U(β, α). Therefore, by Lemma 2.1.13

h(γ, α)û+ε+d1
α,β−(d1

α,β+d2
α,β)/2 = (d1

α,β−d2
α,β)/2+ûε+h(γ, α)û ∈ U(γ, α).

Since h(α, γ)û+ ûε ∈ U(α, γ) it follows from Lemma 2.1.10

(d1
α,β−d2

α,β)/2+2ε = (d1
α,β−d2

α,β)/2+ûε+h(γ, α)û+h(α, γ)+ûε ∈ int[U(α, γ)+U(γ, α)].

By Lemma 2.1.13

d2
α,β + (d1

α,β − d2
α,β)/2 + 2ûε ∈ U(α, β)

a contradiction.

Lemma 2.1.15 If there is a feasible w and pair α, β ∈ Γ such that lw(α, β)+
lw(β, α) < 0 then for all γ, θ ∈ Γ we have lw(γ, θ) + lw(θ, γ) < 0.

Proof: It suffices to prove that int[U(α, β)+U(β, α)] = int[U(γ, δ)+U(δ, γ)]
for all α, β, γ, δ ∈ Γ. For any dα,β ∈ U(α, β) we have by Lemma 2.1.11 that
dα,β +h(β, γ)+ ûε ∈ U(α, γ). Similarly, for any dβ,α ∈ U(β, α) we have that
dγ,β + h(γ, β)û+ ûε ∈ U(γ, α). Hence, by Lemma 2.1.10,

dα,β+h(β, γ)û+ûε+dγ,β+h(β, α)û+ε = (dα,β+ûε)+(dβ,α+ûε) ∈ U(α, γ)+U(γ, α).

Hence int[U(α, β) + U(β, α)] ⊆ U(α, γ) + U(γ, α). Switching the roles of
β and α we conclude that int[U(α, β) + U(β, α)] = int[U(α, γ) + U(γ, α)].
Repeating the argument again with α replaced by δ completes the proof.

We now prove Theorem 2.1.7. Suppose it is false. Then, by Lemma
2.1.15 for every feasible choice of w and pair α, β ∈ Γ we have lw(α, β) +
lw(β, α) < 0. By Lemma 2.1.14 the set int(U(α, β))+int(U(β, α)) is convex.
Notice also that the set int(U(α, β))+int(U(β, α)) cannot contain the origin.
Therefore, by the seprating hyperplane theorem there is a feasible w∗ such
that w∗ · z ≥ 0 for all z ∈ U(α, β) + U(β, α), a contradiction.

Theorem 2.1.7 is false when |Γ| = 2 and when T is a strict subset of R|Γ|.

Example 1 We describe a counter example to Theorem 2.1.7 when |Γ| = 2.
Suppose Γ = {α, β}. Let g(t) = α whenever tiα ≥ tiβ for all agents i otherwise

32 CHAPTER 2. INCENTIVE COMPATABILITY

g(t) = β. Clearly, g cannot be expressed as an affine maximizer. To show
that g is DSIC we verify that the 2-cycle condition holds. Fix t−i. We have
two cases. In the first tjα ≥ tjβ for all j 6= i. Then the corresponding graph
Γg consists of just two nodes; α and β. As long as tiα − tiβ ≥ 0 we know
that f(ti, t−i) = α. Hence `(β, α) = 0. Similarly, `(α, β) = 0. In the second
case, tjα ≤ tjβ for at least one j 6= i. In this case f(ti, t−i) = β for all ti.
Hence, the corresponding graph Γg is a single vertex.

Example 2 We describe a counter example to Theorem 2.1.7 when T is a
strict subset of R|Γ|. Consider two buyers and one good. There are three
possible allocations: the good goes to agent 1, it goes to agent 2 or it is
not allocated at all. An agents type records the value of each possible al-
location. Suppose private values, i.e., agent i receives value of vi ∈ [0, 1]
when she receives the good and zero for all other allocations. Hence T is a
one dimensional subset of [0, 1]3. Consider the following allocation rule. If
v1, v2 ∈ [0, 1/2) then the good is not allocated. When v1, v2 ∈ (1/2, 1] the
good is not allocated. In all other cases the good is allocated to the agent
with the highest value. It is straightforward to verify that the rule is DSIC
and not an affine maximizer.

2.2 Bayesian Incentive Compatability

This section is based on Müller, Perea and Wolf (2005). They have been
kind enough to let me plagiarize at will.

Take agent i having true type ti and reporting ri while the others have
true types t−i and report r−i. The value that agent i assigns to the resulting
allocation is denoted by vi

(
g

(
ri, r−i

)
| ti, t−i

)
. Agents’ types are indepen-

dently distributed. Let πi denote the density on T . The joint density π−i

on t−i is then given by

π−i
(
t−i

)
=

∏
j∈N
j 6=i

π
(
tj

)
.

Assume that agent i believes all other agents to report truthfully. If
agent i has true type ti, then his expected utility for making a report ri is
given by

U i(ri | ti) =
∫

T n−1

(
vi

(
g

(
ri, t−i

)
| ti, t−i

)
− Pi

(
ri, t−i

))
π−i

(
t−i

)
dt−i

= E−i

[
vi

(
g

(
ri, t−i

)
| ti, t−i

)
− Pi

(
ri, t−i

)]
. (2.23)

2.2. BAYESIAN INCENTIVE COMPATABILITY 33

We assume E−i

[
vi

(
g

(
ri, t−i

)
| ti, t−i

)]
to be finite ∀ri, ti ∈ T .

An allocation rule g is Bayes-Nash incentive compatible (BNIC) if
there exists a payment rule P such that ∀i ∈ N and ∀ri, r̃i ∈ T i:

E−i

[
vi

(
g

(
ri, t−i

)
| ri, t−i

)
− Pi

(
ri, t−i

)]
≥ E−i

[
vi

(
g

(
r̃i, t−i

)
| ri, t−i

)
− Pi

(
r̃i, t−i

)]
.

(2.24)
Symmetrically, we have also

E−i

[
vi

(
g

(
r̃i, t−i

)
| r̃i, t−i

)
− Pi

(
r̃i, t−i

)]
≥ E−i

[
vi

(
g

(
ri, t−i

)
| r̃i, t−i

)
− Pi

(
ri, t−i

)]
.

(2.25)
By adding (2.24) and (2.25) we get the expected utility version of the 2-cycle
condition. An allocation rule g satisfies the 2-cycle condition if ∀i ∈ N and
∀ri, r̃i ∈ T i:

E−i

[
vi

(
g

(
ri, t−i

)
| ri, t−i

)
− vi

(
g

(
r̃i, t−i

)
| ri, t−i

)]
≥ E−i

[
vi

(
g

(
ri, t−i

)
| r̃i, t−i

)
− vi

(
g

(
r̃i, t−i

)
| r̃i, t−i

)]
.

Obviously, the 2-cycle condition is necessary for BNIC.
As before the constraints in (2.24) have a natural network interpretation.

For each agent i we build a complete directed graph T i
g. A node is associated

with each type and a directed arc is inserted between each ordered pair of
nodes. For agent i the length of an arc directed from ri to r̃i is denoted
li(ri, r̃i) and is defined as the cost of manipulation:

li
(
ri, r̃i

)
= E−i

[
vi

(
g

(
ri, t−i

)
| ri, t−i

)
− vi

(
g

(
r̃i, t−i

)
| ri, t−i

)]
. (2.26)

Given our previous assumptions, the arc length is finite. For technical rea-
sons we allow for loops. However, note that an arc directed from ri to ri

has length li(ri, ri) = 0.
The following is now straightforward.

Theorem 2.2.1 An allocation rule g is BNIC if and only if there is no
finite, negative length cycle in T i

g, ∀i ∈ N .

The costs of manipulation are decomposition monotone if ∀ri, r̄i ∈ T i

and ∀ri ∈ T i s.t. ri = (1− α)ri + αr̄i, α ∈ (0, 1) we have

li
(
ri, r̄i

)
≥ li

(
ri, ri

)
+ li

(
ri, r̄i

)
.

If decomposition monotonicity holds then the arc between those nodes is at
least as long as any path connecting the same two nodes via nodes lying
on the line segment between them. Figure 3.1 gives an illustrative example.

34 CHAPTER 2. INCENTIVE COMPATABILITY

Decomposition monotonicity implies that the arc from ri to r̄i is at least as
long as the path A =

(
ri, ri

∗∗, r̄
i
)

and that A is at least as long as the path
Ã =

(
ri, ri

∗, r
i
∗∗, r

i
∗∗∗, r̄

i
)
.

��
��
ri -��

��
ri
∗ -��

��
ri
∗∗ -��

��
ri
∗∗∗ -��

��
r̄i

�
�

�
�

�
�

�
�@

@
@

@
@

@
@

@R �
�

�
�

�
�

�
�@

@
@

@
@

@
@

@R
?

Figure 3.1

We now assume that T is convex for each agent i. Furthermore, we now
assume that an agent’s valuation function is linear in his own true type. So
if agent i has true type ti and reports ri while the others have true types
t−i and report r−i, his valuation for the resulting allocation is

vi
(
g

(
ri, r−i

)
| ti, t−i

)
= αi

(
g

(
ri, r−i

)
| t−i

)
+ βi

(
g

(
ri, r−i

)
| t−i

)
ti.
(2.27)

Note that αi : Γ × Tn−1 7→ R and βi : Γ × Tn−1 7→ Rk, i.e. αi assigns
to every

(
γ, t−i

)
∈ Γ × Tn−1 a value in R, whereas βi assigns to every(

γ, t−i
)
∈ Γ × Tn−1 a vector in Rk. Similarly, assuming he believes all

other agents to report truthfully, agent i’s expected valuation for reporting
ri while having true type ti is

E−i

[
vi

(
g

(
ri, t−i

)
| ti, t−i

)]
= E−i

[
αi

(
g

(
ri, t−i

)
| t−i

)]
+E−i

[
βi

(
g

(
ri, t−i

)
| t−i

)]
ti.

(2.28)
Using (2.28), the 2-cycle condition becomes

E−i

[
βi

(
g

(
ri, t−i

)
| t−i

)
− βi

(
g

(
r̃i, t−i

)
| t−i

)] (
ri − r̃i

)
≥ 0 ∀i ∈ N,∀ri, r̃i ∈ T.

(2.29)
In this restricted setting the 2-cycle condition implies that the costs of

manipulation are decomposition monotone:

2.2. BAYESIAN INCENTIVE COMPATABILITY 35

Lemma 2.2.2 Suppose that every agent i has a valuation function which is
linear in his true type: If g satisfies the 2-cycle condition then the costs of
manipulation are decomposition monotone.

Proof: Take some agent i and let ri, r̄i ∈ T . Let ri ∈ T i such that
ri = (1− α)ri + αr̄i for some α ∈ (0, 1). The 2-cycle inequality implies
that

E−i

[
βi

(
g

(
ri, t−i

)
| t−i

)
− βi

(
g

(
r̄i, t−i

)
| t−i

)] (
ri − r̄i

)
≥ 0.

Note that ri−ri is proportional to ri− r̄i, specifically ri−ri = α
1−α

(
ri − r̄i

)
.

Since α ∈ (0, 1), the above inequality implies that

E−i

[
βi

(
g

(
ri, t−i

)
| t−i

)
− βi

(
g

(
r̄i, t−i

)
| t−i

)] (
ri − ri

)
≥ 0.

Adding E−i

[
βi

(
g

(
ri, t−i

)
| t−i

)
− βi

(
g

(
ri, t−i

)
| t−i

)]
ri to both sides of

the latter inequality and rearranging terms yields

E−i

[
βi

(
g

(
ri, t−i

)
| t−i

)
− βi

(
g

(
r̄i, t−i

)
| t−i

)]
ri

+E−i

[
βi

(
g

(
ri, t−i

)
| t−i

)
− βi

(
g

(
ri, t−i

)
| t−i

)]
ri

≥ E−i

[
βi

(
g

(
ri, t−i

)
| t−i

)
− βi

(
g

(
r̄i, t−i

)
| t−i

)]
ri

+E−i

[
βi

(
g

(
ri, t−i

)
| t−i

)
− βi

(
g

(
ri, t−i

)
| t−i

)]
ri.

The first and the last term on the left-hand side of the inequality cancel.
Using (2.26), the above can be written as

li
(
ri, r̄i

)
≥ li

(
ri, ri

)
+ li

(
ri, r̄i

)
,

so the costs of manipulation are decomposition monotone.

Even when the type space is convex the 2-cycle condition is not sufficient
to characterize BNIC. We give a counterexample. It is constructed based
on the following insight: Suppose that the allocation function g and the
mapping βi are such that we can write

E−i

[
βi

(
g

(
ri, t−i

)
| t−i

)]
= riBi,

where Bi is some agent specific k × k matrix. The two cycle condition
requires (

ri − r̃i
)
Bi

(
ri − r̃i

)′ ≥ 0 ∀ri, r̃i ∈ T,

where ′ denotes “transposed”. Note that

Bi =
1
2

(
Bi +B′

i

)
+

1
2

(
Bi −B′

i

)
,

36 CHAPTER 2. INCENTIVE COMPATABILITY

that is, Bi can be decomposed into a symmetric part 1
2 (Bi +B′

i) and an
anti-symmetric part 1

2 (Bi −B′
i). The two cycle condition is satisfied if the

symmetric part of Bi is positive semi-definite. However, there are no finite,
negative length cycles in T i

g (and thus g is BNIC) if and only if Bi is sym-
metric and positive semi-definite (both results follow from Rockafellar, 1970,
p.240).

