15-780: Graduate AI

Lecture 2. Proofs & FOL

Geoff Gordon (this lecture)
Tuomas Sandholm
TAs Erik Zawadzki, Abe Othman
Recitations: Fri. 3PM here (GHC 4307)

Vote: useful to have one tomorrow?

 would cover propositional & FO logic

Draft schedule of due dates up on web

 subject to change with notice
Course email list

- 15780students AT cs.cmu.edu
- Everyone’s official email should be in the list—we’ve sent a test message, so if you didn’t get it, let us know
Review
What is AI?

- Lots of examples: poker, driving robots, flying birds, RoboCup
- Things that are easy for humans/animals to do, but no obvious algorithm
- Search / optimization / summation
- Handling uncertainty
- Sequential decisions
Propositional logic

- **Syntax**
 - variables, constants, operators
 - literals, clauses, sentences

- **Semantics** \(\text{(model } \rightarrow \{T, F\}) \)

- **Truth tables, how to evaluate formulas**

- **Satisfiable, valid, contradiction**

- **Relationship to CSPs**
Propositional logic

- Manipulating formulas (e.g., de Morgan)
- Normal forms (e.g., CNF)
- Tseitin transformation to CNF
- Handling uncertainty (independent Nature choices + logical consequences)
- Compositional semantics
- How to translate informally-specified problems into logic (e.g., 3-coloring)
NP
Satisfiability

- **SAT**: determine whether a propositional logic sentence has a satisfying model
- A **decision problem**: instance \rightarrow yes or no
- Fundamental problem in CS
 - many decision problems **reduce** to SAT
 - informally, if we can solve SAT, we can solve these other problems
- A **SAT solver** is a good AI building block
Example decision problem

- *k-coloring*: can we color a map using only *k* colors in a way that keeps neighboring regions from being the same color?
Reduction

- Loosely, “A reduces to B” means that if we can solve B then we can solve A.

- Formally, let A, B be decision problems (instances \rightarrow Y or N).

- A reduction is a poly-time function f such that, given an instance a of A,
 - $f(a)$ is an instance of B, and
 - $A(a) = B(f(a))$
Reduction picture

Problem A

Problem B

All instances

All instances
Reduction picture
Reduction picture
Reducing k-coloring \rightarrow SAT

\[(a_r \lor a_g \lor a_b) \land (b_r \lor b_g \lor b_b) \land (c_r \lor c_g \lor c_b) \land (d_r \lor d_g \lor d_b) \land (e_r \lor e_g \lor e_b) \land (z_r \lor z_g \lor z_b) \land (

\neg a_r \lor \neg b_r) \land (\neg a_g \lor \neg b_g) \land (\neg a_b \lor \neg b_b) \land (\neg a_r \lor \neg z_r) \land (\neg a_g \lor \neg z_g) \land (\neg a_b \lor \neg z_b) \land \]

\ldots
Direction of reduction

- When A reduces to B:
 - if we can solve B, we can solve A
 - so B must be at least as hard as A
 - Trivially, can take an easy problem and reduce it to a hard one
Not-so-useful reduction

- Path planning reduces to SAT
- Variables: is edge e in path?
- Constraints:
 - exactly 1 path-edge touches start
 - exactly 1 path-edge touches goal
 - either 0 or 2 touch each other node
More useful: SAT \rightarrow CNF-SAT

- Given any propositional formula, Tseitin transformation produces (in poly time) an equivalent CNF formula
- So, given a CNF-SAT solver, we can solve SAT with general formulas
More useful: CNF-SAT \rightarrow 3SAT

- Can reduce even further, to 3SAT
 - is 3CNF formula satisfiable?
 - 3CNF: at most 3 literals per clause
- Useful if reducing SAT/3SAT to another problem (to show other problem hard)
CNF-SAT \rightarrow 3SAT

- Must get rid of long clauses
- E.g., $(a \lor \neg b \lor c \lor d \lor e \lor \neg f)$
- Replace with

 $$(a \lor \neg b \lor x) \land (\neg x \lor c \lor y) \land (\neg y \lor d \lor z) \land (\neg z \lor e \lor \neg f)$$
A decision problem is in NP if it reduces to SAT

E.g., TSP, k-coloring, propositional planning, integer programming (decision versions)

