Recall *fluents*

For KBs that evolve, add extra argument to each predicate saying when it was true

- `at(Robot, Wean5409)`
- `at(Robot, Wean5409, t17)`
Operators

- Given a representation like this, can define **operators** that change state

- E.g., given
 - `at(Robot, Wean5409, t17)`
 - and writing `t18` for `result(move(Robot, Wean5409, corridor), t17)`

- might be able to conclude
 - `at(Robot, corridor, t18)`
 - `¬at(Robot, Wean5409, t18)`
Goals

- Want our robot to, e.g., get sandwich
- Search for proof of $\text{has(Geoff, Sandwich, t)}$
- Try to analyze proof tree to find sequence of operators that make goal true
Complications

- This strategy yields lots of complications
 - frame or successor-state axioms (facts don’t change unless operator does it)
 - generalization of answer literal
 - unique names, reasoning about equality among situations…
- Result can be slow inference
Planning

- Alternate solution: define a subset of FOL especially for planning
 - E.g., STRIPS language (*STanford Research Institute Problem Solver*)
STRIPS

- State of world = \{ true ground literals \}
 - no distinction between false, unknown
- goal = \{ desired ground literals \}
 - done if goal \(\subseteq \) state
- unique names, no functions, limited quantification, limited negation…
 - can get away w/o equality predicate
STRIPS example

Goal: \textit{full}(M)
STRIPS example

- food(N)
- hungry(M)
- at(N, W)
- at(M, X)
- at(B1, Y)
- at(B2, Y)
- at(B3, Z)
- on(B2, B1)
- clear(B2)
- clear(B3)
- height(M, Low)
- height(N, High)
STRIPS operators

- Operator = \{ preconditions \}, \{ effects \}
- If preconditions are true at time t,
 - can apply operator at time t
 - effects will be true at time t+1
 - negated effect: delete from state
 - rest of state unaffected
- Basic STRIPS: one operator per step
Quantification in operators

- Preconditions of operator may contain variables (implicit \forall)
 - operator can apply if preconditions unify w/ state (using substitution X)

- Effects may use variables bound by precondition
 - state $t+1$ has e / X for each e in effects
Operator example

- Eat(target, p, l)
 - **pre**: hungry(M), food(target), at(M, p), at(target, p), level(M, l), level(target, l)
 - **eff**: ¬hungry(M), full(M), ¬at(target, p), ¬level(target, l)
Operator example

- **Move**(from, to)
 - **pre:** at(M, from), level(M, Low)
 - **eff:** at(M, to), ¬at(M, from)

- **Push**(object, from, to)
 - **pre:** at(object, from), at(M, from), clear(object)
 - **eff:** at(M, to), at(object, to), ¬at(object, from), ¬at(M, from)
Operator example

- Climb(object, p)
 - **pre**: at(M, p), at(object, p), level(M, Low), clear(object)
 - **eff**: level(M, High), ¬level(M, Low)

- ClimbDown()
 - **pre**: level(M, High)
 - **eff**: ¬level(M, High), level(M, Low)
Plan search
Plan search

- Given a planning problem (start state, operator descriptions, goal)
- Run standard search algorithms to find plan
- Decisions: search state representation, neighborhood def’n, search algorithm
Linear planner

- Simplest choice: **linear planner**
 - Search state = sequence of operators
 - Neighbor: add op to end of sequence
- Bind variables as necessary
 - both op and binding are choice points
- Can search forward from start or backward from goal, or mix the two
- Example heuristic: number of open literals
Linear planner example

- Pick an operator, e.g.,
 - Move(from, to)
 - **pre**: at(M, from), level(M, Low)
 - **eff**: at(M, to), \(\neg\)at(M, from)

- Bind vars so preconditions match state
 - e.g., from: X, to: Y
 - **pre**: at(M, X), level(M, Low)
 - **eff**: at(M, Y), \(\neg\)at(M, X)
Apply operator

- food(N)
- hungry(M)
- at(N, W)
- at(B1, Y)
- at(B2, Y)
- at(B3, Z)
- on(B2, B1)
- clear(B2)
- clear(B3)
- level(M, Low)
- level(N, High)
Apply operator

- food(N)
- hungry(M)
- at(N, W)
- at(M, Y)
- at(B1, Y)
- at(B2, Y)
- at(B3, Z)
- on(B2, B1)
- clear(B2)
- clear(B3)
- level(M, Low)
- level(N, High)
Repeat...