Example 3 For simplicity assume a single agent. Furthermore, take the
mapping βi in (2.27) to be linear and the mapping αi to be equal to zero. The
agent’s type space is the convex hull of the simplex in R3. Let x = (1, 0, 0),
y = (0, 1, 0) and z = (0, 0, 1). There are three outcomes, denoted a, b and c.
If the agent is of type x, his valuations for these outcomes are given by the
first column of the following matrix

V =

 2 0 3
3 2 0
0 3 2

 .

The first element is his valuation for a, the second one for b and the third
one for c. Similarly, if the agent is of type y or z, his valuations for the
elementary outcomes are given by the second and the third column of V .
The allocation rule g is a linear mapping associating each type report with
a probability distribution over the three elementary outcomes. The outcome
space Γ is the set of all possible probability distributions on {a, b, c}. Generic
element γ = (γa, γb, γc) indicates that a is achieved with probability γa, b with
probability γb and c with probability γc.

The allocation rule works as follows: if the agent reports x as his type
then g awards him with the second-best outcome according to this type, that
is g(x) = (1, 0, 0). Similarly, g(y) = (0, 1, 0) and g(z) = (0, 0, 1). In general
we have g(r) = rI, where I denotes the 3× 3 identity matrix.

Using the above, the agent’s valuation function becomes v(g(r) | t) =
rV t′. As can be easily checked (by verifying that the symmetric part 1

2(V +
V ′) of V is positive definite), the 2-cycle inequality is satisfied, that is,
(r − r̃)V (r − r̃)′ ≥ 0, ∀r, r̃ ∈ T . Nevertheless, the 3-cycle C = (x, y, z, x)
has length `(x, y)+ `(y, z)+ `(z, x) = −3. The existence of a negative length
cycle implies that g is not BNIC (see Theorem 2.2.1).

We show that that 2-cycle condition along with an integrability condition
is sufficient to characterize BNIC. A special case of this result was first
proved in Jehiel and Moldovanu (2001).

2.2. BAYESIAN INCENTIVE COMPATABILITY 37

Definition 2.2.3 (Path Independence) Let ψ: T i 7→ Rk be a vector
field. ψ is called path independent if for any two ri, r̄i ∈ T i the path integral
of ψ from ri to r̄i ∫ r̄i

ri,S
ψ

is independent of the path of integration S.

Note that E−i

[
βi

(
g

(
ri, t−i

)
| t−i

)]
is a vector field T 7→ Rk.

Theorem 2.2.4 Suppose that every agent i has a convex type space and a
valuation function which is linear in his true type. Then the following state-
ments are equivalent:
1) g is BNIC.
2) g satisfies the 2-cycle condition and for every agent i, E−i

[
βi

(
g

(
ri, t−i

)
| t−i

)]
is path independent.

Proof: (1)⇒(2): Assume that g is BNIC. Clearly the 2-cycle condition
holds. Furthermore, from Theorem 2.2.1 it follows that for every agent i the
graph T i

g has no finite, negative length cycles. Let C =
(
ri
1, . . . , r

i
m, r

i
m+1 = ri

1

)
denote a finite cycle in T i

g. Then,

m∑
j=1

li
(
ri
j , r

i
j+1

)
≥ 0,

which can be rewritten using (2.26) and (2.28) as

m∑
j=1

E−i

[
βi

(
g

(
ri
j , t

−i
)
| t−i

)
− βi

(
g

(
ri
j+1, t

−i
)
| t−i

)]
ri
j ≥ 0.

This implies that
m∑

j=1

E−i

[
βi

(
g

(
ri
j+1, t

−i
)
| t−i

)] (
ri
j+1 − ri

j

)
≥ 0.

Thus, E−i

[
βi

(
g

(
ri, t−i

)
| t−i

)]
is cyclically monotone.6 From Rockafellar

(1970), Theorem 24.8, it follows that there exists a convex function ϕ: T i 7→
R such that E−i

[
βi

(
g

(
ri, t−i

)
| t−i

)]
is a selection from its subdifferential

mapping, that is,

E−i

[
βi

(
g

(
ri, t−i

)
| t−i

)]
∈ ∂ϕ

(
ri

)
,∀ri ∈ T.

6The notion of cyclical monotonicity was introduced by Rockafellar (1966).

38 CHAPTER 2. INCENTIVE COMPATABILITY

This implies (see Krishna and Maenner, 2001, Theorem 1) that for any
smooth path S in T joining ri and r̄i the following holds:∫ r̄i

ri,S
E−i

[
βi

(
g

(
ri, t−i

)
| t−i

)]
= ϕ

(
r̄i

)
− ϕ

(
ri

)
,

so E−i

[
βi

(
g

(
ri, t−i

)
| t−i

)]
is path independent.

(2)⇒(1): Let us assume that g satisfies the 2-cycle condition and that
for every agent i, E−i

[
βi

(
g

(
ri, t−i

)
| t−i

)]
is path independent. Take any

arc from T i
g and denote its starting node ri and its ending node r̄i. Let L de-

note the line segment between ri and r̄i, i.e. L =
{
ri ∈ T i | ri = (1− α)ri + αr̄i, α ∈ [0, 1]

}
.

Choose any ri ∈ L and replace the original arc with the path A =
(
ri, ri, r̄i

)
which has length li

(
ri, ri

)
+ li

(
ri, r̄i

)
. By Lemma 2.2.2 we have

li
(
ri, r̄i

)
≥ li

(
ri, ri

)
+ li

(
ri, r̄i

)
, (2.30)

that is, the original arc is at least as long as the path A. By repeated
substitution we can generate a new path Ã =

(
ri
1 = ri, . . . , ri

m, r
i
m+1 = r̄i

)
where ri

j ∈ L, ∀j ∈ {1, . . . ,m+1}. Then (2.30) implies that the original arc
is at least as long as Ã, that is,

li
(
ri, r̄i

)
≥

m∑
j=1

li
(
ri
j , r

i
j+1

)
,

(see also the example given in Figure 3.2Note that

m∑
j=1

li
(
ri
j , r

i
j+1

)
=

m∑
j=1

E−i

[
vi

(
g

(
ri
j , t

−i
)
| ri

j , t
−i

)
− vi

(
g

(
ri
j+1, t

−i
)
| ri

j , t
−i

)]
= E−i

[
vi

(
g

(
ri
1, t

−i
)
| ri

1, t
−i

)
− vi

(
g

(
ri
m+1, t

−i
)
| ri

m, t
−i

)]
+

m−1∑
j=1

E−i

[
vi

(
g

(
ri
j+1, t

−i
)
| ri

j+1, t
−i

)
− vi

(
g

(
ri
j+1, t

−i
)
| ri

j , t
−i

)]
= E−i

[
vi

(
g

(
ri
1, t

−i
)
| ri

1, t
−i

)
− vi

(
g

(
ri
m+1, t

−i
)
| ri

m+1, t
−i

)]
+

m∑
j=1

E−i

[
vi

(
g

(
ri
j+1, t

−i
)
| ri

j+1, t
−i

)
− vi

(
g

(
ri
j+1, t

−i
)
| ri

j , t
−i

)]
= E−i

[
vi

(
g

(
ri, t−i

)
| ri, t−i

)
− vi

(
g

(
r̄i, t−i

)
| r̄i, t−i

)]
+

m∑
j=1

E−i

[
βi

(
g

(
ri
j+1, t

−i
)
| t−i

)] (
ri
j+1 − ri

j

)
.

2.2. BAYESIAN INCENTIVE COMPATABILITY 39

The first equality follows from the definition of the arc length given in (2.26).
The second equality follows from rearranging the terms of the summation.
The third equality is derived by adding and subtracting E−i

[
vi

(
g

(
ri
m+1, t

−i
)
| ri

m+1, t
−i

)]
.

To derive the last equality we use (2.28) and that ri
1 = ri, ri

m+1 = r̄i. By
repeated substitution we can generate paths with more and more arcs. In
the limit the distance between neighboring nodes goes to zero and

m∑
j=1

E−i

[
βi

(
g

(
ri
j+1, t

−i
)
| t−i

)] (
ri
j+1 − ri

j

)
→

∫ r̄i

ri,L
E−i

[
βi

(
g

(
ri, t−i

)
| t−i

)]
.

Thus, the length of Ã goes to

E−i

[
vi

(
g

(
ri, t−i

)
| ri, t−i

)
− vi

(
g

(
r̄i, t−i

)
| r̄i, t−i

)]
+

∫ r̄i

ri,L
E−i

[
βi

(
g

(
ri, t−i

)
| t−i

)]
,

(2.31)
as m→∞. Now, let C =

(
ri
1, . . . , r

i
m, r

i
m+1 = ri

1

)
denote a finite cycle in T i

g.
Furthermore, let Lj denote the line segment between ri

j and ri
j+1. The result

in (2.31) and the path independence of E−i

[
βi

(
g

(
ri, t−i

)
| t−i

)]
imply for

the length of C that

m∑
j=1

li
(
ri
j , r

i
j+1

)
≥

m∑
j=1

E−i

[
vi

(
g

(
ri
j , t

−i
)
| ri

j , t
−i

)
− vi

(
g

(
ri
j+1, t

−i
)
| ri

j+1, t
−i

)]
+

m∑
j=1

∫ ri
j+1

ri
j ,Lj

E−i

[
βi

(
g

(
ri, t−i

)
| t−i

)]
= 0,

that is, C has non-negative length. In order to see the equality relation,
note the following: the terms of the first summation cancel each other out.
Furthermore, the second summation describes an integral over a closed path
in T i which, due to path independence, equals zero.

The 2-cycle condition and path independence of E−i

[
βi

(
g

(
ri, t−i

)
| t−i

)]
do not imply one another. Example 3 and Theorem 2.2.4 shows that the
2-cycle condition does not imply path independence. It can also be derived
directly from Example 3. If we consider for example path A consisting of
the line segment between x and y and path Ã consisting of the line segment

40 CHAPTER 2. INCENTIVE COMPATABILITY

between x and z and the line segment between z and y, we find that∫ y

x,A
β(g(r)) = −3

2
and

∫ y

x,Ã
β(g(r)) = 3.

So the path integral of β(g(r)) from x to y is not independent of the path
of integration. That weak monotonicity of g does not imply path indepen-
dence of E−i

[
βi

(
g

(
ri, t−i

)
| t−i

)]
depends upon the assumption of multi-

dimensional types If we would consider one-dimensional type spaces instead,
then weak monotonicity would indeed imply path independence.

That path independence does not imply the 2-cycle condition is illus-
trated by the following example.

Example 4 Let us consider the allocation of a single, indivisible object. For
simplicity we assume that there exists only a single agent to possibly allocate
to. He has a type t ∈ T = [0, 1] which reflects the value of the object for him.
Given a report r of the agent, the allocation rule g: T 7→ [0, 1] assigns to him
a probability for getting the object. The agent’s valuation for the resulting
allocation is v(g(r) | t) = g(r)t. Specifically, we set g(r) = −(2r − 1)2 + 1.
Clearly, g is path independent but fails the 2-cycle condition.

If g is BNIC, the corresponding payments can be constructed by using
shortest path lengths (as described in the proof of Theorem 2.2.1). For each
i ∈ N , let us pick some ai as the source node in T i

g. Thus, if agent i reports
ti, he has to make a payment

Pi

(
ti

)
= inf

m∑
j=1

li
(
ri
j , r

i
j+1

)
, (2.32)

where the infimum is taken over all finite paths from ti to ai. Take any finite
path A =

(
ri
1 = ti, . . . , ri

m+1 = ai
)

in T i
g. Let Lj denote the line segment

between ri
j and ri

j+1, whereas Lt denotes the line segment between the source
and ti. Following the repeated substitution approach presented in the second
part of the proof of Theorem 2.2.4, we can construct paths that are shorter
(or as long) by letting them visit the same nodes as A and also additional
nodes along the line segments in between. In the limit, as the number of
nodes goes to infinity, the distance between neighboring nodes goes to zero
and the length of the paths goes to

m∑
j=1

(
E−i

[
vi

(
g

(
ri
j , t

−i
)
| ri

j , t
−i

)
− vi

(
gi

(
ri
j+1, t

−i
)
| ri

j+1, t
−i

)]
+

∫ ri
j+1

ri
j ,Lj

E−i

[
βi

(
g

(
ri, t−i

)
| t−i

)])
. (2.33)

2.3. REVENUE EQUIVALENCE 41

Using path independence in (2.33) we have that7

m∑
j=1

∫ ri
j+1

ri
j ,Lj

E−i

[
βi

(
g

(
ri, t−i

)
| t−i

)]
=

∫ ai

ti,Lt

E−i

[
βi

(
g

(
ri, t−i

)
| t−i

)]
.

Applying the above to (2.32) yields

Pi

(
ti

)
= E−i

[
vi

(
g

(
ti, t−i

)
| ti, t−i

)
− vi

(
gi

(
ai, t−i

)
| ai, t−i

)]
−

∫ ti

ai,Lt

E−i

[
βi

(
g

(
ri, t−i

)
| t−i

)]
, (2.34)

implying that the expected utility (see (2.23) for definition) for truthfully
reporting ti is8

U i
(
ti | ti

)
= U i

(
ai | ai

)
+

∫ ti

ai,Lt

E−i

[
βi

(
g

(
ri, t−i

)
| t−i

)]
. (2.35)

2.3 Revenue Equivalence

Suppose T is a type space and g an allocation rule that is DSIC. Revenue
equivalence is said to hold for g on T if for any pair of payment schemes P
and P̃ such that (g, P) and (g, P̃) are DSIC mechanisms and for each agent
i and report t−i of the other agents, there exists hi(t−i) ∈ R such that
P̃i(ti, t−i) = Pi(ti, t−i) + hi(t−i). In other words any two payment rules
differ by a constant.