E.g., path planning, solving linear equations
NP-complete

- Many decision problems reduce back and forth to SAT: they are **NP-complete**
 - Cook showed how to simulate any polytime nondeterministic computation w/ (very complicated, but still poly-size) SAT problem
 - Equivalently, SAT is exactly as hard (in theory at least) as these other problems

Open question: $P = NP$

- $P =$ there is a poly-time algorithm to solve
- $NP =$ reduces to SAT
- We know of no poly-time algorithm for SAT, but we also can’t prove that SAT requires more than about linear time!
Cost of reduction

- Complexity theorists often ignore little things like constant factors (or even polynomial factors!)
- So, is it a good idea to reduce your decision problem to SAT?
- Answer: sometimes…
Cost of reduction

- SAT is well studied \Rightarrow fast solvers

- So, if there is an efficient reduction, ability to use fast SAT solvers can be a win
 - *e.g.*, 3-coloring
 - another example later (SATplan)

- Other times, cost of reduction is too high
 - usu. because instance gets bigger
 - will also see example later (MILP)
Choosing a reduction

- *May be many reductions from problem A to problem B*
- *May have wildly different properties*
 - *e.g., solving transformed instance may take seconds vs. days*
Entailment

- Sentence A **entails** sentence B, $A \models B$, if B is true in every model where A is
 - same as saying that $(A \implies B)$ is valid
Proof tree

- A tree with a formula at each node
- At each internal node, children \models parent
- Leaves: assumptions or premises
- Root: consequence
- If we believe assumptions, we should also believe consequence
Proof tree example

rains \implies\ pours
pours \land\ not\ outside \Rightarrow\ rusty
rains
outside
Proof by contradiction

- Assume opposite of what we want to prove, show it leads to a contradiction

- Suppose we want to show $KB \models S$

- Write KB' for $(KB \land \neg S)$

- Build a proof tree with
 - assumptions drawn from clauses of KB'
 - conclusion $= F$

- so, $(KB \land \neg S) \models F$ (contradiction)
Proof by contradiction

KB

\[\text{rains} \imp \text{pours} \]
\[\text{pours} \land \text{outside} \imp \text{rusty} \]
\[\text{rains} \]
\[\text{outside} \]
\[\neg \text{rusty} \]

\[\neg \text{rusty} \]

\[\text{negation of desired conclusion} \]
Proof by contradiction

\[\text{KB} \]

\[\text{rains} \Rightarrow \text{pours} \]
\[\text{pours} \land \text{outside} \Rightarrow \text{rusty} \]
\[\text{rains} \]
\[\text{outside} \]
\[\neg \text{rusty} \]
\[\neg \text{rusty} \text{ negation of desired conclusion} \]

\[\models \text{pours} \]
\[\models \text{rusty} \]
\[\not\models F \]
Inference rules
Inference rule

- To make a proof tree, we need to be able to figure out new formulas entailed by KB
- Method for finding entailed formulas = inference rule
- We’ve implicitly been using one already
Modus ponens

\[(a \land b \land c \implies d) \quad a \quad b \quad c \quad d\]

- Probably most famous inference rule: all men are mortal, Socrates is a man, therefore Socrates is mortal

- Quantifier-free version:

\[\text{man}(Socrates) \land (\text{man}(Socrates) \implies \text{mortal}(Socrates))\]
Another inference rule

\[(a \Rightarrow b) \quad \neg b \]

\[\therefore \quad \neg a \]

- Modus tollens

- If it’s raining the grass is wet; the grass is not wet, so it’s not raining
One more…

\[(\alpha \lor c) \ (\neg c \lor \beta)\]

\[\alpha \lor \beta\]

- Resolution
 - \(\alpha, \beta\) are arbitrary subformulas
 - Combines two formulas that contain a literal and its negation
 - Not as commonly known as modus ponens / tollens
Resolution example

- Modus ponens / tollens are special cases

- Modus tollens:

 \[(\neg \text{raining} \lor \text{grass-wet}) \land \neg \text{grass-wet} \models \neg \text{raining} \]
Resolution example

- \(\text{rains} \Rightarrow \text{pours} \)
- \(\text{pours} \land \text{outside} \Rightarrow \text{rusty} \)
- Can we conclude \(\text{rains} \land \text{outside} \Rightarrow \text{rusty} \)?
Resolution example

- \(\text{rains} \Rightarrow \text{pours} \)
- \(\text{pours} \land \text{outside} \Rightarrow \text{rusty} \)
- Can we conclude \(\text{rains} \land \text{outside} \Rightarrow \text{rusty} \)?

