Game Abstraction Lecture 2

Tuomas Sandholm
ACTION ABSTRACTION
Action abstraction

• Typically done manually
• Prior action abstraction algorithms for extensive games (even for just poker) have had no guarantees on solution quality [Hawkin et al. AAAI-11, 12]
• For stochastic games there is an action abstraction algorithm with bounds (based on discrete optimization) [Sandholm & Singh EC-12]
• We present the first algorithm for parameter optimization for one player (in 2-player 0-sum games)
 – We use it for action size abstraction
 – Leverage regret matching (or CFR) warm starting by regret transfer
“Regret Transfer and Parameter Optimization with Application to Optimal Action Abstraction”

[Brown & Sandholm AAAI-14]

Setting: game payoffs change as we change the actions (e.g., bet sizes in poker or bid sizes in auctions), but the game topology doesn’t change
Motivation: A Simple Game

We solve with No-Regret Learning
Convergence to ϵ-Nash equilibrium
Motivation: A Simple Game

Suppose we change the Bet-Call payoff part-way through our run
Motivation: A Simple Game

\[\delta = 2.1 - 2 = 0.1 \]
Convergence to ϵ-Nash equilibrium

Convergence to Nash

Epsilon

Iterations

Naïve Regret Transfer
Convergence to ϵ-Nash equilibrium

![Graph showing convergence to Nash](image-url)
Convergence to ϵ-Nash equilibrium

Scale Amount: $O\left(\frac{1}{(1+\delta\sqrt{T})^2}\right)$

Convergence to Nash

Epsilon vs Iterations
Optimal Parameter Selection

• Action abstraction: action size selection
 – (Optimizing together with probabilities would be quadratic)

• Each abstraction has a Nash equilibrium value that isn’t known until we solve it

• We want to pick the optimal action abstraction (one with highest equilibrium value for us)
What is the optimal value of θ for P1?
Step 1: Do K_1 iters of No-Regret Learning

NE Value vs Theta

Epsilon Bars
Step 2: Estimate Gradient

NE Value vs Theta

Theta

Nash Equilibrium Value

Epsilon Bars
Step 3: Move Theta, Transfer Regret (deweight regrets and strategies for averaging)
Step 4: Do K_2 iters of No-Regret Learning

Epsilon bars expand

NE Value vs Theta
Repeat to convergence

NE Value vs Theta
• We have applied this to
 – No-Limit Texas Hold’em (1 bet being sized in that experiment), and
 – Leduc Hold’em (2 bet sizes being sized simultaneously in that experiment)
SIMULTANEOUS ABSTRACTION AND EQUILIBRIUM FINDING
So far, we have done this for adding actions into the abstraction (and warm starting via discounting) [“Simultaneous Abstraction and Equilibrium Finding in Games”, Brown & Sandholm IJCAI-15]
REVERSE MAPPING
Action translation

\[f(x) \equiv \text{probability we map } x \text{ to } A \]

Desiderata about \(f \)

1. \(f(A) = 1, \ f(B) = 0 \)
2. Monotonicity
3. Scale invariance
4. Small change in \(x \) doesn’t lead to large change in \(f \)
5. Small change in \(A \) or \(B \) doesn’t lead to large change in \(f \)

“Pseudo-harmonic mapping”

\[f(x) = \frac{(B-x)(1+A)}{(B-A)(1+x)} \]

- Derived from Nash equilibrium of a simplified no-limit poker game
- Satisfies the desiderata
- Much less exploitable than prior mappings in simplified domains
- Performs well in practice in no-limit Texas Hold’em
 - Significantly outperforms best prior reverse mapping, randomized geometric

[Ganzfried & Sandholm IJCAI-13]
LOSSY ABSTRACTION
WITH EXPLOITABILITY BOUNDS
Game abstraction is nonmonotonic

In each equilibrium:
- Attacker randomizes 50-50 between A and B
- Defender plays A w.p. p, B w.p. p, and Between w.p. $1-2p$
- There is an equilibrium for each $p \in [0, \frac{1}{2}]$

Defender would choose A, but that is far from equilibrium in the original game where attacker would choose B

Defender would choose Between. That is an equilibrium in the original game

- Such “abstraction pathologies” also in small poker games [Waugh et al. AAMAS-09]
Can we get bounds on exploitability despite abstraction pathologies?

- First answer: Yes, in stochastic games [Sandholm & Singh EC-12]
- I’ll present a unified abstraction framework for extensive-form games [Kroer & Sandholm NeurIPS-18]
 - n-player, general-sum game
 - Generalizes and improves over prior work [Lanctot et al. ICML-12; Kroer & Sandholm EC-14, EC-16]
- Applies to modeling also
We think of this as two steps, which can be analyzed separately:
Lifted strategies

- Given a strategy profile σ' for the abstraction, a lifted strategy is a profile σ s.t. for each abstract I' and corresponding I:
 - Probability mass on abstract action is spread any way across the set of actions that map to it
 - Formally, $\sigma'(I', a') = \sum_{a \in g^{-1}(a')} \sigma(I, a)$
Abstraction theorem

[Kroer & Sandholm NeurIPS-18]

• Given:
 – a perfect-recall game,
 – an acyclic abstract game,
 – a mapping between them that satisfies our mild, natural assumptions, and
 – an ϵ-Nash equilibrium in the abstract game

• Then: Any lifted strategy is an ϵ'-Nash equilibrium in the original game, where $\epsilon' = \max_i \epsilon_i'$ and
 $\epsilon_i' = \epsilon + \text{mapping error}_i + \text{refinement error}_i$

• Advantages over prior work:
 – Exact decomposition of error
 – Equilibrium in abstract game doesn’t have to be exact
 – Doesn’t make restrictive assumption of prior work
 – Exponentially better bound than Lanctot et al. [ICML-12]
 – We also derive a similar result for solution to abstract game with bounded counterfactual regret (gain at most ϵ_a by switching to any action a)
Mapping error

Sum of

• Payoff error:
 – Expectation over leaf nodes in real game
 of utility difference between real leaf and the node it maps onto

• Distribution error:
 – Sum over leaf nodes in abstraction
 of difference in probability of reaching abstract leaf and sum of reach probabilities on real leaves that map to it
Refinement error$_i$

- Sum over infosets I_p in the perfect-recall refinement of the abstraction (let I' be the corresponding abstract infoset):

 Sum of:
 - Payoff error:
 - Expectation over leaves under I' of utility difference compared to corresponding leaf under I_p
 - Distribution error:
 - Sum over leaves under I_p of difference in probability of reaching refinement leaf from I_p versus sum of reach probabilities on abstract leaves from I'
Future research on lossy abstraction with exploitability bounds

• The distribution error terms in our decomposition are in general not computable *ex ante* (i.e., before running a solver on the abstract game)
 – Because they can depend on players’ strategies
 • Prior approaches required that for pairs of leaves mapped to each other, the leaves have the same sequence of information-set-action pairs leading to them in the abstraction
 • Under that assumption, we can compute *ex ante* bounds (take max’s)

• Idea: Find other specialized but practical game classes where game structure can be leveraged to give computable *ex ante* bounds
 • One approach: Our decomposition relies on utility differences (not absolute value thereof as prior approaches did), so structured game classes could potentially even cancel out error terms
Conclusions on this lecture

- Domain-independent techniques
- First action abstraction algorithm with optimality guarantees: iterative action size vector changing
- Simultaneous abstraction and equilibrium finding
- Reverse mapping: “pseudoharmonic”
- Lossy abstraction with exploitability bounds
- Future research
 - Applying these techniques to other domains
 - Better algorithms within our lossy-abstraction-with-bounds framework