Now let us revert again to the more compact notation where the depen-
dence on t−i is supressed. If (g, P) is DSIC, we have that for any pair of
types t, s ∈ T such that g(t) = g(s) = γ for some γ ∈ Γ. Therefore, by the
Taxation principle, payments must be equal, i.e. P (t) = P (s). In particular,
payments can be indexed by allocation rather than type. That is for all t
such that g(t) = α, P (t) = Pα. In this notation revenue equivalence can be
stated this way. Choose a α ∈ Γ and fix the value of Pα. Then the values of
Pγ for all γ ∈ Γ \ α are uniquely determined.

The bulk of prior work on revenue equivalence has been devoted to iden-
tifying sufficient conditions on the type space for all allocation rules from
a certain class to satisfy revenue equivalence. The papers by Green and

7The line segment Lt for the path of integration is picked for convenience. Due to path
independence, it can be replaced with any other path connecting the source and ti.

8In order to derive (2.35) one can use that by construction Pi

`
ai

´
= 0 and thus add

this term to the right-hand side of (2.34).

42 CHAPTER 2. INCENTIVE COMPATABILITY

Laffont (1977) and Holmstrom (1979) restrict attention to allocation rules
called ‘utilitarian maximizers’, that is, allocation rules that maximize the
sum of the valuations of all agents. They show that when the type space is
smoothly path connected then utilitarian maximizers satisfy revenue equiv-
alence.

Myerson (1981) shows that revenue equivalence holds for every imple-
mentable rule in a setting where the type space is an interval of the real
line, the outcome space is a lattice and an agents valuation for an outcome
is continuous and supermodular in her type.

Krishna and Maenner (2001) derive revenue equivalence under two dif-
ferent hypotheses. In the first, agents’ type spaces must be convex and the
valuation function of an agent is a convex function of the type of the agent.
Under these conditions they show that every implementable rule satisfies
revenue equivalence. The second hypothesis requires the allocation rule to
satisfy certain differentiability and continuity conditions and the outcome
space to be a subset of the Euclidean space. Furthermore, the valuation
functions must be regular Lipschitzian and monotonically increasing in all
arguments.

Milgrom and Segal (2002) show that revenue equivalence is a consequence
of a particular envelope theorem in a setting where the type spaces are
one-dimensional and the outcome space is arbitrary. An agent’s valuation
function is assumed differentiable and absolutely continuous in the type of
the agent and the partial derivative of the valuation function with respect
to the type must satisfy a certain integrability condition. Their result can
be applied to multi-dimensional type spaces as well. In this case the type
spaces must be smoothly connected and the valuation functions must be
differentiable with bounded gradient.

There are two papers that identify necessary as well as sufficient condi-
tions for revenue equivalence to hold. If the outcome space is finite, Suijs
(1996) characterizes type spaces and valuation functions for which utilitarian
maximizers satisfy revenue equivalence. Chung and Olszewski (2006) char-
acterize type spaces and valuation functions for which every implementable
allocation rule satisfies revenue equivalence, again under the assumption of
a finite outcome space. From their characterization, they derive sufficient
conditions on the type spaces and valuation functions that generalize known
results when the outcome space is countable or a probability distribution
over a finite set of outcomes.

Here we describe conditions on both the allocation rule g and the type

2.3. REVENUE EQUIVALENCE 43

space T that characterize when revenue equivalence holds.9 The character-
ization presented here differs from prior work in that a joint condition on
the type spaces, the valuation functions and the implementable allocation
rule is given that characterizes revenue equivalence. This characterization
differs from the one in Chung and Olszewski (2006) in three ways. First, it
holds for general outcome spaces. Second, it implies revenue equivalence in
cases where their result does not apply. In fact, given agents’ type spaces
and valuation functions, several allocation rules may be implementable in
dominant strategies, some of which satisfy revenue equivalence and some do
not. In this case, the conditions on the type space and valuation functions
from their paper obviously cannot hold. However, the present character-
ization can be used to determine which of the allocation rules do satisfy
revenue equivalence. Third, the characterization in Chung and Olszewski
(2006) is a corollary of the present one in the sense that their necessary and
sufficient condition is naturally related to the graph theoretic interpretation
of revenue equivalence.

Theorem 2.3.1 Let T ⊆ RΓ and g be DSIC. For every pair α, β ∈ Γ denote
by π(α, β) the shortest path from α to β in Γg and by `(π(α, β)) its length.
Revenue equivalence holds for g on T iff, `(π(α, β)) + `(π(β, α)) = 0 for all
α, β ∈ Γ.

Proof: Since g is DSIC, the network Γg has no negative length cycles.
Therefore, shortest path lengths in Γg are well defined. Choose a θ ∈ Γ and
set P θ

γ equal to the length of the shortest path from θ to γ ∈ Γ. Notice that
(g, P θ) is DSIC for all choices of θ ∈ Γ. Suppose revenue equivalence holds.
Then for each µ, ν ∈ Γ, there is a constant c such that Pµ

γ − P ν
γ = c for all

γ ∈ Γ. In particular, c = Pµ
µ − P ν

µ = −P ν
µ . Substituting µ = α and ν = θ

we deduce that
Pα

β = P θ
β − P θ

α (2.36)

for some θ 6= α, β. Similarly,

P β
α = P θ

α − P θ
β . (2.37)

Adding equation (2.36) to (2.37) we obtain:

`(π(α, β)) + `(π(β, α)) = Pα
β + P β

α = 0.

Now suppose that `(π(α, β)) + `(π(β, α)) = 0 for all α, β ∈ Γ. Consider
the shortest path tree, T , rooted at node θ. This is the union of shortest

9It is based on Heydenreich, Müller, Uetz and Vohra (2007).

44 CHAPTER 2. INCENTIVE COMPATABILITY

paths from θ to all γ ∈ Γ in Γg. Pick any node α such that the arc (θ, α) ∈ T .
Recall that Pα−Pθ ≤ `(θ, α). Similarly Pθ −Pα ≤ π(α, θ). Since Pθ = 0 we
have that −`(π(α, θ)) ≤ Pα ≤ `(θ, α). Since `(π(α, β)) + `(π(β, α)) = 0 it
follows that `(θ, α)+ `(π(α, θ)) = 0. Therefore −`(π(α, θ)) = `(θ, α). Hence
the value of Pα can only be `(θ, α). Now repeat the argument for any β such
that the arc (α, β) ∈ T and so on. Thus, there is only one payment rule P
such that Pθ = 0 and (g, P) is DSIC .

Theorem 2.3.1 imposes conditions on the pair (g, T) to conclude that
revenue equivalence holds for g. Chung and Olszewski (2006) on the other
hand characterize the type space for which every DSIC allocation rule sat-
isfies revenue equivalence. It is an easy consequence of Theorem 2.3.1.

So that a comparison can be made we describe the the condition on Type
spaces introduced in Chung and Olszewski (2006) . Let B1, B2 be disjoint
subsets of Γ and r : B1 ∪B2 → R. For every ε > 0, let

V1(ε) = ∪b∈B1{t ∈ T : ∀a∈B2tb − ta > r(b)− r(a) + ε}

and
V2(ε) = ∪a∈B2{t ∈ T : ∀b∈B1 : tb − ta < r(b)− r(a)− ε}.

Finally, Vi = ∪ε>0Vi(ε). Observe that V1 ∩ V2 = ∅. Call a set T splittable
if there are B1, B2 and r such that T is a subset of V1 ∪V2 where T ∩Vi 6= ∅
for i = 1, 2.

Theorem 2.3.2 Let g be DSIC and Γ finite. Then, the following two state-
ments are equivalent.

1. g satisfies revenue equivalence.

2. T is not splittable.

In Theorem 2.3.1 no assumption on the cardinality of Γ is made, whereas in
Theorem 2.3.2, Γ is assumed finite. When Γ is not finite but of cardinality
less than the continuum it is shown in Chung and Olszewski (2006) that
item 2 of Theorem 2.3.2 implies revenue equivalence.

Now we show how Theorem 2.3.1 can be used to derive a sufficiency
result. First a definition.

Call Γg two-cycle connected if for every partition Γ1 ∪ Γ2 = Γ, Γ1 ∩
Γ2 = ∅, Γ1,Γ2 6= ∅, there are α1 ∈ Γ1 and α2 ∈ Γ2 with `(α1, α2) +
`(α2, α1) = 0.

2.3. REVENUE EQUIVALENCE 45

Theorem 2.3.3 Let g be DSIC. If Γg is two-cycle connected then g satisfies
revenue equivalence.

Proof: First, we show that if Γg is two-cycle connected, then any two nodes
α, β ∈ Γ are connected in Γg by a finite path with nodes α = α0, α1, . . . , αk =
β such that `(αi, αi+1)+`(αi+1, αi) = 0 for i = 0, . . . , k−1. Call such a path
a zero-path. Suppose not. Then, there is a node α ∈ Γ that is not connected
to all nodes in Γ by a zero-path with the described property. Define Γ1 to
be the set containing all nodes β that can be reached from α by a zero-path.
Let Γ2 = Γ \ Γ1. By assumption Γ2 6= ∅. Since Γg is two-cycle connected,
there are α1 ∈ Γ1 and α2 ∈ V2 with `(α,α2) + `(α2, α1) = 0 contradicting
the fact that α2 ∈ Γ2.

Now, for any α, β ∈ Γ, `(π(α, β)) is bounded above by the length of a
zero-path from α to β. Hence `(π(α, β)) ≤ 0. Similarly, `(π(β, α)) ≤ 0.
Therefore `(π(α, β)) + `(π(β, α)) ≤ 0. SInce g is DSIC, all cycles in Γg have
non-negative length. Therefore `(π(α, β)) + `(π(β, α)) = 0. The theorem
now follows from Theorem 2.3.1.

Theorem 2.3.4 Let Γ be finite and T a (topologically) connected subset of
Rk. Each agent’s valuation function vi(a, ·) is a continuous function in the
type of the agent for every γ ∈ Γ. Then, every onto, DSIC allocation rule
g : Tn → Γ satisfies revenue equivalence.

Proof: It is enough to show that Γg is two-cycle connected. We use the
following fact from topology:
Let T ⊆ Rk be a connected set. Then any partition of T into subsets
T1, T2 6= ∅, T1 ∪ T2 = T , T1 ∩ T2 = ∅ satisfies T 1 ∩ T 2 6= ∅, where T i is the
closure of Ti in T .
Consider a single agent with type space T and valuation function v. Regard
g as a function on T as before. Let Γ1 ∪ Γ2 = Γ, Γ1 ∩ Γ2 = ∅, Γ1,Γ2 6= ∅ be
a partition of Γ. Then, T = g−1(Γ1) ∪ g−1(Γ2), g−1(Γ1) ∩ g−1(Γ2) = ∅ is a
partition of T and g−1(Γ1), f−1(Γ2) 6= ∅, since g is onto. According to the
fact above, there exists t ∈ g−1(Γ1) ∩ g−1(Γ2). Hence, there are sequences
(tn1) ⊆ g−1(Γ1) and (tn2) ⊆ g−1(Γ2) with limn→∞ tn1 = limn→∞ tn2 = t. As Γ
is finite, there must be α1 ∈ Γ1 and α2 ∈ A2 and subsequences (tnk

1) ⊆ (tn1)
and (tnm

2) ⊆ (tn2) with g(tnk
1) = α1 for all k and g(tnm

2) = α2 for all m. Since
v is continuous in the type,

0 = v(α2, t)− v(α1, t)− v(α2, t) + v(α1, t)
= lim

n→∞
(v(α2, t

nm
2)− v(α1, t

nm
2) + v(α1, t

nk
1)− v(α2, t

nk
1)).

46 CHAPTER 2. INCENTIVE COMPATABILITY

According to the definition of the arc length in Γg, the latter can be bounded
from below as follows.

lim
n→∞

(v(α2, t
nm
2)−v(α1, t

nm
2)+v(α1, t

nk
1)−v(α2, t

nk
1)) ≥ `(α1, α2)+`(α2, α1) ≥ 0.

The last inequality is true, since Γg has no negative cycles. Hence, all
inequalities are equalities and `(α1, α2) + `(α2, α1) = 0. Consequently, Γg is
two-cycle connected.

Notice that we cannot completely relax the continuity assumption, as
the following example demonstrates.

Example 5 Let there be one agent with type t ∈ [0, 1] and two outcomes
A = {a, b}. Let the agent’s valuation be v(a, t) = 1, if t < 1/2 and v(a, t) =
0, if t ≥ 1/2. Let v(b, t) = 1/2 for all t. That is, v(a, ·) is discontinuous at
t = 1/2. Let the allocation rule be the efficient one, i.e., f(t) = a for t < 1/2
and f(t) = b otherwise. Then dominant strategy incentive compatibility is
equivalent to 1 − πa ≥ 1/2 − πb and 1/2 − πb ≥ −πa, which is satisfied
whenever |πa − πb| ≤ 1/2. For instance, πa = πb = 0 or π′a = 1/2, π′b = 0
are two payment schemes that make f truthful, but π and π′ do not differ
by a constant.

Chapter 3

Optimality

Here we focus on finding a BNIC mechanism that maximizes the expected
revenue to the designer. Let F be the set of feasible allocations of the
resources amongst the agents and the auctioneer. Let T be a finite set of
an agent’s types (possibly multi-dimensional). The type of agent i will be
denoted ti. A collection of types one for each (of n agents) will be called a
profile. Let Tn be the set of all profiles. A profile in which attention is to
be focused on agent i will sometimes be written as (ti, t−i) If α ∈ F then
agent i assigns monetary value u(α|ti) to the allocation α ∈ F .

Assume, for convenience, that types are selected independently from T
according to a common distribution. Denote by ft the probability that an
agent i has type t ∈ T , i.e. ti = t. Denote the probability of a profile
t−i ∈ Tn−1 being realized by π(t−i).