\[\neg\text{rains} \lor \text{pours} \]
\[\neg\text{pours} \lor \neg\text{outside} \lor \text{rusty} \]
Resolution example

- $\text{rains } \rightarrow \text{pours}$
- $\text{pours } \land \text{outside } \rightarrow \text{rusty}$
- Can we conclude $\text{rains } \land \text{outside } \rightarrow \text{rusty}$?

\[
\neg \text{rains } \lor \text{pours} \\
\neg \text{pours } \lor \neg \text{outside } \lor \text{rusty} \\
\neg \text{rains } \lor \neg \text{outside } \lor \text{rusty}
\]
Resolution

\[(\alpha \lor c) \quad (\neg c \lor \beta)\]
\[
\alpha \lor \beta
\]

- *Simple proof by case analysis*
- *Consider separately cases where we assign c = True and c = False*
Resolution case analysis

\((\alpha \lor c) \quad (\neg c \lor \beta)\)
Soundness and completeness

- An inference procedure is **sound** if it can only conclude things entailed by KB
 - common sense; haven’t discussed anything unsound
- A procedure is **complete** if it can conclude everything entailed by KB
Completeness

- Modus ponens by itself is incomplete
- Resolution + proof by contradiction is complete for propositional formulas represented as sets of clauses
 - famous theorem due to Robinson
 - if $KB \models F$, we’ll derive empty clause
- Caveat: also need **factoring**, removal of redundant literals $(a \lor b \lor a) \models (a \lor b)$
Algorithms

- We now have our first* algorithm for SAT
 - remove redundant literals (factor) wherever possible
 - pick an application of resolution according to some fair rule
 - add its consequence to KB
 - repeat

- Not a great algorithm, but works
Variations

- *Horn clause inference*
- *MAXSAT*
- *Nonmonotonic logic*
Horn clauses

- *Horn clause*: \((a \land b \land c \Rightarrow d)\)
- *Equivalently*, \((\neg a \lor \neg b \lor \neg c \lor d)\)
- *Disjunction of literals, at most one of which is positive*
- *Positive literal = head, rest = body*
Use of Horn clauses

- People find it easy to write Horn clauses (listing out conditions under which we can conclude head)

 \[\text{happy(John)} \land \text{happy(Mary)} \Rightarrow \text{happy(Sue)} \]

- No negative literals in above formula; again, easier to think about
Why are Horn clauses important

- *Modus ponens alone is complete*
- *So is modus tollens alone*
- *Inference in a KB of propositional Horn clauses is linear*
 - *e.g., by forward chaining*
Forward chaining

- Look for a clause with all body literals satisfied
- Add its head to KB (modus ponens)
- Repeat
- See RN for more details
MAXSAT

- Given a CNF formula $C_1 \land C_2 \land \ldots \land C_n$
- Clause weights $w_1, w_2, \ldots w_n$ (weighted version) or $w_i = 1$ (unweighted)
- Find model which satisfies clauses of maximum total weight
 - decision version: max weight $\geq w$?
- More generally, weights on variables (bonus for setting to T): MAXVARSAT
Nonmonotonic logic

- Suppose we believe all birds can fly
- Might add a set of sentences to KB

\[
\begin{align*}
bird(Polly) & \Rightarrow flies(Polly) \\
bird(Tweety) & \Rightarrow flies(Tweety) \\
bird(Tux) & \Rightarrow flies(Tux) \\
bird(John) & \Rightarrow flies(John) \\
\end{align*}
\]
Nonmonotonic logic

- Fails if there are penguins in the KB
- Fix: instead, add

 \[\text{bird}(Polly) \land \neg \text{ab}(Polly) \Rightarrow \text{flies}(Polly) \]
 \[\text{bird}(Tux) \land \neg \text{ab}(Tux) \Rightarrow \text{flies}(Tux) \]

 ...

