15-780: Grad AI
Lecture 15: Planning

Geoff Gordon (this lecture)
Tuomas Sandholm
TAs Erik Zawadzki, Abe Othman
Review

- Planning algorithms
 - reduce to FOL (complications)
 - or use subset of FOL (e.g., STRIPS)
 - linear planner: add op to end of plan
 - partial-order planner (operators, bindings, partial order, guards, open preconditions): resolve open precond
- STRIPS: (world) state, operator = \{ preconditions \} + \{ effects \}, variable binding, goals
Plan Graphs
Planning & model search

- For a long time, it was thought that SAT-style model search was a non-starter as a planning algorithm.
- More recently, people have written fast planners that:
 - propositionalize the domain
 - turn it into a CSP or SAT problem
 - search for a model
Plan graph

- Tool for making good CSPs: plan graph
- Encodes a subset of the constraints that plans must satisfy
- Remaining constraints are handled
 -during search (reject solutions that violate them)—needs special-purpose code
 -or by adding extra clauses/constraints
Example

○ Start state: have(Cake)
○ Goal: have(Cake) ∧ eaten(Cake)
○ Operators: bake, eat

○ Bake
 ▸ pre: ¬have(Cake)
 ▸ post: have(Cake)

○ Eat
 ▸ pre: have(Cake)
 ▸ post: ¬have(Cake), eaten(Cake)
Propositionalizing

- Note: this domain is fully propositional
- If we had a general STRIPS domain, would have to pick a universe and propositionalize
- E.g., eat(x) would become eat(Banana), eat(Cake), eat(Fred), …
Plan graph

- have

- ¬ eaten

- Alternating levels: states and actions
- First level: initial state
Plan graph

- have
 - eat
- eaten

- First action level: all applicable actions
- Linked to their preconditions
Plan graph

- have
- ¬have

- eat

- ¬eaten

- eaten

- Second state level: add effects of actions to get literals that could hold at step 2
Also add **maintenance actions** to represent effect of doing nothing
Extend another pair of levels: now bake is a possible action
Plan graph

- Can extend as far right as we want
- Plan = subset of the actions at each action level
- Ordering unspecified within a level
In addition to the above links, add **mutex** links to indicate mutually exclusive actions or literals.
Plan graph

- Literals are mutex if they are contradictory
Actions which assert contradictory literals are mutex (inconsistent effects)
Plan graph

- Literals are also mutex if there is no action or non-mutex pair of actions that could achieve both (\textit{inconsistent support})
Plan graph

Actions are also mutex if one deletes a precondition of other (interference), or if preconditions are mutex (competition).
Mutex summary

- For each action level, left to right, check pairs of actions A, B (each check linear in rep’n size):
 - inconsistent effects: check each effect of A vs. effects of B
 - interference: effects of A vs. preconds of B
 - competing preconditions: check mutex links on preconditions of A, B
- Results at action level L tell us (in)consistent support at proposition level L+1
Getting a plan

- Build the plan graph out to some length \(k \)
- Search:
 - directly on the graph
 - or by translating to SAT or CSP
- If search succeeds, read off the plan
- If not, increment \(k \) and try again
- There is a test to see if \(k \) is “big enough”
Plan search

- DFS w/ variable ordering based on plan graph
- Start from last level, fill in last action set, compute necessary preconditions, fill in 2nd-to-last action set, etc.
- If at some level there is no way to do any actions, or no way to fill in consistent preconditions, backtrack
Plan search

have

¬eaten

eat

bake

have

¬have

eat

eaten

eaten
Plan search
Plan search

have

¬
eaten

eat

¬
have

have

¬
have

bake

have

¬
have

eaten

eaten

eaten
Plan search
Translation to SAT

- One variable for each pair of literals in state levels
- One variable per action in action levels
- Constraints implement STRIPS semantics plus “hints”
- Solution tells us which actions are performed at each action level, which literals are true at each state level
Action constraints