Let Pti be the expected payment that an agent who announces type ti

must make. An allocation rule assigns to each member of Tn an element of
F .1 If α is an allocation rule, write αi[ti, t−i] to denote the the allocation
to an agent i with type ti ∈ T . The expected utility of an agent i with
type ti under this rule will be (under the assumption that agents announce
truthfully)

Et−i [u(αi[ti, t−i]|ti)] =
∑
t−i

u(αi[ti, t−i]|ti)π(t−i).

The expected utility of agent with type ti announcing t̂i (6= ti) under
allocation rule α is

1Strictly speaking one should allow an allocation rule to be randomized. We omit this
possibility.

47

48 CHAPTER 3. OPTIMALITY

Et−i [u(αi[t̂i, t−i]|ti)] =
∑
t−i

u(αi[t̂i, t−i]|ti)π(t−i).

To ensure that an agent will report truthfully we impose BNIC for each
agent i with type ti:

Et−i [u(αi[ti, t−i]|ti)]− Pti ≥ Et−i [u(αi[t̂i, t−i]|ti)]− Pt̂i
∀ti, t̂i ∈ T.

To ensure that each agent has the incentive to participate we impose the
(interim) individual rationality (IR) constraint:

Et−i [v(αi[ti, t−i]|ti)]− Pti ≥ 0 ∀ti ∈ T.

If we add a dummy type, t0 which assigns utility 0 to all allocations, and set
Pt0 = 0, we can fold the IR constraint into the BNIC constraint. So, from
now on T contains the dummy type t0.

The auctioneer’s problem is to maximize expected revenue subject to
BNIC and IR. Expected revenue (normalized for population) is

∑
ti∈T ftiPti

(we can pick an arbitrary i in an anonymous auction). Fix an allocation
rule α and let

R(α) = max
Pti

∑
ti∈T

ftiPti

s.t. Et−i [u(αi[ti, t−i]|ti)]− Pti ≥ Et−i [u(αi[t̂i, t−i]|ti)]− Pt̂i
∀ ti, t̂i ∈ T.

Call this program LPα. If LPα is infeasible set R(α) = −∞. Thus the
auctioneers problem is to find the allocation rule α that maximizes R(α).

One way to solve this optimization problem is to fix the allocation rule
α. Then we can rewrite the BNIC constraint as follows:

Pt − Pt̂ ≤ Et−i [u(αi[t, t−i]|t)]− Et−i [u(αi[t̂, t−i]|t)] ∀t 6= t̂.

If there is a feasible solution to this system of inequalities then we can find
payments that implement α in an incentive compatible way.

The inequality system has a natural network interpretation. Introduce
one node for each type (the node corresponding to the dummy type will be
the source) and to each directed edge (t̂, t), assign a length of Et−i [u(αi[t, t−i]|t)]−
Et−i [u(αi[t̂, t−i]|t)]. Then Pt is upper bounded by the length of the shortest
path from the source to vertex i. The optimal choice of Pt would be to set
it equal to the length of this shortest path. For fixed α, the optimization
problem reduces to determining the shortest path tree (union of all shortest
paths from source to all nodes) in this network. Edges on the shortest path
tree correspond to binding BNIC constraints.

3.1. AN EXAMPLE 49

If the network has a negative cycle, it follows from Rochet’s theorem
that our original problem is infeasible. Thus, there is no set of payments to
make the allocation rule α incentive compatible. To summarize, given an
allocation rule we have a way of checking whether it can be implemented in
an incentive compatible way. If it can, then the length of the shortest path
to a node/type is an upper bound on the payment that can be charged that
type while preserving incentive compatibility.

3.1 An Example

Consider the allocation of one good among two agents with types {0, 1, 2},
here 0 is the dummy type. Let f1 = f2 = 1/2 and π(1) = π(2) = 1/2 be the
probabilities. Choose as the allocation rule the following: assign the object
to the agent with highest type, in case of ties randomize the allocation ‘50-
50’. The possible allocations are: agent 1 wins, agent 2 wins, agent 1 and
2 get 1/2 of the item, seller keeps it. For the valuations we have: an agent
of type ti who wins the item values it at ti; if she tied with her competitor
and gets only a half she derives value ti/2 if finally she loses or the seller
keeps it, she gets value 0. Now to the computation of expected utility when
honest. If ti = 1 then

Et−i [u(α[1, t−i]|1)] =
∑

t−i∈{0,1,2}

u(α[1, t−i]|1)π(t−i) =
1
4
,

and is equal to 3
2 if ti = 2.

Similarly we obtain for Et−i [u(α[t, t−i]|ti)] :

ti \ tj 0 1 2
0 0 0 0
1 0 1

4
3
4

2 0 1
2

3
2

So we obtain for the optimization problem

max 1
2P2 + 1

2P2

s.t. P1 − P0 ≤ 1
4 , P0 − P1 ≤ 0, P0 − P2 ≤ 0,

P2 − P0 ≤ 3
2 , P2 − P1 ≤ 1, P1 − P2 ≤ −1

2 ,

P0 = 0.

50 CHAPTER 3. OPTIMALITY

The corresponding network is depicted in Figure 3.1. The dashed edges
form the shortest path tree. Reading off the shortest path distances to nodes
1 and 2 yields P1 = 1/4 and P2 = 5/4. So the auctioneer can realize revenue
of 3/4 with this allocation rule.

��
��
t1 ��

��
t2

��
��
t0

- - - - -
1

�

−1/2

6

6

6

6

6

1
4

?

0

�
�

�
�

�
�

�
��

3
2

�
�

�
�

�
�

�
��	

0

Figure 4.1

3.2 What is a Solution?

What exactly does it mean to solve an optimal auction problem? In our
abstract set up, the problem of finding the optimal auction can be written
as:

max
Pti ,α

∑
ti∈T

ftiPti

s.t. Et−i [u(αi[ti, t−i]|ti)]− Pti ≥ Et−i [u(αi[t̂i, t−i]|ti)]− Pt̂i
∀ ti, t̂i ∈ T.

α(t) ∈ F ∀t ∈ Tn

Call this problem (OAP). If membership in F can be described by a set of
linear inequalities, we have a linear program and its solution is the desired
optimal auction. If this is what is meant by solving an optimal auction
problem, the exercise is trivial. To formulate the problem in a non-trivial
way, consider the problem of finding the optimal auction when the designer
knows each agents type. Call this the full information problem. In this
case, the BNIC constraints can be ignored. Only the IR and feasibility con-
straints matter. Given an allocation rule α we maximize expected revenue
by charging each agent the value of what they receive, i.e.,

Et−i [u(αi[ti, t−i]|ti)] = Pti .

3.3. ONE DIMENSIONAL TYPES 51

Thus, in the full information case the problem of finding the optimal auction
reduces to solving

max
α

∑
ti∈T

ftiEt−i [u(αi[ti, t−i]|ti)]

α(t) ∈ F ∀t ∈ Tn

The full information problem involves optimizing some function of α over
F , a potentially simpler problem.

We will say that problem (OAP) is solved if it can be reduced to an
optimization problem that is of the same complexity as the full information
problem.

3.3 One Dimensional Types

We will suppose that F , the space of feasible allocation rules, is a subset of
Euclidean space. 2 The type space is 1 dimensional and since we take it to
be discrete, T = {1, 2, . . . ,m}.

If a is the allocation rule and t a profile of types denote by ai(t) the
allocation to a type i in profile t. Write Ai to be the expected allocation
that an agent with type i receives, i.e.,

Ai =
∑

t−i∈T n−1

ai[i, t−i]π(t−i).

In an abuse of notation we write v(Ai|i) to mean the value that an agent of
type i receives with a lottery over allocations with expected value Ai. The
approach taken is to identify inequalities that the Ai’s must satisfy. This
will yield a relaxation of the underlying optimization problem with the Ai’s
as decision variables. Subsequently we identify an allocation rule that will
generate the expected allocations identified in the solution to the relaxation.

BNIC implies:
v(Ai|i)− Pi ≥ v(Aj |i)− Pj .

We associate a network in the usual way with these BNIC constraints. In-
troduce a vertex i for each type i. Between every ordered pair of vertices
(j, i) a directed edge of length v(Ai|i)− v(Aj |i). The allocation rule will be
BNIC iff. this network has no negative length cycle. if this network has no

2We can generalize a little further. For example, F is a lattice, but overhead in notation
is not worthwhile.

52 CHAPTER 3. OPTIMALITY

negative length cycles we can choose the Pi’s to be the length of the path
from an arbitrarily chosen root vertex, r, to vertex i in the shortest path
tree rooted at r. If in addition we want the IR constraint to hold, we would
choose the root, r to be the vertex corresponding to the dummy type t0.

Theorem 3.3.1 Suppose that v satisfies increasing differences. An alloca-
tion rule a is BNIC iff it is monotonic. That is if r ≤ s then Ar ≤ As.

Proof: Same as Theorem 2.1.3.
If i ≥ j we refer to

v(Ai|i)− Pi ≥ v(Aj |i)− Pj

as a downward BNIC constraint. If i < j it is called an upward BNIC
constraint. Next we show that ‘adjacent’ BNIC constraints suffice.

Theorem 3.3.2 Suppose that v satisfies increasing differences. All BNIC
constraints are implied by the following:

v(Ai|i)− Pi ≥ v(Ai−1|i)− Pi−1 ∀i = 1, . . . ,m (BNICd
i)

v(Ai|i)− Pi ≥ v(Ai+1|i)− Pi+1 ∀i = 1, . . . ,m− 1 (BNICu
i)

Proof: This also follows from the absence of negative cycles. If the network
has no negative length cycles, then the length of the edge from i to i+2 must
be at least as large as the length of (i, i+ 1) plus the length of (i+ 1, i+ 2).

In view of the above, our network can be depicted as shown in Figure
4.2.

��
��

1 -
2(A2 −A1)

�

−(A2 −A1)��
��

2 - - - - -
����� ��

��
i -

(i+ 1)(Ai+1 −Ai)

�

−i(Ai+1 −Ai) ��
��
i+ 1 - - - --

����� ��
��

m

��
��

0

6

A1

Figure 4.2

Suppose now that A is BNIC. We know that the network of Figure 4.2
has no negative length cycles. It is easy to see that the shortest path tree

3.3. ONE DIMENSIONAL TYPES 53

rooted at dummy vertex ‘0’ must be 0 → 1 → 2 → . . .→ m. Algebraically,
we have set A0 = 0, and P0 = 0 for the dummy type and

Pi =
i∑

r=1

[v(Ar|r)− v(Ar−1|r)]. (3.1)

Notice that Pi−Pi−1 = v(Ai|i)−v(Ai−1|i) for the above expected payment
schedule, hence all downward BNIC constraints are satisfied and bind, i.e.

v(Ai|i)− Pi = v(Ai−1|i)− Pi−1 ∀i = 1, . . . ,m.

It is easy to see that the upward BNIC constraints all hold.
We now summarize our conclusions.

Theorem 3.3.3 For any monotonic allocation rule a there exists an ex-
pected payment schedule {Pi}m

i=0, such that all the adjacent BNIC constraints
are satisfied.

Proof: Set Ar = 0, and P0 = 0 for the dummy type. Then set

Pi =
i∑

r=1

[v(Ar|r)− v(Ar−1|r)].

Notice that Pi−Pi−1 = v(Ai|i)−v(Ai−1|i) for the above expected payment
schedule {Pi}m

i=0, hence all (BNICd) are satisfied and bind, i.e.

v(Ai|i)− Pi = v(Ai−1|i)− Pi−1 ∀i = 1, . . . ,m.

Hence all (BNICu) are satisfied, and thus by Theorem 3.3.2 the allocation
rule a is incentive compatible.

3.3.1 A Formulation

The problem of finding the optimal auction can be formulated as:

Z1 = max
{a}

m∑
i=0

nfiPi (OPT1)

s.t. v(Ai|i)− Pi ≥ v(Ai−1|i)− Pi−1 ∀i = 1, . . . ,m (BNICd
i)

v(Ai|i)− Pi ≥ v(Ai+1|i)− Pi+1 ∀i = 1, . . . ,m− 1 (BNICu
i)

0 ≤ A1 ≤ . . .Ai ≤ · · · ≤ Am (M)

54 CHAPTER 3. OPTIMALITY

Ai =
∑

t−i∈T n−1

ai[i, t−i]π(t−i) (A)

a(t) ∈ F ∀t ∈ Tn (C)

An upper bound on each Pi is the length of the shortest path from the
dummy node ‘0’ to vertex i in the network of figure 4.2. This is stated
below.

Lemma 3.3.4 All downward constraints (BNICd
i) bind in a solution to the

[OPT1] problem.

The essence of the previous result is that once the allocation rule is
chosen, equation (3.1) pins down the payments necessary to ensure incentive
compatibility. Our problem reduces to finding the optimal allocation rule.

Given equation (3.1), Z1 =
∑m

i=1 nfi
∑i

r=1[v(Ar|r) − v(Ar−1|r)]. Write
F (i) =

∑i
r=1 fr then F (m) = 1. Then

Z1 =
m∑

i=1

n{fiv(Ai|i) + (1− F (i))[v(Ai|i)− v(Ai|i+ 1)]}.

We interpret v(Ai|m+ 1) to be zero.
Let

µ(Ai) = v(Ai|i)−
1− F (i)

fi
[v(Ai|i+ 1)− v(Ai|i)].

The function µ is what Myerson (1981) calls the virtual valuation.
Problem [OPT1] becomes

Z1 = max
{a}

m∑
i=1

nfiµ(Ai)

s.t. 0 ≤ A1 ≤ . . .Ai ≤ · · · ≤ Am

Ai =
∑

t−i∈T n−1

ai[i, t−i]π(t−i)

a(t) ∈ F ∀t ∈ Tn

3.3. ONE DIMENSIONAL TYPES 55

3.3.2 The Myerson Case

Myerson(1981) investigates the optimal auction for the sale of a single unit
to buyers with constant marginal values and where the distribution over
types satisfies a monotone hazard rate condition. Specifically,

1. v(q|i) = iq, and

2. 1−F (i)
fi

is non-decreasing in i.