- \(\text{ab}(Tux) \) is an “abnormality predicate”
- Need separate \(\text{ab}_i(x) \) for each type of rule
Nonmonotonic logic

- Now set as few abnormality predicates as possible (a MAXVARSAT problem)
- Can prove flies(Polly) or flies(Tux) with no ab(x) assumptions
- If we assert \(\neg \text{flies(Tux)} \), must now assume \(\text{ab(Tux)} \) to maintain consistency
- Can’t prove flies(Tux) any more, but can still prove flies(Polly)
Nonmonotonic logic

- Works well as long as we don’t have to choose between big sets of abnormalities
 - is it better to have 3 flightless birds or 5 professors that don’t wear jackets with elbow-patches?
 - even worse with nested abnormalities: birds fly, but penguins don’t, but superhero penguins do, but …
First-order logic
First-order logic

- So far we’ve been using opaque vars like *rains* or *happy*(John)
- Limits us to statements like “it’s raining” or “if John is happy then Mary is happy”
- Can’t say “all men are mortal” or “if John is happy then someone else is happy too”
Predicates and objects

- Interpret happy(John) or likes(Joe, pizza) as a **predicate** applied to some **objects**
- **Object** = an object in the world
- **Predicate** = boolean-valued function of objects
- **Zero-argument predicate** $x()$ plays same role that Boolean variable x did before
Distinguished predicates

- We will assume three distinguished predicates with fixed meanings:
 - True / T, False / F
 - Equal(x, y)
- We will also write \((x = y)\) and \((x \neq y)\)
Equality satisfies usual axioms

- Reflexive, transitive, symmetric

- Substituting equal objects doesn’t change value of expression

\[(\text{John} = \text{Jonathan}) \land \text{loves(Mary, John)} \Rightarrow \text{loves(Mary, Jonathan)}\]
Functions

- Functions map zero or more objects to another object
 - e.g., professor(15-780), last-common-ancestor(John, Mary)
- Zero-argument function is the same as an object—John v. John()
The **nil** object

- *Functions are untyped: must have a value for *any* set of arguments*

- *Typically add a **nil** object to use as value when other answers don’t make sense*
Types of values

- **Expressions in propositional logic could only have Boolean (T/F) values**

- **Now we have two types of expressions:** object-valued and Boolean-valued

 - \(\text{done(slides(15-780))} \Rightarrow \text{happy(professor(15-780))} \)

- **Functions map objects to objects; predicates map objects to Booleans; connectives map Booleans to Booleans**
Definitions

- **Term** = expression referring to an object
 - John
 - left-leg-of(father-of(president-of(USA)))

- **Atom** = predicate applied to objects
 - happy(John)
 - raining
 - at(robot, Wean-5409, 11AM-Wed)
Definitions

- **Literal** = possibly-negated atom
 - happy(John), ¬happy(John)
- **Sentence or formula** = literals joined by connectives like ∧ ∨ ¬ ⇒
 - raining
 - done(slides(780)) ⇒ happy(professor)
- **Expression** = term or formula
Semantics

- Models are now much more complicated
 - List of objects (nonempty, may be infinite)
 - Lookup table for each function mentioned
 - Lookup table for each predicate mentioned
- Meaning of sentence: model $\rightarrow \{T, F\}$
- Meaning of term: model \rightarrow object
For example
KB describing example

- $\text{alive}(\text{cat})$
- $\text{ear-of}(\text{cat}) = \text{ear}$
- $\text{in}(\text{cat}, \text{box}) \land \text{in}(\text{ear}, \text{box})$
- $\neg \text{in}(\text{box}, \text{cat}) \land \neg \text{in}(\text{cat}, \text{nil})$ …
- $\text{ear-of}(\text{box}) = \text{ear-of}(\text{ear}) = \text{ear-of}(\text{nil}) = \text{nil}$
- $\text{cat} \neq \text{box} \land \text{cat} \neq \text{ear} \land \text{cat} \neq \text{nil}$ …
Aside: avoiding verbosity

- **Closed-world assumption**: literals not assigned a value in KB are false
 - avoid stating $\neg \text{in(box, cat)}$, etc.

- **Unique names assumption**: objects with separate names are separate
 - avoid $\text{box} \neq \text{cat}$, $\text{cat} \neq \text{ear}$, …
Aside: typed variables

- *KB also illustrates need for data types*
- *Don’t want to have to specify ear-of(box) or ¬in(cat, nil)*
- *Could design a type system*
 - *argument of happy() is of type animate*
- *Include rules saying function instances which disobey type rules have value nil*
Model of example

- **Objects**: C, B, E, N
- **Function values**:
 - cat: C, box: B, ear: E, nil: N
- **Predicate values**:
 - in(C, B), ¬in(C, C), ¬in(C, N), …
Failed model

- **Objects**: C, E, N

- *Fails because there’s no way to satisfy inequality constraints with only 3 objects*
Another possible model

