Endgame solving, and \textit{Libratus}, the state of the art for 2-player no-limit Texas hold’em

Tuomas Sandholm
CS 15-888
Imperfect-information games
In principle, AlphaGo techniques extend to other perfect-information games.
Perfect-information games

- Subgames can be solved with information from the subgame only
- This is **not true** in imperfect-information games

Sicilian Defense

Queen’s Gambit
Imperfect-information games

Example game: “Coin toss”

Player 1’s information set

Player 2’s information set

Player 1’s information set

Player 2’s information set
What is rational play?

Nash Equilibrium: a profile of strategies in which no player can improve by deviating (beliefs derived from strategies using Bayes rule). Robust

ε-Nash Equilibrium: No player can improve by more than ε
Forfeit
P1

Forfeit

P2

Subgame

C

Forfeit

P1

P = 0.5
Heads

P = 0.5
Tails

P2

P1

Sell

Play

Sell

Play

Subgame
Tackling imperfect-info games

• Application-independent techniques that algorithmically create the strategy

• Techniques for perfect-info games don’t apply

• Challenges
 – Uncertainty about what others and chance will do
 – Hidden state => need to interpret signals => use game theory
Poker

• Recognized challenge problem in game theory and AI
 – [Nash 1950]
 – [Kuhn 1950]
 – [Newman 1959]
 – [Waterman 1970]
 – [Zadeh 1977]
 – [Caro 1984]
 – [Pfeffer & Koller 1995]
 – [Billings et al. 1998]
 – [Schaeffer et al. 1999]
 – [Shi & Littman 2001]
 – [Billings et al. 2003]

• Tremendous progress since 2005
 – Rhode Island Hold’em solved (10^9 nodes) [Gilpin & Sandholm 2005]
 – Annual Computer Poker Competition 2006-2018
 – Limit Texas Hold’em near-optimally solved (10^{13} decisions) [Bowling et al. 2015]
Heads-up no-limit Texas hold’em

• Was the main *benchmark and challenge problem* in AI for imperfect-information games

• 10^{161} situations

• Mostly played on the Internet
 – Also in World Series of Poker, NBC Heads-Up Championship, etc.
 – Featured in *Casino Royale* and *Rounders*

• “Purest form of poker”

• No prior AI has beaten top humans
Texas hold’em

Chance deals 2 cards to each player

Round of betting

Chance deals 3 shared cards

Round of betting

Chance deals 1 shared card

Round of betting

Chance deals 1 shared card

Round of betting
Brains vs AI Rematch

• *Libratus* (= our AI) against four of the *best* heads-up no-limit Texas Hold’em specialist pros

• 120,000 hands over 20 days in January 2017
• $200,000 divided among the pros based on performance
• Conservative experiment design
Conservative experiment design to favor humans

• Large number of hands
• Humans got to choose:
 – #days, break days, times of day, breaks between sessions—even dynamically
 – Two tabling
 – 4-color deck
 – Hot keys, adjustable dynamically
 – Specific hi-res monitors, their own mice
 – Twitch chat on vs off
 – Play in public vs private within each pair
• 200 big blinds deep
• No use of timing tells
• Action history displayed
• Hand histories given to both sides every evening, including hands opponent folded
• Humans allowed to:
 – Use computers and any programs to analyze
 – Collaborate and coordinate actions (except within each hand)
 – Get outside help (e.g., Doug Polk)
• Humans allowed to think as long as they want
• Mis-click hands canceled
• Ginseng ☺
Final result

• Libratus beat the top humans in this game by a lot
 – 147 mbb/hand
 – Statistical significance 99.98%, i.e., 0.0002
 – Each human lost to Libratus
Why is game-theoretic AI better than machine learning for these problems?