- Each action can only be executed if all of its preconditions are present:
 \[\text{act}_{t+1} \Rightarrow \text{pre}_{1t} \land \text{pre}_{2t} \land \ldots \]

- If executed, action asserts its postconditions:
 \[\text{act}_{t+1} \Rightarrow \text{post}_{1t+2} \land \text{post}_{2t+2} \land \ldots \]
Literal constraints

- In order to achieve a literal, we must execute an action that achieves it
 - $\text{post}_{t+2} \Rightarrow \text{act}_1_{t+1} \lor \text{act}_2_{t+1} \lor \ldots$
- Might be a maintenance action
Initial & goal constraints

- Goals must be satisfied at end:
 \[\text{goal}_1 \land \text{goal}_2 \land \ldots \]

- And initial state holds at beginning:
 \[\text{init}_1 \land \text{init}_2 \land \ldots \]
Mutex constraints

- Mutex constraints between actions or literals: add clause $\neg x \lor \neg y$

- Mutexes are redundant, but help anyway
Translation to SAT: example

note: haven’t
drawn all mutexes
at levels 4 & 5
Spatial Planning
Plans in Space…

- A* can be used for many things
- Here, A* for spatial planning (in contrast to, e.g., jobshop scheduling)
What’s wrong w/ A*?

- A* guarantees:
 - (optimality) A* finds a solution of cost g^*
 - (efficiency) A* expands no nodes that have $f(\text{node}) > g^*$
What's wrong with A*?

- Discretized space into tiny little chunks
 - a few degrees rotation of a joint
 - *Lots* of states \(\Rightarrow \) lots of states w/ \(f \leq g^* \)
- Discretized actions too
 - one joint at a time, discrete angles
- Results in jagged paths
What’s wrong with A*?
Snapshot of A*
Wouldn’t it be nice…

... if we could break things up based more on the real geometry of the world?

- *Robot Motion Planning*, Jean-Claude Latombe
Physical system

- Moderate number of real-valued coordinates
- Deterministic, continuous dynamics
- Continuous goal set (or a few pieces)
- Cost = time, work, torque, …
Typical physical system
A kinematic chain

- Rigid links connected by joints
 - revolute or prismatic
- Configuration
 \[\mathbf{q} = (q_1, q_2, \ldots) \]
 \[q_i = \text{angle or length of joint } i \]
- Dimension of \(\mathbf{q} \) = “degrees of freedom”
Mobile robots

- Translating in space = 2 dof
More mobility

- Translation + rotation = 3 dof
Q: How many dofs?

- 3d translation & rotation
How many dofs?

Free flying
How many dofs?

Midline must always be horizontal.
How many DOFs?

The configuration \(y \) has one real valued entry per DOF.
Kinematic motion planning

- Now let’s add obstacles
Configuration space

- For any configuration \mathbf{q}, can test whether it intersects obstacles.
- Set of legal configs is “configuration space” C (a subset of a dof-dimensional vector space).
- Path is a continuous function from $[0,1]$ into C with $q(0) = \mathbf{q}_s$ and $q(1) = \mathbf{q}_g$.
Note: dynamic planning

- Includes inertia as well as configuration
 - \dot{q}, q
- Harder, since twice as many dofs, and typically stronger constraints
- Won’t really cover here…
C-space example
More C-space examples
Another C-space example

image: J. Kuffner
Topology of C-space

- Topology of C-space can be something other than the familiar Euclidean world

- E.g. set of angles = unit circle = SO(2)
 - not \([0, 2\pi)\)!