This second assumption is the monotone hazard condition. With these ad-
ditional assumptions µ(Ai) = Ai

(
i− 1−F (i)

fi

)
.

In this setup, Ai is the expected quantity (or probability) of the good
received by an agent who reports type i. Let ni(t) be the number of agents
with type i in profile t. The problem of finding the optimal auction can be
formulated as:

Z1 = max
{a}

m∑
i=1

fiAi

(
i− 1− F (i)

fi

)
s.t. 0 ≤ A1 ≤ . . .Ai ≤ · · · ≤ Am

Ai =
∑

t−i∈T n−1

ai[i, t−i]π(t−i)

∑
i

ni(t)ai(t) ≤ 1 ∀t ∈ Tn

We can rewrite this program to read:

max
{a}

∑
i

∑
t−i∈T n−1

nfiai[ti, t−i]
(
i+

1− F (i)
fi

)
π(t−i)

s.t. 0 ≤
∑

t−i∈T n−1

a1[1, t−i]π(t−i) ≤ . . . ≤
∑

t−i∈T n−1

am[m, t−i]π(t−i) ≤ 1

∑
i

ni(t)ai(t) ≤ K ∀t ∈ Tn

If we ignore the monotonicity constraints, this problem can be decomposed
into |Tn| subproblems one for each profile of types:

max
{a}

∑
i

ni(t)
(
i− 1− F (i)

fi

)
ai(t)

s.t.
∑

i

ni(t)ai(t) ≤ 1

56 CHAPTER 3. OPTIMALITY

This is an instance of a continuous knapsack problem. Its solution well

known. Select any index r ∈ arg maxi:ni(t)>0{
ni(t)(i− 1−F (i))

fi
)

ni(t)
} and set ar(t) =

1/nr(t). The monotone hazard condition ensures that the largest index is
always chosen. Thus the solution to the program is monotonic, i.e. ai+1(t) ≥
ai(t) for all i and profiles t. It follows from this that the ignored monotonicity
constraints on expected allocations are satisfied.

The monotonicity constraints are useful because they allow us to restrict
the space of possible allocation rules. However, their presence prevents us
from decomposing the optimization problem into separate problems over
profiles. The hazard rate condition is one sufficient condition for such a
decomposition to be possible.

3.4 Multidimensional Types

In this section we show how the network approach can be used to identify
optimal auctions when types are multidimensional. This section is based on
joint work with Alexey Malakhov.

3.4.1 Wilson Example

One case where it is possible to find the optimal paths is in a discrete
2D analog of a continuous model first solved by Wilson (1993, Chapter
13). In Wilson’s model customers are uniformly distributed on Ω = {t ∈
R2

+, t1 + t2 ≤ 1}, with utility v(q|t) = q · t, and the seller has the cost

C(q) = ‖q‖2
2 . The objective is to maximize the seller’s profit in a direct

mechanism,

max
q,P

∫
Ω
P (t)− C(q(t))dt (OPT-W)

s.t. v(q(t)|t)− P (t) ≤ v(q(s)|t)− P (s) ∀t, s ∈ Ω (BNIC)

The solution to Wilson’s problem is given by

q∗(t) =
1
2

max
(

0, 3− 1
‖t‖2

)
t. (3.2)

Discrete Approach to the Problem

Let’s solve the [OPT-W] problem in discrete polar coordinates using the
network representation. Consider a discrete grid in polar coordinates (r, ϕ),

3.4. MULTIDIMENSIONAL TYPES 57

i.e.

t1 = r cosϕ,
t2 = r sinϕ.

where r ∈ {r1, ..., rn}, where ri = i
n and ϕ ∈ {0, π

2k ,
2π
2k , ...,

π
2 }. Consider the

direct mechanism approach with the allocation schedule given by

q1(r, ϕ) = R(r, ϕ) cos θ(r, ϕ),
q2(r, ϕ) = R(r, ϕ) sin θ(r, ϕ).

The BNIC constraints then are

R(r, ϕ) cos θ(r, ϕ)r cosϕ+R(r, ϕ) sin θ(r, ϕ)r sinϕ− P (r, ϕ) ≥

≥ R(r′, ϕ′) cos θ(r′, ϕ′)r cosϕ+R(r′, ϕ′) sin θ(r′, ϕ′)r sinϕ− P (r′, ϕ′).

The cost function is given by

C(q) =
R(r, ϕ)2

2
.

Our approach will be to conjecture that the optimal paths must be radial
and then compute an optimal allocation for such a conjecture. This amounts
to relaxing some of the BNIC constraints. We complete the argument by
showing that the solution found satisfies the BNIC constraints that were
relaxed.

Lemma 3.4.1 If a payment P (ri, ϕ) is determined by a radial path (0, ϕ) −→
(r1, ϕ) −→ ... −→ (ri, ϕ), then then optimal allocations are given by

q1(ri, ϕ) = R(ri, ϕ) cosϕ,
q2(ri, ϕ) = R(ri, ϕ) sinϕ,

and the profit-maximizing payment P (ri, ϕ) is given by

P (ri, ϕ) =
i∑

j=1

[rjR(rj , ϕ)− rjR(rj−1, ϕ)] . (3.3)

Proof: The proof is done by induction in ri ∈ {r1, ..., rn+1}.
First, consider the case of i = 1, and ϕj ∈ {0, π

2k ,
2π
2k , ...,

π
2 }.

If the payment is set through a radial path, i.e. (0, ϕj) −→ (r1, ϕj), then

P (r1, ϕj) = R(r1, ϕj) cos θ(r1, ϕj) (r1 cosϕj)+R(r1, ϕj) sin θ(r1, ϕj) (r1 sinϕj) ,

58 CHAPTER 3. OPTIMALITY

and the profit is

Πj = R(r1, ϕj) cos θ(r1, ϕj) (r1 cosϕj)+R(r1, ϕj) sin θ(r1, ϕj) (r1 sinϕj)−
1
2
R2(r1, ϕj).

Notice that the above profit along the path is maximized in θ when θ(r, ϕj) =
ϕj (indeed, it does not affect the cost, while maximizing the revenue), hence

q1(r1, ϕj) = R(r1, ϕj) cosϕj ,

q2(r1, ϕj) = R(r1, ϕj) sinϕj ,

Πj = r1R(r1, ϕj)−
1
2
R2(r1, ϕj),

and
P (r1, ϕj) = r1R(r1, ϕj).

Now let’s do the transition from i to i+ 1. Assuming that

q1(ri, ϕj) = R(ri, ϕj) cosϕj ,

q2(ri, ϕj) = R(ri, ϕj) sinϕj ,

P (ri, ϕ) =
i∑

j=1

rjR(rj , ϕ)− rjR(rj−1, ϕ),

and that P (ri+1, ϕj) is determined by the path (0, ϕj) −→ ... −→ (ri, ϕj) −→
(ri+1, ϕj), we conclude

P (ri+1, ϕj) = R(ri+1, ϕj) cos θ(ri+1, ϕj) (ri+1 cosϕj)+R(ri+1, ϕj) sin θ(ri+1, ϕj) (ri+1 sinϕj)−

−ri+1R(ri, ϕj) + P (ri, ϕj),

and the profit along the path is

Πj = R(ri+1, ϕj) cos θ(ri+1, ϕj) (ri+1 cosϕj)+R(ri+1, ϕj) sin θ(ri+1, ϕj) (ri+1 sinϕj)−

−ri+1R(ri, ϕj) + P (ri, ϕj)−
1
2
R2(ri+1, ϕj)+

+
i∑

l=0

[
P (rl, ϕj)−

1
2
R2(rl, ϕj)

]
By the same argument as in the case of r1, we conclude that the above profit
is maximized when θ(ri+1, ϕj) = ϕj , hence

q1(ri+1, ϕj) = R(ri+1, ϕj) cosϕj ,

q2(ri+1, ϕj) = R(ri+1, ϕj) sinϕj ,

3.4. MULTIDIMENSIONAL TYPES 59

and

P (ri+1, ϕ) =
i+1∑
j=1

rjR(rj , ϕ)− rjR(rj−1, ϕ).

Lemma 3.4.2 If all profit-maximizing payments P (ri, ϕ) are determined by
radial paths
(0, ϕ) −→ (r1, ϕ) −→ ... −→ (ri, ϕ), then optimal allocations are given by

q1(ri, ϕ) = R(ri) cosϕ, (3.4)
q2(ri, ϕ) = R(ri) sinϕ, (3.5)

and payments P (ri, ϕ) do not depend on ϕ, i.e.

P (ri, ϕ) = P (ri) =
i∑

j=1

[rjR(rj)− rjR(rj−1)] . (3.6)

Proof: The proof is done by induction in ri ∈ {r1, ..., rn+1}.
First, consider the case of i = 1, and ϕ ∈ {0, π

2k ,
2π
2k , ...,

π
2 }.

If the payments are set through radial paths, i.e. (0, ϕ) −→ (r1, ϕ), then
Lemma 3.4.1 gives

q1(ri, ϕ) = R(ri, ϕ) cosϕ,
q2(ri, ϕ) = R(ri, ϕ) sinϕ,

P (r1, ϕ) = r1R(r1, ϕ),

and the profit is

Π =
k∑

j=0

r1R(r1, ϕj)−
1
2

k∑
j=0

R2(r1, ϕj).

Notice that the above profit is maximized in R(r1, ϕ) when

R(r1, ϕj) = R(r1) =
1

k + 1

k∑
j=1

R(r1, ϕj), (3.7)

since the allocation rule determined by (3.7) does not affect the revenue,
while minimizing the cost..Hence

q1(r1, ϕj) = R(r1) cosϕj ,

q2(r1, ϕj) = R(r1) sinϕj ,

60 CHAPTER 3. OPTIMALITY

Π =
k∑

j=0

r1R(r1)−
1
2

k∑
j=0

R2(r1),

and
P (r1, ϕ) = r1R(r1).

Now let’s do the transition from i to i+1. By the assumption of induction
we have that

q1(ri, ϕj) = R(ri) cosϕj ,

q2(ri, ϕj) = R(ri) sinϕj ,

P (ri, ϕ) =
i∑

j=1

rjR(rj)− rjR(rj−1).

The assumption that P (ri+1, ϕ) is determined by the path (0, ϕ) −→ ... −→
(ri, ϕ) −→ (ri+1, ϕ), along with Lemma 3.4.1 give

q1(ri+1, ϕ) = R(ri+1, ϕ) cosϕ,
q2(ri+1, ϕ) = R(ri+1, ϕ) sinϕ,

P (ri+1, ϕi) = ri+1R(ri+1, ϕi)− ri+1R(ri) + P (ri),

and the profit is

Π =
i∑

l=0

 k∑
j=0

P (rl, ϕ)− 1
2

k∑
j=0

R2(rl, ϕj)

+

+
k∑

j=0

[ri+1R(ri+1, ϕj)− ri+1R(ri, ϕj) + P (ri, ϕj)]−
1
2

k∑
j=0

R2(ri+1, ϕj).

By the same argument as in the case of r1, we conclude that the above profit
is maximized when

R(ri+1, ϕj) = R(ri+1) =
1

k + 1

k∑
j=1

R(ri+1, ϕj),

hence

q1(ri+1, ϕj) = R(ri+1) cosϕj ,

q2(ri+1, ϕj) = R(ri+1) sinϕj ,

3.4. MULTIDIMENSIONAL TYPES 61

and

P (ri, ϕ) = P (ri) =
i∑

j=1

[rjR(rj)− rjR(rj−1)] .

Lemma 3.4.3 All profit-maximizing payments P (ri, ϕ) are determined by
radial paths
(0, ϕ) −→ (r1, ϕ) −→ ... −→ (ri, ϕ).

Proof: The proof is done by induction in rn.
First, consider the case of i = 1, and ϕ ∈ {0, π

2k ,
2π
2k , ...,

π
2 }. Denote pay-

ments that are determined by radial paths (0, ϕ) −→ (r1, ϕ) as Pr(r1, ϕ), and
.payments that are determined by nonradial paths (0, ϕ′) −→ (r1, ϕ′) −→
(r1, ϕ) as Pnr(r1, ϕ). Then

Pr(r1, ϕ) = R(r1, ϕ) cos θ(r1, ϕ) (r1 cosϕ) +R(r1, ϕ) sin θ(r1, ϕ) (r1 sinϕ) ,
(3.8)

and

Pnr(r1, ϕ) = R(r1, ϕ) cos θ(r1, ϕ) (r1 cosϕ) +R(r1, ϕ) sin θ(r1, ϕ) (r1 sinϕ)−

−R(r1, ϕ′) cos θ(r1, ϕ′) (r1 cosϕ)−R(r1, ϕ′) sin θ(r1, ϕ′) (r1 sinϕ)+Pr(r1, ϕ′).

Lemma 3.4.1 gives that Pr(r1, ϕ′) = r1R(r1, ϕ′), hence

Pnr(r1, ϕ) = R(r1, ϕ) cos θ(r1, ϕ) (r1 cosϕ) +R(r1, ϕ) sin θ(r1, ϕ) (r1 sinϕ)−

−R(r1, ϕ′) cos θ(r1, ϕ′) (r1 cosϕ)−R(r1, ϕ′) sin θ(r1, ϕ′) (r1 sinϕ)+r1R(r1, ϕ′).
(3.9)

Combining (3.8) and (3.9) we obtain

Pnr(r1, ϕ) = Pr(r1, ϕ)+r1R(r1, ϕ′)
(
1− cos θ(r1, ϕ′) cosϕ− sin θ(r1, ϕ′) sinϕ

)
.