1. Requires no data
2. Doesn’t assume opponent will continue to behave the same way as in the past
3. Not exploitable (even if opponent knows our strategy)
 - 36,000 hands against 6 Chinese poker players
 • WSOP bracelet winner
 • Expertise in computer science & ML
 • They studied Libratus’s hand histories in advance
 - AI won by 220 mbb/.hand
 • Won each of the 9 sessions
 • Also beat each human individually
 - Demonstrated that this approach is not frail
 • Minmax theorem proves this for exact Nash equilibrium. Our experiments showed it for computational approximations
 • Unlike what has been found with ML approaches (e.g., for Go, DOTA2, and Starcraft II)
How does *Libratus* work?

Bridges supercomputer
Libratus

Rules of the game

Abstraction

Equilibrium finding

Subgame solver

Self-improver

Blueprint strategy

New action abstraction for part of game
Libratus

Abstraction
Equilibrium finding
Subgame solver
Self-improver

Rules of the game
Blueprint strategy
New action abstraction for part of game
Abstraction in Libratus

• Abstracting chance’s actions (cards in poker)
 – Same algorithm that we used in Tartanian8
 [Brown, Ganzfried & Sandholm, AAMAS-15]
 • Like the state-of-the-art state-abstraction algorithm for centralized equilibrium
 finding presented in class, except distributed based on the public flop cards so that
 any one sample stays within one compute node (blade)
 – But much finer abstraction
 • 1st and 2nd betting round: no abstraction
 • 3rd betting round: 55M card histories -> 2.5M buckets
 • 4th betting round: 2.4B card histories -> 1.25M buckets

• Abstracting player’s actions (bet sizes in poker)
 – Largely based on what top humans and AIs do
 – Added radical bet sizes
 – Optimized some of the bet sizes in the early parts of the tree [Brown & Sandholm, AAAI-14]
Our equilibrium-finding algorithm

- Improvement on Monte-Carlo Counterfactual Regret Minimization [Lanctot et al. NIPS-09]
- Starts visiting less often paths where our own actions don’t look promising (similar to Brown & Sandholm NIPS-15 paper and AAAI-17 workshop paper)
 => Speedup => can solve larger abstractions
- Also, the imperfect-recall abstraction, in effect, becomes finer grained
 => Better solution quality
- Distributed across 1 + 195 compute nodes
 - Distribution along game tree, not “embarrassingly parallel”
Systems structuring & our usage

• **Bridges** supercomputer
 – ~$17 million (including running it for its lifetime)
 – Architected by Hewlett Packard Enterprise (HPE) & Pittsburgh Supercomputing Center
 – Heterogeneous architecture
 – We used the part that has 800 HPE Apollo 2000 servers, each with 28 cores and 128GB RAM
 – We officially used ~24 million core hours for Libratus (Jan 2016-Jan 2017)
 – But we used only 14 of the 28 cores on each node because that was fastest
 – We were the biggest user of Bridges in that timeframe (used about half)

• Blueprint runs typically used 1 + 195 nodes
 – Typically ~1-8 weeks per run

• Each endgame solver used 50 nodes
 – Typically 30-60 seconds per run

• Each self-improver run used 196-600 nodes
 – Typically for 8-30 hours per run

• C++, Open-MP for parallelism within each server, MPI for distributed computing

• 2.6 PB disk storage
 – Multiple strategies
 – Snapshots (balance in snapshotting)
 – Connections by Intel Omni-Path
 – Intel Lustre file system

• During the competition, we had three locations connected by Internet:
 – Front end running on a browser at Rivers casino
 – Poker server running on a Dell rack server at CMU
 – AI running on Bridges at Pittsburgh Supercomputing Center (in an industrial basement in Monroeville)
Libratus

- Rules of the game
 - Abstraction
 - Equilibrium finding
 - Subgame solver
 - Self-improver

Blueprint strategy

New action abstraction for part of game
Libratus

Abstraction

Equilibrium finding

Subgame solver
Strategy computed in a finer-grained abstraction

Self-improver

Rules of the game

Blueprint strategy

New action abstraction for part of game
Subgame solving during game play

• Want to solve reached “subgames” in finer abstraction
• ...but in imperfect-information games, subgames can’t be solved independently
• => Solve the whole game in a coarse abstraction for a “blueprint strategy” that gives context for solving the current subgame in a finer abstraction
• This is the most important technique in Libratus, 1st AI to beat top pros in 2-player no-limit Texas hold’em (10^{161} information sets) [Brown & Sandholm Science 2018]
Bayesian subgame solving