- Ball & socket joint (3d angle) \(\subseteq\) unit sphere = SO(3)
Topology example

- Compare L to R: 2 planar angles v. one solid angle — both 2 dof (and neither the same as Euclidean 2-space)
Back to planning

- Complaint with A* was that it didn’t break up C-space intelligently
- How might we do better?
- Lots of roboticists have given lots of answers!
Shortest path in C-space
Shortest path in C-space
Suppose a planar polygonal C-space

Shortest path in C-space is a sequence of line segments

Each segment’s ends are either start or goal or one of the vertices in C-space

In 3-d or higher, might lie on edge, face, hyperface, …
Visibility graph

http://www.cse.psu.edu/~rsharma/robotics/notes/notes2.html
Naive algorithm

For $i = 1 \ldots$ points
 For $j = 1 \ldots$ points
 included = t
 For $k = 1 \ldots$ edges
 if segment ij intersects edge k
 included = f
Complexity

- Naive algorithm is $O(n^3)$ in planar C-space
- For faster algorithms, $O(n^2)$ or $O(k+n \log(n))$, see [Latombe, pg 157]
 - $k =$ number of edges that wind up in visibility graph
 - in dimension d, graph gets much bigger, more complex; speedup tricks stop working
- Once we have graph, search it!
Discussion of visibility graph

- **Good**: finds shortest path
- **Bad**: complex C-space yields long runtime, even if problem is easy
 - get my 23-dof manipulator to move 1 mm when nearest obstacle is 1 m
- **Bad**: no margin for error
Getting bigger margins

- Could just pad obstacles
 - but how much is enough? might make infeasible…
- What if we try to stay as far away from obstacles as possible?
Voronoi graph

- Set of all places equidistant from two or more obstacles: **Voronoi graph**
 - point obstacles: network of line segments
 - nonzero extent: graph may include curves
Voronoi w/ polygonal C-space
Voronoi method for planning

- Compute Voronoi diagram of C-space
- Go straight from start to nearest point on diagram
- Plan within diagram to get near goal (A*)
- Go straight to goal
Voronoi discussion

- Good: stays far away from obstacles
- Bad: assumes polygons
- Bad: gets kind of hard in higher dimensions (but see Howie Choset’s web page and book)
Voronoi discussion

- Bad: kind of gun-shy about obstacles
(Approximate) cell decompositions
Planning algorithm

- Lay down a grid in C-space
- Delete cells that intersect obstacles
- Connect neighbors
- A*
- If no path, double resolution and try again
 - never know when we’re done
Planning algorithm

- This method is what we were using in end-effector planning examples above

- Works pretty well except:
 - need high resolution near obstacles
 - want low res away from obstacles
Fix: variable resolution

- Lay down a coarse grid
- Split cells that intersect obstacle borders
 - empty cells good
 - full cells also don’t need splitting
- Stop at fine resolution
- Data structure: quadtree
Discussion

- Works pretty well, except:
 - Still don’t know when to stop
 - Won’t find shortest path
 - Still doesn’t really scale to high-d
Better yet

- Adaptive decomposition
- Split only cells that actually make a difference
 - are on path from start
 - make a difference to our policy
An adaptive splitter: parti-game

http://www.autonlab.org/autonweb/14699.html
Parti-game algorithm

- Sample actions from several points per cell
- Try to plan a path from start to goal
- On the way, pretend an opponent gets to choose which outcome happens (out of all that have been observed in this cell)
- If we can get to goal, we win
- Otherwise we can split a cell
9dof planar arm

Goal

Start

Fixed base

85 partitions total
Randomness in search
Rapidly-exploring Random Trees

- Break up C-space into Voronoi regions around random landmarks
- Invariant: landmarks always form a tree
 - known path to root
- Subject to this requirement, placed in a way that tends to split large Voronoi regions
 - coarse-to-fine search
- Goal: \textit{feasibility} not \textit{optimality} (*)
RRT assumptions

- RANDOM_CONFIG
 - samples from C-space

- EXTEND(q, q')
 - local controller, heads toward q' from q
 - stops before hitting obstacle (and perhaps also after bound on time or distance)

- FIND_NEAREST(q, Q)
 - searches current tree Q for point near q
Path Planning with RRTs
RRT = Rapidly-Exploring Random Tree

BUILT_RRT(q_{init}) {
 T = q_{init}
 for k = 1 to K {
 q_{rand} = RANDOM_CONFIG()
 q_{near} = FIND_NEAREST(q_{rand}, T)
 q_{new} = EXTEND(q_{near}, q_{rand})
 T = T + (q_{near}, q_{new})
 }
}