- Plan is now \[\text{move}(X,Y) \]
- Pick another operator and binding
 - \text{Climb}(\text{object}, p), p: Y, \text{object}: B2
 - \textbf{pre}: at(M, Y), at(B2, Y), level(M, Low), clear(B2)
 - \textbf{eff}: level(M, High), \neg level(M, Low)
Apply operator

- food(N)
- hungry(M)
- at(N, W)
- at(B1, Y)
- at(B2, Y)
- at(B3, Z)
- on(B2, B1)
- clear(B2)
- clear(B3)
- level(N, High)
- level(M, Low)
Apply operator

- food(N)
- hungry(M)
- at(N, W)
- at(M, Y)
- at(B1, Y)
- at(B2, Y)
- at(B3, Z)
- on(B2, B1)
- clear(B2)
- clear(B3)
- level(M, High)
- level(N, High)
A possible plan:

- move(X, Y), move(Y, Z), push(B3, Z, Y), push(B3, Y, X), push(B3, X, W), climb(B3, W), eat(N, W, High)

DFS will try moving XYX, climbing on boxes unnecessarily, etc.
Partial-order planner

- Linear planner can be wasteful: backtrack undoes most recent action, rather than one that might have caused failure
- **Partial order planner** tries to fix this
 - so does CBJ—can use together
- Avoids committing to details of plan until it has to (**principle of least commitment**)
Partial-order planner

- **Search state:**
 - set of operators (partially bound)
 - ordering constraints
 - causal links (also called *guards*)
 - open preconditions

- **Neighborhood: plan refinement**
 - resolve an open precondition by adding operator, constraint, and/or guard
State: set of operators

- Might include move(X, p) “I will move somewhere from X”, eat($target$) “I will eat something”

- Also, extra operators START, FINISH
 - effects of START are initial state
 - preconditions of FINISH are goals
State: partial ordering

START → move(X, p) → eat(N) → push(B3, r, q) → FINISH
State: guards

- at(M, X)
- move(X, p)
- eat(N)
- push(B3, r, q)
- full(M)
- FINISH

- Describe where preconditions are satisfied
State: open preconditions

- All unsatisfied preconditions of any action
- Unsatisfied = doesn’t have a guard
Adding an ordering constraint

\[\text{at}(M, X) \]
\[\text{START} \rightarrow \text{move}(X, p) \]
\[\text{level}(M, \text{Low}) \]
\[\text{at}(N, p) \]
\[\text{at}(M, p) \]
\[\text{eat}(N) \]
\[\cdots \]
\[\text{full}(M) \]
\[\text{at}(B3, r) \]
\[\text{at}(M, r) \]
\[\text{push}(B3, r, q) \]
\[\text{clear}(B3) \]
\[\text{at}(M, r) \]
Adding an ordering constraint

at(M, X)

START → move(X, p)

level(M, Low)

at(N, p) → eat(N)

at(M, p) → push(B3, r, q)

clear(B3)

at(B3, r)

at(M, r)

full(M)

FINISH

at(M, X)
Adding an ordering constraint

- Wouldn’t ever add ordering on its own—but may need to when adding operator or guard
Adding a guard

START → move(X, p) → at(M, X)

level(M, Low)

at(M, p) → eat(N)

... → full(M)

push(B3, r, q) → at(B3, r)

at(M, r) → clear(B3)

at(M, p) → at(N, p)

at(M, p)
Adding a guard

\[\text{start} \rightarrow \text{move}(X, p) \]

\[\text{at}(M, X) \]

\[\text{full}(M) \]

\[\text{eat}(N) \]

\[\text{push}(B3, r, q) \]

\[\text{clear}(B3) \]

\[\text{at}(M, r) \]

\[\text{at}(M, p) \]

\[\text{at}(N, p) \]

\[\text{at}(B3, r) \]

\[\text{level}(M, \text{Low}) \]
Adding a guard

- Must go forward (may need to add ordering)
- Can’t cross operator that affects condition
Adding a guard

- Might involve binding a variable (may be more than one way to do so)
Adding an operator

START → move(X, p) → at(N, W) → ... → full(M)

at(M, X) → at(M, p) → eat(N) → push(B3, r, q) → clear(B3)

level(M, Low)

at(B3, r) → at(M, r)
Adding an operator

START → move(X, p) → at(M, X) → level(M, Low) → at(M, s) → move(s, r) → level(M, Low) → at(M, r) → push(B3, r, q) → clear(B3) → at(B3, r) → at(M, p) → eat(N) → at(N, W) → full(M) → FINISH
Adding an operator

\[
\begin{align*}
&\text{move}(X, p) \\
&\text{eat}(N) \\
&\text{push}(B3, r, q) \\
&\text{clear}(B3)
\end{align*}
\]
Resolving conflict

START → move(X, p) → at(M, p) → at(M, X) → at(N, W) → eat(N) → FINISH

level(M, Low) → at(M, s) → at(M, r) → at(B3, r) → push(B3, r, q) → clear(B3) → full(M)
Recap of neighborhood

- Pick an open precondition
- Pick an operator and binding that can satisfy it
 - may need to add a new op
 - or can use existing op
- Add guard
- Resolve conflicts by adding constraints, bindings
Consistency & completeness

- Plan **consistent**: no cycles in ordering, preconditions guaranteed true throughout guard intervals
- Plan **complete**: no open preconditions
- Search maintains consistency, terminates when complete
Execution

- A consistent, complete plan can be executed by linearizing it:
 - execute actions in any order that matches constraints
 - fill in unbound vars in any consistent way