[Gilpin & Sandholm, AAAI-06, AAMAS-07; Ganzfried & Sandholm, AAMAS-15]

- No theoretical guarantees: unsafe
- Does well in practice for some domains
Re-solve refinement [Burch et al. AAAI-14]

- P1 can choose between entering the subgame or taking the EV (according to the blueprint) of the subgame
- Makes sure opponent’s EV for entering the subgame is no higher than in the blueprint strategy

=> Safety theorem. Strategy is no more exploitable than blueprint strategy

- But may miss obvious opportunities for improvement (e.g., not forfeiting)
Maxmargin refinement [Moravcik et al., AAAI-16]

Similar to Re-solve, but punishes P1 as much as possible for choosing Enter rather than Alt

\[Margin_{Heads} = EV[Alt_{Heads}] - EV[Enter_{Heads}] \]

Maximizes the minimum margin (Re-solve simply attempts to make all margins nonnegative)

Blueprint Strategy

Augmented Subgame

Problem: While we focus on reducing P1’s EV for Heads in the subgame to -0.25, P1 can just Sell for 0.5 in Heads
Reach-maxmargin refinement

[Brown & Sandholm, AAAI-17 workshop, NeurIPS-17, Science-18]

• If P1 chooses Play following Heads, P1 is **gifting** us 0.5

• So, in Augmented Subgame, we can increase the alternative payoff following Heads by 0.5, because choosing Play would still be a mistake for P1 there

• Thus the Gadget Game solver focuses on reducing P1’s EV for other types she may have
Reach-maxmargin refinement: multiple subgames

• If multiple subgames are refined, off-path EVs might not remain constant

• Solution: split gifts among subgames by probability subgame is reached
Reach-maxmargin refinement: multiple subgames

- If multiple subgames are refined, off-path EVs might not remain constant
- Solution: split gifts among subgames by probability subgame is reached
Reach-maxmargin refinement: multiple subgames

- If multiple subgames are refined, off-path EVs might not remain constant.
- Solution: split gifts among subgames by probability subgame is reached.
Reach-maxmargin refinement: multiple subgames

- If multiple subgames are refined, off-path EVs might not remain constant
- Solution: split gifts among subgames by probability subgame is reached
Reach-maxmargen refinement: multiple subgames

- If multiple subgames are refined, off-path EVs might not remain constant
- Solution: split gifts among subgames by probability subgame is reached
Reach-maxmargin refinement: multiple subgames

- Gifts might not be as large as we thought, because the subgames they come from will be improved
- Solution: substitute a lower bound on the gift
Reach-maxmargin refinement: multiple subgames

- Gifts might not be as large as we thought, because the subgames they come from will be improved.
- Solution: substitute a lower bound on the gift.
Reach-maxmargin refinement: multiple subgames

- Gifts might not be as large as we thought, because the subgames they come from will be improved.
- Solution: substitute a lower bound on the gift.
Medium-scale experiments on subgame solving within action abstraction

<table>
<thead>
<tr>
<th></th>
<th>Small Game Exploitability</th>
<th>Large Game Exploitability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blueprint Strategy</td>
<td>91.3 mbb / hand</td>
<td>41.4 mbb / hand</td>
</tr>
<tr>
<td>Unsafe Subgame Solving</td>
<td>5.51 mbb / hand</td>
<td>397 mbb / hand</td>
</tr>
<tr>
<td>Re-solve Refinement</td>
<td>81.2 mbb / hand</td>
<td>36.3 mbb / hand</td>
</tr>
<tr>
<td>Maxmargin Refinement</td>
<td>9.36 mbb / hand</td>
<td>6.12 mbb / hand</td>
</tr>
<tr>
<td>Reach-Maxmargin Refinement</td>
<td>8.26 mbb / hand</td>
<td>5.50 mbb / hand</td>
</tr>
</tbody>
</table>
New ideas in subgame solver