- **Objects**: C, B, E, N, X
- *Extra object X could have arbitrary properties since it’s not mentioned in KB*
- *E.g., X could be its own ear*
An embarrassment of models

- In general, can be infinitely many models
 - unless KB limits number somehow
- Job of KB is to rule out models that don’t match our idea of the world
- Saw how to rule out CEN model
- Can we rule out CBENX model?
Getting rid of extra objects

- Can use quantifiers to rule out CBENX model:
 \[\forall x. x = \text{cat} \lor x = \text{box} \lor x = \text{ear} \lor x = \text{nil} \]
- Called a domain closure assumption
Quantifiers, informally

- **Add quantifiers and object variables**
 - $\forall x. \text{man}(x) \Rightarrow \text{mortal}(x)$
 - $\neg \exists x. \text{lunch}(x) \land \text{free}(x)$
- \forall: no matter how we replace object variables with objects, formula is still true
- \exists: there is some way to fill in object variables to make formula true
New syntax

- **Object variables are terms**
- **Build atoms from variables** x, y, … **as well as** constants John, Fred, …
 - $man(x)$, $loves(John, z)$, $mortal(brother(y))$
- **Build formulas from these atoms**
 - $man(x) \implies mortal(brother(x))$
- **New syntactic construct**: term or formula w/ free variables
New syntax ⇒ new semantics

- **Variable assignment** for a model M maps syntactic variables to model objects
 - $x: C$, $y: N$

- **Meaning of expression w/ free vars**: look up in assignment, then continue as before
 - $\text{term}: (\text{model, var asst}) \rightarrow \text{object}$
 - $\text{formula}: (\text{model, var asst}) \rightarrow \text{truth value}$
Example

- **Model:** CEBN model from above
- **Assignment:** \((x: C, y: N)\)
- \(\text{alive}(\text{ear}(x)) \leftrightarrow \text{alive}(\text{ear}(C)) \leftrightarrow \text{alive}(E) \leftrightarrow T\)
Working with assignments

- Write ε for an arbitrary assignment (e.g., all variables map to nil)
- Write $(V / x: \text{obj})$ for the assignment which is just like V except that variable x maps to object obj
More new syntax: Quantifiers, binding

- For any variable x and formula F, $(\forall x. F)$ and $(\exists x. F)$ are formulas.
- Adding quantifier for x is called binding x.
 - In $(\forall x. \text{likes}(x, y))$, x is bound, y is free.
- Can add quantifiers and apply logical operations like $\land \lor \neg$ in any order.
- But must eventually wind up with ground formula (no free variables).
Semantics of \forall

- *Sentence* $(\forall x. S)$ is T in (M, V) if S is T in $(M, V / x: \text{obj})$ for all objects obj in M
Example

- M has objects (A, B, C) and predicate $\text{happy}(x)$ which is true for A, B, C

- Sentence $\forall x. \text{happy}(x)$ is satisfied in (M, ε)
 - since $\text{happy}(A), \text{happy}(B), \text{happy}(C)$ are all satisfied in M
 - more precisely, $\text{happy}(x)$ is satisfied in $(M, \varepsilon/x:A), (M, \varepsilon/x:B), (M, \varepsilon/x:C)$
Semantics of \exists

- *Sentence* ($\exists x. S$) *is true in* (M, V) *if there is some object* obj *in* M *such that* S *is true in* $(M, V / x: \text{obj})$
Example

- M has objects (A, B, C) and predicate
 - $\text{happy}(A) = \text{happy}(B) = True$
 - $\text{happy}(C) = False$
- $\exists x. \text{happy}(x)$ is satisfied in (M, ε)
- Since $\text{happy}(x)$ is satisfied in $(M, \varepsilon/x:B)$
Scoping rules (so we don’t have to write a gazillion parens)

- In $(\forall x. F)$ and $(\exists x. F)$, $F = \text{scope} = \text{part of formula where quantifier applies}$
- Variable x is bound by $\text{innermost possible quantifier (matching name, in scope)}$
- Two variables in different scopes can have same name—they are still different vars
- $\text{Quantification has lowest precedence}$
Scoping examples

- \((\forall x. \text{happy}(x)) \lor (\exists x. \neg \text{happy}(x))\)
 - *Either everyone’s happy, or someone’s unhappy*

- \(\forall x. (\text{raining} \land \text{outside}(x) \Rightarrow (\exists x. \text{wet}(x)))\)
 - *The x who is outside may not be the one who is wet*
Scoping examples

- *English sentence* "everybody loves somebody" is ambiguous

- *Translates to logical sentences*
 - $\forall x. \exists y. \text{loves}(x, y)$
 - $\exists y. \forall x. \text{loves}(x, y)$
Equivalence in FOL
Entailment, etc.