EXTEND(T, q) {
 q_{near} = FIND_NEAREST(q, T)
 q_{new} = EXTEND(q_{near}, q)
 T = T + (q_{near}, q_{new})
}
Path Planning with RRTs

RRT = Rapidly-Exploring Random Tree

\[
\text{BUILT}_\text{RRT}(q_{\text{init}}) \{
 T = q_{\text{init}} \\
 \text{for } k = 1 \text{ to } K \{ \\
 q_{\text{rand}} = \text{RANDOM}_\text{CONFIG()} \\
 q_{\text{near}} = \text{FIND}_\text{NEAREST}(q, T) \\
 q_{\text{new}} = \text{EXTEND}(q_{\text{near}}, q) \\
 T = T + (q_{\text{near}}, q_{\text{new}}) \\
 \}
\}
\]

[Kuffner & LaValle, ICRA’00]
Path Planning with RRTs

RRT = Rapidly-Exploring Random Tree

\[\text{BUILT}_{\text{RRT}}(q_{\text{init}}) \]
\{
\quad T = q_{\text{init}}
\quad \text{for } k = 1 \text{ to } K \{
\quad \quad q_{\text{rand}} = \text{RANDOM_CONFIG()}
\quad \quad \text{EXTEND}(T, q_{\text{rand}});
\quad \}
\}

\[\text{EXTEND}(T, q) \]
\{
\quad q_{\text{near}} = \text{FIND_NEAREST}(q, T)
\quad q_{\text{new}} = \text{EXTEND}(q_{\text{near}}, q)
\quad T = T + (q_{\text{near}}, q_{\text{new}})
\}

\[\text{[Kuffner & LaValle, ICRA'00]} \]
Path Planning with RRTs

RRT = Rapidly-Exploring Random Tree

BUILT_RRT(q_{init}) {
 T = q_{init}
 for k = 1 to K {
 q_{rand} = RANDOM_CONFIG()
 q_{new} = EXTEND(q_{near}, q_{rand})
 T = T + (q_{near}, q_{new})
 }
}

EXTEND(T, q) {
 q_{near} = FIND_NEAREST(q, T)
 q_{new} = EXTEND(q_{near}, q)
 T = T + (q_{near}, q_{new})
}

[Kuffner & LaValle, ICRA’00]
Path Planning with RRTs

RRT = Rapidly-Exploring Random Tree

\[
\text{BUILT_RRT}(q_{\text{init}}) \{ \\
T = q_{\text{init}} \\
\text{for } k = 1 \text{ to } K \{ \\
q_{\text{rand}} = \text{RANDOM_CONFIG()} \\
q_{\text{near}} = \text{FIND_NEAREST}(q, T) \\
q_{\text{new}} = \text{EXTEND}(q_{\text{near}}, q) \\
T = T + (q_{\text{near}}, q_{\text{new}}) \\
\}
\}
\]

\[
\text{EXTEND}(T, q) \{ \\
q_{\text{near}} = \text{FIND_NEAREST}(q, T) \\
q_{\text{new}} = \text{EXTEND}(q_{\text{near}}, q) \\
T = T + (q_{\text{near}}, q_{\text{new}}) \\
\}
\]

[Kuffner & LaValle, ICRA’00]
RRT example

Planar holonomic robot
RRTs explore coarse to fine

- Tend to break up large Voronoi regions
 - higher probability of q_{rand} being in them
- Limiting distribution of vertices given by RANDOM_CONFIG
 - as RRT grows, probability that q_{rand} is reachable with local controller (and so immediately becomes a new vertex) approaches 1
RRT example
RRT for a car (3 dof)
Planning with RRTs

- Build RRT from start until we add a node that can reach goal using local controller
- (Unique) path: root → last node → goal
- Optional: “rewire” tree during growth by testing connectivity to more than just closest node
- Optional: grow forward and backward