Finally, since cos θ cosϕ+ sin θ sinϕ < 1 for ∀θ 6= ϕ, we conclude that

Pnr(r1, ϕ) ≥ Pr(r1, ϕ),

which proves that the radial path is the shorter one, and since payments
are determined by shortest paths, profit-maximizing payments P (r1, ϕ) are
determined by radial paths.

Now let’s do the transition from i to i + 1. Assuming that P (ri, ϕ) are
determined by radial paths by Lemma 3.4.2 we have

q1(ri, ϕj) = R(ri) cosϕj , (3.10)
q2(ri, ϕj) = R(ri) sinϕj , (3.11)

62 CHAPTER 3. OPTIMALITY

P (ri, ϕ) = P (ri) =
i∑

j=1

[rjR(rj)− rjR(rj−1)] . (3.12)

We now need to show that the payment Pr(ri+1, ϕ), determined by the
radial path (ri, ϕ) −→ (ri+1, ϕ) is smaller than paymentsPnr1(ri+1, ϕ) and
Pnr2(ri+1, ϕ), that are determined by paths (ri, ϕ′) −→ (ri+1, ϕ

′) −→ (ri+1, ϕ)
and (ri, ϕ′) −→ (ri+1, ϕ) respectively. Then using (3.10), (3.11), and (3.12),
and without assuming anything about allocations at (ri+1, ϕ), we get

Pr(ri+1, ϕ) = R(ri+1, ϕ) cos θ(ri+1, ϕ) (ri+1 cosϕ) +R(ri+1, ϕ) sin θ(ri+1, ϕ) (ri+1 sinϕ)
−ri+1R(ri) + Pr(ri).

For the Pnr1(ri+1, ϕ) we have

Pnr1(ri+1, ϕ) = R(ri+1, ϕ) cos θ(ri+1, ϕ) (ri+1 cosϕ)+R(ri+1, ϕ) sin θ(ri+1, ϕ) (ri+1 sinϕ)−

−R(ri+1, ϕ
′) cos θ(ri+1, ϕ

′) (ri+1 cosϕ)−R(ri+1, ϕ
′) sin θ(ri+1, ϕ

′) (ri+1 sinϕ)+Pr(ri+1, ϕ
′).

(3.13)
Now notice that for the Pnr1(ri+1, ϕ) to be determined by the shortest path,
Pr(ri+1, ϕ

′) must be determined by the radial path, hence by Lemma 3.4.1

Pr(ri+1, ϕ
′) = ri+1R(ri+1, ϕ

′)− ri+1R(ri) + Pr(ri). (3.14)

Combining (3.13) and (3.14) we obtain

Pnr1(ri+1, ϕ) = R(ri+1, ϕ) cos θ(ri+1, ϕ) (ri+1 cosϕ)+R(ri+1, ϕ) sin θ(ri+1, ϕ) (ri+1 sinϕ)−

−R(ri+1, ϕ
′) cos θ(ri+1, ϕ

′) (ri+1 cosϕ)−R(ri+1, ϕ
′) sin θ(ri+1, ϕ

′) (ri+1 sinϕ) +
(3.15)

+ri+1R(ri+1, ϕ
′)− ri+1R(ri) + Pr(ri).

Finally, (3.13) and (3.15) give

Pnr1(ri+1, ϕ) = Pr(ri+1, ϕ)+ri+1R(ri+1, ϕ
′)

(
1− cos θ(ri+1, ϕ

′) cosϕ− sin θ(ri+1, ϕ
′) sinϕ

)
,

and since cos θ cosϕ+ sin θ sinϕ < 1 for ∀θ 6= ϕ, we conclude that

Pnr1(ri+1, ϕ) ≥ Pr(ri+1, ϕ). (3.16)

For the Pnr2(ri+1, ϕ) we have

Pnr1(ri+1, ϕ) = R(ri+1, ϕ) cos θ(ri+1, ϕ) (ri+1 cosϕ)+R(ri+1, ϕ) sin θ(ri+1, ϕ) (ri+1 sinϕ)−

3.4. MULTIDIMENSIONAL TYPES 63

−R(ri, ϕ′) cos θ(ri, ϕ′) (ri+1 cosϕ)−R(ri, ϕ′) sin θ(ri, ϕ′) (ri+1 sinϕ)+Pr(ri, ϕ′).
(3.17)

Then using (3.10), (3.11), and (3.12), and without assuming anything about
allocations at (ri+1, ϕ), we get

Pnr1(ri+1, ϕ) = R(ri+1, ϕ) cos θ(ri+1, ϕ) (ri+1 cosϕ)+R(ri+1, ϕ) sin θ(ri+1, ϕ) (ri+1 sinϕ)−

−ri+1R(ri) + Pr(ri). (3.18)

Finally, (3.13) and (3.18) give

Pnr1(ri+1, ϕ) = Pnr1(ri+1, ϕ). (3.19)

This inequality (3.16) and equality (3.18) prove that the radial path is the
shortest one, and since payments are determined by shortest paths, all profit-
maximizing payments P (ri+1, ϕ) are determined by radial paths.

Theorem 3.4.4 Optimal allocations are given by

q1(ri, ϕ) = R(ri) cosϕ,
q2(ri, ϕ) = R(ri) sinϕ,

and payments P (ri, ϕ) do not depend on ϕ, i.e.

P (ri, ϕ) = P (ri) =
i∑

j=1

[rjR(rj)− rjR(rj−1)] .

Proof: Follows from Lemmas 3.4.2 and 3.4.3.
Theorem 3.4.4 allows us to successfully solve Wilson’s optimization problem

in polar coordinates. The uniform probability density function changes from
g(t1, t2) = 4

π to g(r, ϕ) = 2r in continuous case, and to g(i) = 2i
n(n+1) and

F (i) = i(i+1)
n(n+1) in discrete case after the switch to the polar coordinates.

The problem [OPT-W] is now reduced to a standard one-dimensional
profit maximization problem, which can be successfully solve by following
Myerson’s (1981) approach in a discrete case. Recall the general expression
for the virtual valuation:

µ(Ai) = v(Ai|i)−
1− F (i)

fi
[v(Ai|i+ 1)− v(Ai|i)],

64 CHAPTER 3. OPTIMALITY

which in our case looks like

µ(R(i)) = R(i)
i

n
− 1− F (i)

g(i)

[
R(i)

i+ 1
n

−R(i)
i

n

]
,

µ(R(i)) = R(i)
(
i

n
− 1− F (i)

ng(i)

)
.

Hence the profit maximizing problem could be written as

Π = max
{R(i)}n

i=1

n∑
i=1

g(i)
[
R(i)

(
i

n
− 1− F (i)

ng(i)

)
− C(R(i))

]
,

and can be solved type by type in the following formulation:

max
R(i)

R(i)
(
i

n
− 1− F (i)

ng(i)

)
− C(R(i)),

max
R(i)

R(i)

 i

n
−

1− i(i+1)
n(n+1)

2i
(n+1)

− R2(i)
2

. (OPT-W′)

Solving [OPT-W′] we obtain the expression for the optimal choice of
R(i):

R(i) = max
(

0,
2i2 + i(i+ 1)− n(n+ 1)

2in

)
,

R(i) =
n+ 1

2i
max

(
0,

2i
n+ 1

ri +
i+ 1
n+ 1

ri − 1
)
. (3.20)

The expression (3.20) is the exact discrete analog of Wilson’s continuous
solution to [OPT-W] given by (3.2).

3.4.2 Capacity Constrained Bidders

The type of an agent is a pair of numbers (a, b). The first is her marginal
value the second her capacity. Let the range of a be R = {1, 2, ..., r} and
the range of b be K = {1, ..., k}. Let fij be the probability that an agent
has type (i, j). Types are assumed to be independent. The value that an
agent of type (i, j) assigns to q units will be written v(q|i, j) = i(q, j)−.
Observe that v(q|i, j) satisfies increasing differences. That is, if q′ ≥ q and
(i′, j′) ≥ (i, j) then

v(q′|i′, j′)− v(q|i′, j′) ≥ v(q′|i, j)− v(q|i, j).

3.4. MULTIDIMENSIONAL TYPES 65

Without loss of generality we can assume that the amount assigned to an
agent who reports type (i, j) will be at most j. If Aij is the expected amount
assigned to an agent who reports (i, j) then because this agent receives at
most j in any allocation, his expected payoff is iAij = v(Ai,j |i, j). Let Pij

be his expected payment if he reports (i, j). Next, we discuss the relevant
incentive compatibility constraints and identify the ones that are redundant.

The BNIC Constraints

There are 8 types of BNIC constraints listed below.
1. Horizontal Upward BNIC (HUBNIC)
Type (i, j) reporting (i′, j) where i′ > i:

v(Ai,j |i, j)− Pi,j ≥ v(Ai′,j |i, j)− Pi′,j .

2. Horizontal Downward BNIC (HDBNIC)
Type (i, j) reporting (i′, j) where i′ < i :

v(Ai,j |i, j)− Pi,j ≥ v(Ai′,j |i, j)− Pi′,j .

3. Vertical Upward BNIC (VUBNIC)
Type (i, j) reporting (i, j′) where j′ > j:

v(Ai,j |i, j)− Pi,j ≥ v(Ai,j′ |i, j)− Pi,j′ .

4. Vertical Downward BNIC (VDBNIC)
Type (i, j) reporting (i, j′) where j′ < j:

v(Ai,j |i, j)− Pi,j ≥ v(Ai,j′ |i, j)− Pi,j′ .

5. Diagonal Downward BNIC (DDBNIC)
Type (i, j) reporting (i′, j′) where i′ > i and j′ < j:

v(Ai,j |i, j)− Pi,j ≥ v(Ai′,j′ |i, j)− Pi′,j′ .

6. Diagonal Upward BNIC (DUBNIC)
Type (i, j) reporting (i′, j′) where i′ < i and j′ > j:

v(Ai,j |i, j)− Pi,j ≥ v(Ai′,j′ |i, j)− Pi′,j′ .

7. Leading Diagonal Downward BNIC (LDDBNIC)
Type (i, j) reporting (i′, j′) where i′ < i and j′ < j:

v(Ai,j |i, j)− Pi,j ≥ v(Ai′,j′ |i, j)− Pi′,j′ .

66 CHAPTER 3. OPTIMALITY

8. Leading Diagonal Upward BNIC (LDUBNIC)
Type (i, j) reporting (i′, j′) where i′ > i and j′ > j:

v(Ai,j |i, j)− Pi,j ≥ v(Ai′,j′ |i, j)− Pi′,j′ .

The new wrinkle that multi-dimensionality adds are the diagonal BNIC
constraints. One might wish they are redundant. In general, they are not.

Simplification of Incentive Constraints

We now invoke the assumption that no agent is able to inflate their capacity.
Under the no inflation assumption the VUBNIC, DUBNIC and LDUBNIC
constraints can be thrown out.

Theorem 3.4.5 An allocation rule satisfies HUBNIC and HDBNIC iff it is
monotonic in the ‘i’ component. That is, for all i ≥ i′ we have Aij ≥ Ai′,j.

The proof is standard and omitted. The absence of VUBNIC means that
a similar monotonicity result does not hold for the ‘j’ argument. In other
words it is not true thatAij ≥ Aij′ when j ≥ j′. This is because both upward
and downward incentive constraints are needed to ensure monotonicity of an
allocation rule. However, we will assume monotonicity in both components
of the allocation rule.

We now show that the two remaining diagonal BNIC constraints are
redundant.

Theorem 3.4.6 The LDDBNIC constraints relating type (i′, j′) to (i, j)
where (i′, j′) ≥ (i, j):

v(Ai′,j′ |i′, j′)− Pi′,j′ ≥ v(Ai,j |i′, j′)− Pi,j , (3.21)

are implied by HDBNIC, VDBNIC and monotonicity of the allocation rule.

Proof: To see that (3.21) is implied by HDBNIC and VDBNIC consider:

v(Ai′,j′ |i′, j′)− Pi′,j′ ≥ v(Ai,j′ |i′, j′)− Pi,j′

and
v(Ai,j′ |i, j′)− Pi,j′ ≥ v(Ai,j |i, j′)− Pi,j .

Adding these two inequalities together yields:

v(Ai′,j′ |i′, j′)− Pi′,j′ + v(Ai,j′ |i, j′) ≥ v(Ai,j′ |i′, j′) + v(Ai,j |i, j′)− Pi,j .

3.4. MULTIDIMENSIONAL TYPES 67

Rearranging:

v(Ai′,j′ |i′, j′)− v(Ai,j |i′, j′)−
[
Pi′,j′ − Pi,j

]
≥

≥
[
v(Ai,j′ |i′, j′)− v(Ai,j |i′, j′)

]
−

[
v(Ai,j′ |i, j′)− v(Ai,j |i, j′)

]
.

The increasing differences property and the monotonicity of the allocation
imply that[

v(Ai,j′ |i′, j′)− v(Ai,j |i′, j′)
]
−

[
v(Ai,j′ |i, j′)− v(Ai,j |i, j′)

]
≥ 0,

and hence we have that

v(Ai′,j′ |i′, j′)− v(Ai,j |i′, j′) ≥ Pi′,j′ − Pi,j

which is equivalent to (3.21), and proves the claim.

Theorem 3.4.7 Under the assumption that no agent can inflate their ca-
pacity the DDBNIC constraints are redundant.

Proof: Let i′ ≥ i and j′ ≥ j. Consider the following DDBNIC constraint:

v(Ai,j′ |i, j′)− Pi,j′ ≥ v(Ai′,j |i, j′)− Pi′,j .