- Provably *safe* subgame solving taking into account opponent’s mistakes in the hand so far
- Nested subgame solving
 - Subgame solving starts much earlier
 - No card abstraction in the subgame
 - Changed our action abstraction between hands

NIPS-17 best paper award
New ideas in subgame solver

• Provably *safe* subgame solving taking into account opponent’s mistakes in the hand so far
• Nested subgame solving
• Subgame solving starts much earlier
• No card abstraction in the subgame
• Changed our action abstraction between hands
Action abstraction

[Gilpin, Sandholm & Sørensen, AAMAS-08], [Hawkin et al., AAAI-11, AAAI-12], [Brown & Sandholm, AAAI-14]
Action translation

Gilpin, Sandholm & Sørensen, AAMAS-08, Schnizlein et al., IJCAI-09, Ganzfried & Sandholm, IJCAI-13
Nested subgame solving

- **Idea:** Solve a subgame in real time for the off-tree action taken

 - **Theorem.** Say the blueprint is an ϵ-equilibrium of the abstraction. If $EV[\text{Enter}] \leq EV[\text{Alt}]$ for all P1 types, then the strategies form an ϵ-equilibrium to the new abstraction that includes the new action.
 - Can be repeated for every subsequent off-tree action (typically in finer and finer abstraction)

[Brown & Sandholm, AAAI-17 workshop, NeurIPS-17]
Medium-scale experiments on *nested* subgame solving

<table>
<thead>
<tr>
<th>Method</th>
<th>Exploitability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nested Re-solve Refinement</td>
<td>150.2 mbb / hand</td>
</tr>
<tr>
<td>Nested Unsafe Refinement</td>
<td>148.3 mbb / hand</td>
</tr>
<tr>
<td>Nested Maxmargin Refinement</td>
<td>122.0 mbb / hand</td>
</tr>
<tr>
<td>Nested Reach-Maxmargin Refinement</td>
<td>119.1 mbb / hand</td>
</tr>
</tbody>
</table>
New ideas in subgame solver

- Provably *safe* subgame solving taking into account opponent’s mistakes in the hand so far
- Nested subgame solving
 - Subgame solving starts much earlier
 - No card abstraction in the subgame
 - Changed our action abstraction between hands
Libratus’s “balance” and use of “blockers”
Libratus

- Rules of the game
- Abstraction
 - Equilibrium finding
- Subgame solver
- Self-improver

Blueprint strategy

New action abstraction for part of game
Libratus

Rules of the game

Abstraction

Equilibrium finding

Subgame solver

Self-improver

Blueprint strategy

New action abstraction for part of game
Filling holes in the action tree

Freeze this part of strategy

Compute an ε–equilibrium for this part

We do this for top k holes

Libratus

Opponent

Coarser card abstraction

Coarser card abstraction and action abstraction
Libratus fixing its own weaknesses
Libratus fixing its own weaknesses...
Head-to-head strength of top AIs

Ours
- Libratus (1/2017)
 - Modicum [NeurIPS-18]
 - Tartanian8 (12/2015)
 - Baby Tartanian8 (12/2015)
 - ACPC 2016 winner
- Claudico (4/2015)
- Tartanian7 (5/2014)
 - ACPC 2014 winner

Others’
- DeepStack (12/2016)
- Slumbot (12/2015)
- Supremus [2020]

Comparisons
- Libratus vs. Tartanian8: 63 mbb / hand
- Tartanian7 vs. Claudico: 25 mbb / hand
- Tartanian8 vs. Slumbot: 12 mbb / hand
Observations about Libratus’s play

• Strengths:
 – Small bets & huge bets & huge all-ins
 – Multiple bet sizes in any one situation
 – “Limping”, “donk betting”
 – “Perfect balance”
 – Mixed strategy
 – Probability distributions over players’ hands; not just “range-based”
 – Near-perfect subgame play; great use of “blockers”
 – Different bet sizings used in subgames

• Weaknesses?
 – No opponent exploitation
Is safe (equilibrium) play timid/boring?