- As before, entailment, satisfiability, validity, equivalence, etc. refer to all possible models
 - these words only apply to ground sentences, so variable assignment doesn’t matter
- But now, can’t determine by enumerating models, since there could be infinitely many
- So, must do reasoning via equivalences or entailments
Equivalences

- All transformation rules for propositional logic still hold

- In addition, there is a “De Morgan’s Law” for moving negations through quantifiers

\[\neg \forall x. S \equiv \exists x. \neg S \]

\[\neg \exists x. S \equiv \forall x. \neg S \]

- And, rules for getting rid of quantifiers
Generalizing CNF

- Eliminate \Rightarrow, move \neg in w/ De Morgan
- but \neg moves through quantifiers too
- Get rid of quantifiers (see below)
- Distribute $\land \lor$, or use Tseitin
Do we really need \exists?

- $\exists x. \text{happy}(x)$
- $\text{happy}(\text{happy_person}())$
- $\forall y. \exists x. \text{loves}(y, x)$
- $\forall y. \text{loves}(y, \text{loved_one}(y))$
Skolemization

- **Called Skolemization** (after Thoraf Albert Skolem)
- Eliminate \exists by substituting a function of arguments of all enclosing \forall quantifiers
- Make sure to use a new name!
Do we really need \forall?

- Positions of quantifiers irrelevant (as long as variable names are distinct)
 - $\forall x. \ happy(x) \land \forall y. \ takes(y, \ CS780)$
 - $\forall x. \ \forall y. \ happy(x) \land \ takes(y, \ CS780)$

- So, might as well drop them
 - $\ happy(x) \land \ takes(y, \ CS780)$
Getting rid of quantifiers

- **Standardize apart** *(avoid name collisions)*
- **Skolemize**
- **Drop ∀** *(free variables implicitly universally quantified)*
- **Terminology:** still called “free” even though quantification is implicit
For example

- $\forall x. \text{man}(x) \Rightarrow \text{mortal}(x)$
 - $\neg \text{man}(x) \lor \text{mortal}(x)$
- $\forall y. \exists x. \text{loves}(y, x)$
 - $\text{loves}(y, f(y))$
- $\forall x. \text{honest}(x) \Rightarrow \text{happy}(\text{Diogenes})$
 - $\neg \text{honest}(x) \lor \text{happy}(\text{Diogenes})$
- $(\forall x. \text{honest}(x)) \Rightarrow \text{happy}(\text{Diogenes})$
Exercise

- $(\forall x. \text{honest}(x)) \Rightarrow \text{happy(Diogenes)}$
Proofs in FOL
FOL is special

- Despite being much more powerful than propositional logic, there is still a sound and complete inference procedure for FOL w/ equality.

- Almost any significant extension breaks this property.

- This is why FOL is popular: very powerful language with a sound & complete inference procedure.
Proofs

- Proofs by contradiction work as before:
 - add $\neg S$ to KB
 - put in CNF
 - run resolution
 - if we get an empty clause, we’ve proven S by contradiction
- But, CNF and resolution have changed
Generalizing resolution

- **Propositional:** \((\neg a \lor b) \land a \models b\)

- **FOL:**

 \[
 (\neg \text{man}(x) \lor \text{mortal}(x)) \land \text{man}(\text{Socrates})
 \]

 \[
 \models (\neg \text{man}(\text{Socrates}) \lor \text{mortal}(\text{Socrates}))
 \land \text{man}(\text{Socrates})
 \]

 \[
 \models \text{mortal}(\text{Socrates})
 \]

- **Difference:** had to substitute \(x \rightarrow \text{Socrates}\)
Universal instantiation

- What we just did is UI:

\[(\neg \text{man}(x) \lor \text{mortal}(x)) \]
\[\models (\neg \text{man}(\text{Socrates}) \lor \text{mortal}(\text{Socrates})) \]

- Works for \(x \rightarrow \) any term not containing \(x \)

\[\ldots \models (\neg \text{man}(\text{uncle}(y)) \lor \text{mortal}(\text{uncle}(y))) \]