When we substitute in our expression for v we obtain:

iAi,j′ − Pi,j′ ≥ iAi′,j − Pi′,j . (3.22)

We show that it is implied by the addition of the following VDBNIC and
HUBNIC constraints:

v(Ai,j′ |i, j′)− Pi,j′ ≥ v(Ai,j |i, j′)− Pij , (3.23)

v(Ai,j |i, j)− Pij ≥ v(Ai′,j |i, j)− Pi′,j . (3.24)

Adding (3.23) and (3.24) yields:

v(Ai,j′ |i, j′)− Pi,j′ + v(Ai,j |i, j) ≥ v(Ai,j |i, j′) + v(Ai′,j |i, j)− Pi′,j . (3.25)

Substitute in our expression for v:

iAi,j′ − Pi,j′ + iAi,j ≥ iAi,j + iAi′,j − Pi′,j .

Cancelling common terms yields (3.22).

68 CHAPTER 3. OPTIMALITY

Theorem 3.4.8 Only the adjacent downward constraints w.r.t. (i + 1, j)
and (i, j) and w.r.t (i, j + 1) and (i, j) matter out of all horizontal and
vertical downward constraints. Only the adjacent upward constraints w.r.t.
(i, j) and (i + 1, j), w.r.t. (i, j) and (i, j + 1) matter out of all horizontal
and vertical upward constraints.

The proof is standard and omitted.

Theorem 3.4.9 If an adjacent HDBNIC or VDBNIC constraint binds, the
corresponding adjacent upward BNIC constraint are satisfied.

Proof: Given that the corresponding downward adjacent BNIC constraint
binds, i.e. then upward BNIC constraints are satisfied. Indeed, if

v(Ai+1,j |i+ 1, j)− v(Ai,j |i+ 1, j) = Pi+1,j − Pi,j ,

then by increasing differences and monotonicity of the allocation rule:

v(Ai+1,j |i, j)− v(Ai,j |i, j) ≤ Pi+1,j − Pi,j ,

which is the corresponding upward constraint v(Ai,j |i, j)−Pi,j ≥ v(Ai+1,j |i, j)−
Pi+1,j . So the corresponding adjacent upward BNIC constraint is satisfied.
The argument is exactly the same w.r.t. the j dimension.

When an adjacent HDBNIC constraint does not bind, the corresponding
adjacent HUBNIC constraint is not automatically satisfied. Also some of
the adjacent downward BNIC constraints will be slack since not all arcs are
likely to be used in a shortest path tree.

Summarizing, the only BNIC constraints that matter are the adjacent
HUBNIC, HDBNIC and VDBNIC.

Optimal Auction Formulation and Solution

Denote by αij [t] the actual allocation that a type (i, j) will receive under
allocation rule A when the announced profile is t. In the case when type
(i, j) does not appear in the profile t we take αij [t] = 0. We will have cause
to study how the allocation for an agent with a given type, (i, j) say, will
change when the types of the other n − 1 agents change. In these cases
we will write αij(t) as αij [(i, j), t−i]. Then Aij =

∑
t−i π(t−i)αij [(i, j), t−i]

where π(t−i) is the probability of profile t−i being realized and the sum is
over all possible profiles. Let nij(t) denote the fraction of bidders in the
profile t with type (i, j).

3.4. MULTIDIMENSIONAL TYPES 69

We now formulate the problem of finding the revenue maximizing mono-
tone mechanism as a linear program in the following way. We omit all
diagonal BNIC constraints as well as all the upward vertical and horizontal
BNIC constraints. The HUBNIC constraints are the only ones we have not
shown to be redundant. However, Theorem 3.4.9 ensures that HUBNIC will
be satisfied. The problem we study is [OPT] is:

Z = max
Pij

∑
i∈R

∑
j∈K

fijPij

s.t. v(Aij |i, j)− Pij ≥ v(Ai−1,j |i, j)− Pi−1,j

v(Aij |i, j)− Pij ≥ v(Ai,j−1|i, j)− Pi,j−1

Aij ≥ Ai′j′ ∀(i, j) ≥ (i′, j′)

Aij =
∑
t−i

π(t−i)αij [(i, j), t−i] ∀(i, j)

∑
i∈R

∑
j∈K

nnij(t)αij [t] ≤ Q ∀t

αij [t] ≤ j ∀i, j ∀t

To describe the network representation of this linear program fix the
Aij ’s. For each type (i, j) introduce a node including the dummy type (0, 0).
For each pair (i, j), (i+ 1, j) introduce a directed arc from (i, j) to (i+ 1, j)
with length v(Ai+1,j |i + 1, j) − v(Aij |i + 1, j) = (i + 1)Ai+1,j − (i + 1)Aij .
Similarly a directed arc from (i, j) to (i, j+1) of length iAi,j+1− iAij . Then
Pij will be the length of the shortest path from the dummy type (0, 0) to
(i, j). We show that the shortest path from (1, 1) to (i, j) is (1, 1) → (1, 2) →
(1, 3) . . .→ (1, j) → (2, j) . . .→ (i, j). An example of such paths is provided
in figure 4.3 below:

70 CHAPTER 3. OPTIMALITY

��
��
1, 3 ��

��
2, 3 ��

��
3, 3

��
��
1, 2 ��

��
2, 2 ��

��
3, 2

��
��
1, 1 ��

��
2, 1 ��

��
3, 1

��
��
0, 0 - dummy type

- -

- -

- -

6

6

6

Figure 4.3

Theorem 3.4.10

Pij = v(Aij |i, j)−
i−1∑
r=1

[v(Arj |r+1, j)−v(Arj |r, j)] =
i∑

r=1

r(Arj−Ar−1,j)−A11+P11.

Proof: It suffices to show that the shortest path from (1, 1) to (i, j) is
straight up and across. The proof is by induction. It is clearly true for
nodes (1, 2) and (2, 1). Consider the node (2, 2). The length of (1, 1) →
(2, 1) → (2, 2) is

2A22 − 2A21 + 2A21 − 2A11 + P11 = 2A22 − 2A11 + P11.

The length of the path (1, 1) → (1, 2) → (2, 2) is

2A22 − 2A1,2 +A1,2 −A11 + P11 = 2A22 −A12 −A11 + P11.

The difference in length between the first and the second path is

(2A22 − 2A11)− (2A22 −A12 −A11) = A12 −A11 ≥ 0,

where the last inequality follows by monotonicity of the A’s.
Now suppose the claim is true for all nodes (i, j) where i, j ≤ n−1. The

shortest path from (1, 1) to (1, n) is clearly up the top. A similar argument to

3.4. MULTIDIMENSIONAL TYPES 71

the previous one shows that the shortest path from (1, 1) to (2, n) is also up
the top and across. Consider now node (3, n). There are two candidates for
a shortest path from (1, 1) to (3, n). One is (1, 1) → (1, n−1) → (3, n−1) →
(3, n). This path has length

3A3n−3A3,n−1+3A3,n−1−3A2,n−1+2A2,n−1−2A1,n−1+P1,n−1 = 3A3n−A2,n−1−2A1,n−1+P1,n−1.

The other path, (1, 1) → (1, n) → (3, n) has length

3A3n−3A2n+2A2n−2A1,n+A1,n−A1,n−1+P1,n−1 = 3A3n−A2n−A1,n−A1,n−1+P1,n−1.

The difference in length between the first and second path is

A2n +A1n +A1,n−1−A2,n−1− 2A1,n−1 = A2n +A1n−A2,n−1−A1,n−1 ≥ 0.

Again the last inequality follows by monotonicity of the A’s.
Proceeding inductively in this way we can establish the claim for nodes of

the form (i, n) where i ≤ n−1 and for (n, j) where j ≤ n−1. It remains then
to prove the claim for node (n, n). One path is (1, n−1) → (n, n−1) → (n, n)
and has length

nAnn−nAn,n−1+nAn,n−1−nAn−1,n−1+(n−1)An−1,n−1−(n−1)An−2,n−1+. . .+P1,n−1

= nAnn −An−1,n−1 −An−2,n−1 − . . .+ P1,n−1.

The length of the other path, (1, 1) → (1, n) → (n, n) is

nAnn−nAn−1,n+(n−1)An−1,n−(n−1)An−2,n+. . .+A1n−A1,n−1+P1,n−1.

Again, by the monotonicity of the A’s the second path is shorter than the
first.

Substituting the expression for Pij derived into the objective function
for problem [OPT] we get

k∑
j=1

n∑
i=1

{fijv(Aij |i, j) + (1− Fj(i))[v(Aij |i, j)− v(Aij |i+ 1, j)]}

where Fj(i) =
∑i

t=1 ftj . The expression within the summation term can be
rewritten as

fij{v(Aij |i, j) +
1− Fj(i)

fij
[v(Aij |i, j)− v(Aij |i+ 1, j)]}.

72 CHAPTER 3. OPTIMALITY

he particular functional form of v allows us to rewrite this as:

fijAij

(
i− 1− Fj(i)

fij

)
.

Following Myerson, we can think of the term
(
i− 1−Fj(i)

fij

)
as the virtual

valuation conditional on wanting to consume at most j units. Problem
[OPT] becomes:

Z = max
{a}

∑
i

∑
j

fijAij

(
i− 1− Fj(i)

fij

)

s.t. Aij ≥ Ai′j′ ∀(i, j) ≥ (i′, j′)

Aij =
∑
t−i

π(t−i)αij [(i, j), t−i] ∀(i, j)

∑
i∈R

∑
j∈K

nnij(t)αij [t] ≤ Q ∀t

αij [t] ≤ j ∀i, j ∀t

Substituting out the Aij variables yields:

Z = max
{a}

∑
i

∑
j

fij

∑
t−i

π(t−i)αij [(i, j), t−i]
(
i− 1− Fj(i)

fij

)

s.t.
∑
t−i

π(t−i)αij [(i, j), t−i] ≥
∑
t−i

π(t−i)αi′j′ [(i′, j′), t−i] ∀(i, j) ≥ (i′, j′)

∑
i∈R

∑
j∈K

nnij(t)αij [(i, j), t−i] ≤ Q ∀t

αij [t] ≤ j ∀i, j ∀t

Theorem 3.4.11 Suppose the conditional virtual values are monotone, i.e.,

i− 1− Fj(i)
fij

≥ i′ −
1− Fj′(i′)

fi′j′
∀ (i, j) ≥ (i′, j′).

Then the following procedure describes an optimal solution to problem [OPT].
Select the pair (i, j) which maximizes i − 1−Fj(i)

fij
and increase αij until it

reaches its upper bound or the supply is exhausted, whichever comes first. If
the supply is not exhausted repeat.

3.4. MULTIDIMENSIONAL TYPES 73

Proof: If we ignore the monotonicity condition∑
t−i

π(t−i)αij [(i, j), t−i] ≥
∑
t−i

π(t−i)αi′j′ [(i′, j′), t−i],

the optimization problem reduces to a collection of optimization problems
one for each profile t:

Z(t) = nmax
{a}

∑
i

∑
j

nij(t)αij [t]
(
i− 1− Fj(i)

fij

)

s.t.
∑
i∈R

∑
j∈K

nnij(t)αij [t] ≤ Q

αij [t] ≤ j ∀i, j ∀t

This is an instance of a continuous knapsack problem with upper bound
constraints on the variables which can be solved in the usual greedy man-
ner. In each profile allocate as much as possible to the agents with highest
conditional virtual values. Once they are saturated, proceed to the next
highest and so on. Monotonicity of the conditional virtual values ensures
that the resulting solution satisfies the omitted monotonicity constraint.

Requiring the conditional virtual values to be monotone is clearly a more
demanding requirement than the analogous requirement when types are one
dimensional. If 1−Fj(i)

fij
is non-increasing in (i, j) then the conditional vir-

tual values are monotone. This condition can be interpreted as a type of
affiliation. One example of a distribution on types that yields monotone con-
ditional virtual values is when each component of the type is independent of
the other and the i component is drawn from a distribution that satisfies the
monotone hazard condition while the j component is drawn from a uniform
distribution. When the conditional virtual values are not monotone, one
can solve the problem using ‘ironed’ conditional virtual values. The details
are omitted. It is easy to see that solution to the continuous case is exactly
as described in Theorem 3.4.11.

Monotonicity and the Conditional Virtual Values

The Theorems above identify the optimal mechanism from amongst a re-
stricted class of mechanisms. One where the associated allocation rule is
monotone. In this section we drop this restriction. When the conditional

74 CHAPTER 3. OPTIMALITY

virtual values are monotone, we show that there is an optimal mechanism
whose associated allocation rule is monotone.

The argument is in two steps. In the first step we upper bound the value
of Z in [OPT] by using a relaxation.

Lemma 3.4.12 Fix an allocation rule A. The expected revenue from the
allocation rule A is bounded above by∑

i∈R

∑
j∈K

fij(i−
1− Fj(i)

fij
)Aij .

Proof: Consider the following relaxation of [OPT], called [rOPT], where
the choice of A is fixed.

Z(A) = max
Pij

∑
i∈R

∑
j∈K

fijPij

s.t. v(Aij |i, j)− Pij ≥ v(Ai−1,j |i, j)− Pi−1,j (3.26)

Aij =
∑
t−i

π(t−i)αij [(i, j), t−i] ∀(i, j)

∑
i∈R

∑
j∈K

nnij(t)αij [t] ≤ Q ∀t

αij [t] ≤ j ∀i, j ∀t
To prove the lemma it suffices to show that Z(A) =

∑
i∈R

∑
j∈K fij(i −

1−Fj(i)
fij

)Aij . We do so by induction.
Fix a j and let i be the smallest number such that Aij > 0. Clearly, in

an optimal solution to [rOPT], Pij = i. The induction hypothesis is that
Pi+k,j = (i+ k)Ai+k,j −

∑i+k−1
s=1 Asj .

In an optimal solution to [rOPT], the constraint (3.26) linking type
(i+1, j) to (i, j) must bind. Otherwise increase the value of Pi+1,. Therefore

(i+ k + 1)Ai+k+1,j − Pi+k+1,j = (i+ k + 1)Ai+k,j − Pi+k,j =
i+k∑
s=i

Asj .

To complete the proof we mimic the calculation immediately following the
proof of Theorem 3.4.10.

It is now easy to see that when the conditional virtual values are mono-
tone, the mechanism of Theorem 3.4.11 achieves the upper bound implied
by Lemma 3.4.12 and so, must be optimal.

Chapter 4

Rationalizability

Afriat’s (1967) theorem is an answer to the question of when a sequence of
purchase decisions is consistent with the purchaser maximizing a concave
utility function u(·). As noted by Rochet (1987) we can think of this as
an ‘inverse’ to the problem of characterizing DSIC. To see why, suppose a
sequence of purchase decisions (pi, xi), i = 1, . . . , n, where pi ∈ Rn

+ and
xi ∈ Rn

+ are price vectors and purchased quantity vectors respectively. Via
the taxation principle we can think of this sequence of price-quantity pairs
as a menu offered offered by a mechanism. Thus, the mechanism is given
and we ask for what preferences is this mechanism incentive compatible.

We begin with the case when the utility is assumed to be quasi-linear.

4.1 The Quasi-linear Case

A sequence of purchase decisions (pi, xi), i = 1, . . . , n is rationalizable by
a concave quasi-linear utility function u : Rn

+ 7→ R if for some budget B and
for all i

xi ∈ arg max{u(x) + si : pi · x+ si = B}.

To determine if a sequence is rationalizable we suppose it is and ask what
conditions it must satisfy and then check to see if those conditions are indeed
sufficient.

If the sequence {pi, xi}n
i=1 is rationalizable, it must be the case that at

price pi, xj delivers less utility than xi. Hence

u(xi) +B − pi · xi ≥ u(xj) +B − pi · xj

⇒ u(xj)− u(xi) ≤ pi · (xj − xi)

75

76 CHAPTER 4. RATIONALIZABILITY

Thus, given the sequence {pi, xi}n
i=1 we formulate the following system:

yj − yi ≤ pi · (xj − xi), ∀i, j (4.1)

If this system is feasible we can use an appropriate feasible choice of {yj}n
j=1

to construct a concave utility function that rationalizes the sequence {pi, xi}n
i=1.

Determining feasibility of (4.1) is straightforward. We associate a network
with (4.1) in the usual way. One node for each i and for each ordered
pair (i, j) an arc with length pi · (xj − xi). The system (4.1) is feasible
iff. the associated network has no negative length cycles. For example, if
i1 → i2 → i3 → . . .→ ik → i1 is a cycle then

pi1 · (xi2 − xi1) + . . .+ pik · (xi1 − xik) ≥ 0.

Suppose our associated network has no negative length cycles. Pick node 1
to be the source and set u(xi) to be the length of the shortest path from
node 1 to node i. For any other x ∈ Rn

+ set

u(x) = min{u(x1)+p1 ·(x−x1), u(x2)+p2 ·(x−x2)+. . .+u(xn)+pn(x−xn)}.

Since u(x) is the minimum of a collection of linear functions with positive
slope, it is easy to see that u is concave. It is easy to see from the argument
that the absence of negative lengths cycles is a necessary and sufficient
condition for the sequence to be rationalizable by concave quasi-linear utility
function.

4.2 The General Case

A sequence of purchase decisions {pi, xi}n
i=1 is rationalizable by a concave

utility function u : Rn
+ 7→ R if for some budget B and for all i

xi ∈ arg max{u(x) : pi · x ≤ B}.

As before we identify conditions that a rationalizable sequence must satisfy.
Suppose the sequence {pi, xi}n

i=1 is indeed rationalizable. Since

xi ∈ arg max{u(x) : pi · x ≤ B}

each xi must satisfy the usual first order conditions of optimality. In partic-
ular, if si > 0 is the optimal Lagrange multiplier it must be that

xi ∈ arg max{u(x) + si(B − pi · x)}.

4.2. THE GENERAL CASE 77

Hence, for all j 6= i

u(xj)+si(B−pi ·xj) ≤ u(xi)+si(B−pi ·xi) ⇒ u(xj) ≤ u(xi)+sipi ·(xj−xi).

If we replace each u(xi) by yi we obtain the system `(A):

yj ≤ yi + siaij ∀i 6= j, 1 ≤ i, j ≤ n

si > 0 ∀1 ≤ i ≤ n

Given a feasible solution to `(A) we construct a concave utility function u(·)
consistent with the sequence of purchase decisions (pi, xi) by setting:

u(x) = min{y1 + s1p1(x− x1), y2 + s2p2(x− x2), . . . , yn + snpn(x− xn)}.

Here is a different condition that is motivated by purely economic consid-
erations. If pi ·(xj−xi) ≤ 0, the utility function umust satisfy u(xj) ≤ u(xi),
otherwise, with purchase price of pi, bundle xj costs less but provides higher
utility. If we have a sequence of decisions (pi, xi), (pj , xj), (pk, xk), . . . , (pr, xr),
with

pi · (xj − xi) ≤ 0, pj · (xk − xj) ≤ 0, . . . , pr · (xi − xr) ≤ 0,

then u(xi) = u(xj) = . . . = u(xr), and

pi · (xj − xi) = 0, pj · (xk − xj) = 0, . . . , pr · (xi − xr) = 0.

The above necessary condition for rationalizability can be described in graph
theoretic terms as follows. let A be a n×n matrix where aij = pi · (xj −xi).
Associate with the matrix A a directed graph D(A) as follows: introduce a
vertex for each index and for each ordered pair (i, j) an edge with length aij .
The matrix A is said to satisfy the Afriat condition (AC) if every negative
length cycle in D(A) contains at least one edge of positive weight.

We now state Afriats theorem:

Theorem 4.2.1 `(A) is feasible iff. D(A) satisfies AC.

A number of proofs of the theorem exist.1 Here we give a proof that makes
explicit the network structure inherent in `(A). 2

1Afriat’s orginal proof assumed that aij 6= 0 ∀i 6= j. This was relaxed by Diewert
(1973) and Varian (1982).

2This based on Chung Piaw and Vohra (2003). The structure appears to have been
overlooked (but used implicitly) in previous proofs. For example, Fostel, Scarf and Todd
(2003).

78 CHAPTER 4. RATIONALIZABILITY

To each s ∈ Rn
+ and matrix A with zeros on the diagonals, we associate

a directed graph D(A, s) as follows: introduce a vertex for each index and
for each ordered pair (i, j) an edge with length siaij . Notice that D(A) =
D(A, e) where e is the n-vector of all 1’s.

Now fix s ∈ Rn
+. Then feasibility of `(A) reduces to identifying y ∈ Rn

such that yj − yi ≤ siaij for all i 6= j. This system is feasible iff. D(A, s)
contains no negative cycles. Assuming feasibility, we can choose the y’s as
follows: set y1 = 0 and yj to be the length of the shortest path from 1 to i
in D(A, s). Afriat’s theorem can be rephrased as;

Theorem 4.2.2 There is an s ∈ Rn
+ such that D(A, s) contains no negative

cycles iff. D(A, e) satisfies AC.

Proof: If there is an s ∈ Rn
+ such that D(A, s) contains no negative cycles,

the system of inequalities `(A) (with s fixed) is feasible. So we can construct
a utility function u(·) consistent with the sequence of purchase decisions.
Therefore, D(A, e) must satisfy AC. We next prove the non-trivial direc-
tion. Suppose D(A, e) satisfies AC. We prove there exists s ∈ Rn

+ such that
D(A, s) has no negative cycles.

Let S = {(i, j) : ai,j < 0}, E = {(i, j) : ai,j = 0}, and T = {(i, j) :
ai,j > 0}. Consider the weighted digraph G with edges in S ∪E, where arcs
(i, j) ∈ S are given weight wij = −1, and arcs (i, j) ∈ E are given weight
wij = 0. Since D(A, e) satisfies AC, G does not contain a negative length
cycle. Hence there exists a set of potentials {φj} on the nodes such that

φj ≤ φi + wij , ∀ (i, j) ∈ E(G).

Without loss of generality, we relabel the vertices so that φn ≤ φn−1 ≤ . . . ≤
φ1. Choose {si} non-decreasing so that

si × min
(i,j)∈T

aij ≥ (n− 1)× si−1 max
(i,j)∈S

(−aij) if φi < φi−1,

and
si = si−1 if φi = φi−1

for all i > 2, with s1 = 1.
For any cycle C in the digraph D(A, s), let (v, u) be an edge in C such

that (i) v has the smallest potential among all vertices in C, and (ii) φu > φv.
Such an edge exists, otherwise φi is identical for all vertices i in C. In this
case, all edges in C have non-negative edge weight in D(A, s).

4.2. THE GENERAL CASE 79

By selection, φu > φv. If (v, u) ∈ S∪E, then we have φu ≤ φv+wvu ≤ φv,
a contradiction. Hence (v, w) ∈ T . Now, note that all vertices q in C with
the same potential as v must be incident to an edge (q, t) in C such that
φt ≥ φq. Hence the edge (q, t) must have non-negative length. i.e., aq,t ≥ 0.
Let p denote a vertex in C with the second smallest potential. Now, C has
length

svavu +
∑

(k,l)∈C,(k,l) 6=(v,u)

skak,l ≥ svav,u + sp(n− 1) max
(i,j)∈S

{aij} ≥ 0,

i.e., C has non-negative length.
Since D(A, s) is a digraph without any negative length cycles, `(A) is

feasible.

80 CHAPTER 4. RATIONALIZABILITY

References

1. Afriat, S. N. ‘The Construction of a Utility Function from Expenditure
Data.’ International Economic Review, 8, 1967, 67-77.

2. Bikhchandani, S., S. Chatterji, R. Lavi, A. Mu’alem, N. Nisan and
A.Sen. ‘Weak Monotonicity Characterizes Incentive Deterministic Dom-
inant Strategy Implementation,’ Econometrica, 74 (4), 11091132,
2006.

3. Chung, K. C. and W. Olszewski. ‘Endogenous, Almost Necessary
Conditions for Revenue Equivalence Theorem,’, mimeo, 2006.

4. Diewert, E. ‘Afriat and Revealed Preference Theory,’ Review of Eco-
nomic Studies, 40, 1973, 419-426.

5. Fostel, A., H. Scarf and M. J. Todd. ‘Two New Proofs of Afriat’s
Theorem,’ Cowles foundation discussion paper, 1415, 2003.

6. Green, J. and J-J. Laffont. ‘Characterization of Satisfactory Mech-
anisms for the Revelation of Preferences for Public Goods,’ Econo-
metrica, 45, 727-738, 1977.

7. Heydenreich, B, R. Müller, M. Uetz and R.V. Vohra. ‘A Characteri-
zation of Revenue Equivalence,’ mimeo, 2007.

8. Holmström, B. ‘Groves’ Scheme on Restricted Domains, ’Economet-
rica, 47(5): 1137-114, 1979.

9. Jehiel, P. and B. Moldovanu. ‘ Efficient Design with Interdependent
Valuations ,’ Econometrica, 69 (5), 12371259, 2001.

10. Krishna, V. and E. Maenner. ‘Convex potentials with an application
to mechanism design,’ Econometrica, 69(4):1113-1119, July 2001.

81

82 CHAPTER 4. RATIONALIZABILITY

11. Lavi, R. ,A. Mualem and N. Nisan. ‘Towards a characterization of
truthful combinatorial auctions,’ Proceedings of the 44th An-
nual IEEE Symposium on Foundations of Computer Science,
(FOCS03), 2003.

12. Lavi, R., A. Mualem and N. Nisan. ‘Two Simplified Proofs for Roberts’
Theorem,’ mimeo, 2004.

13. Malakhov, A. and R. V. Vohra. ‘Single and multi-dimensional optimal
auctions - a network approach,’ mimeo, September 2004.

14. Meyer-ter-Vehn, M. and B. Moldovanu. ‘Ex-post implementation with
interdependent valuations,’ mimeo, 2002.

15. Milgrom, P. and I. Segal. ‘Envelope Theorems for Arbitrary Choice
Sets,’ Econometrica, 70(2), 583-601, 2002.

16. Müller, R., A. Perea and S. Wolf. ‘Weak Monotonicity and Bayes-Nash
Incentive Compatibility,’ mimeo, 2005.

17. Myerson, R. B. ‘Optimal auction design,’ Mathematics of Opera-
tions Research, 6(1):5873, February 1981.

18. Piaw, T. C. and R. V. Vohra. ‘Afriat’s Theorem and Negative Cy-
cles,’mimeo, 2003.

19. Roberts, K. ‘The characterization of implementable choice rules,’ in
Jean-Jacques Laffont, editor, Aggregation and Revelation of Prefer-
ences. Papers presented at the 1st European Summer Workshop of
the Econometric Society, pages 321-349. North-Holland, 1979.

20. Rochet, J-C. ‘A necessary and sufficient condition for rationalizability
in a quasilinear context,’ Journal of Mathematical Economics,
16:191200, 1987.

21. Rockafellar, R. T. ‘Characterization of the subdifferentials of convex
functions,’Pacific Journal of Mathematics, 17(3):487510, 1966.

22. Rockafellar, R. T. Convex Analysis. Princeton University Press, Prince-
ton, New Jersey, 1970.

23. Saks, M. and L.Yu. ‘Weak monotonicity suffices for truthfulness on
convex domains,’ Proceedings of the 6th ACM Conference on
Electronic Commerce (EC05), pages 286293, 2005.

4.2. THE GENERAL CASE 83

24. Varian, H. The Non-parametric Approach to Demand Analysis. Econo-
metrica, 50, 1982, 945-974.

25. Wilson, R. Nonlinear Pricing. Oxford University Press, 1993.