- For proofs, need a good way to find useful instantiations
Substitution lists

- List of variable \rightarrow term pairs

- Values may contain variables (leaving flexibility about final instantiation)

- But, no LHS may be contained in any RHS
 - i.e., applying substitution twice is the same as doing it once

- E.g., $L = (x \rightarrow Socrates, y \rightarrow uncle(z))$
Substitution lists

- Apply a substitution to an expression:
 syntactically substitute vars → terms

- E.g., \(L = (x \rightarrow Socrates, y \rightarrow uncle(z)) \)

 - \(mortal(x) \land man(y): L \rightarrow mortal(Socrates) \land man(uncle(z)) \)

- Substitution list ≠ variable assignment
Unification

- *Two FOL terms unify* with each other if there is a substitution list that makes them syntactically identical.

- *man(x), man(Socrates) unify* using the substitution $x \rightarrow Socrates$.

- *Importance: purely syntactic criterion for identifying useful substitutions.*
Unification examples

- $\text{loves}(x, x), \text{loves}(\text{John}, y)$ unify using $x \rightarrow \text{John}, y \rightarrow \text{John}$

- $\text{loves}(x, x), \text{loves}(\text{John}, \text{Mary})$ can’t unify

- $\text{loves}(\text{uncle}(x), y), \text{loves}(z, \text{aunt}(z))$:
Unification examples

- $loves(x, x), loves(John, y)$ unify using $x \rightarrow John, y \rightarrow John$

- $loves(x, x), loves(John, Mary)$ can’t unify

- $loves(uncle(x), y), loves(z, aunt(z))$:
 - $z \rightarrow uncle(x), y \rightarrow aunt(uncle(x))$
 - $loves(uncle(x), aunt(uncle(x)))$
Quiz

- **Can we unify**

 \[\text{knows}(\text{John}, x) \land \text{knows}(x, \text{Mary})\]

- **What about**

 \[\text{knows}(\text{John}, x) \land \text{knows}(y, \text{Mary})\]
Quiz

- Can we unify

 \[\text{knows}(John, x) \quad \text{knows}(x, Mary) \]

 No!

- What about

 \[\text{knows}(John, x) \quad \text{knows}(y, Mary) \]

 \[x \rightarrow Mary, \ y \rightarrow John \]
Standardize apart

- But \textit{knows}(x, Mary) is logically equivalent to \textit{knows}(y, Mary)!

- \textit{Moral: standardize apart before unifying}
Most general unifier

- May be many substitutions that unify two formulas
- MGU is unique (up to renaming)
- Simple, moderately fast algorithm for finding MGU (see RN); more complex, linear-time algorithm

First-order resolution

- **Given clauses** \((\alpha \lor c), \ (\neg d \lor \beta),\) and a substitution list \(L\) unifying \(c\) and \(d\)
- **Conclude** \((\alpha \lor \beta) : L\)
- **In fact, only ever need** \(L\) **to be MGU of** \(c, d\)
Example

\[\text{rains in outside}(x) \implies \text{wet}(x) \]
\[\text{wet}(x) \implies \text{rusty}(x) \lor \text{rustproof}(x) \]
\[\text{robot}(x) \implies \neg \text{rustproof}(x) \]
\[\text{rains} \]
\[\text{guidebot}(\text{Robby}) \]
\[\text{guidebot}(x) \implies \text{robot}(x) \land \text{outside}(x) \]
rains \text{ in outside}(x) \implies \text{ wet}(x)

\text{wet}(x) \implies \text{ rusty}(x) \lor \text{ rustproof}(x)

\text{robot}(x) \implies \neg \text{ rustproof}(x)

\text{rains}

\text{guidebot}(\text{ Bobby})

\text{guidebot}(x) \implies \text{ robot}(x) \lor \text{ outside}(x)
First-order factoring

- When removing redundant literals, we have the option of unifying them first
- Given clause \((a \lor b \lor \theta)\), substitution \(L\)
- If \(a : L\) and \(b : L\) are the same
- Then we can conclude \((a \lor \theta) : L\)
- Again \(L = \text{MGU}\) is enough
Completeness

- **First-order resolution (w/ FO factoring)** is sound and complete for FOL w/o = (famous theorem due to Herbrand and Robinson)

- Unlike propositional case, may be infinitely many possible resolutions

- So, FO entailment is *semidecidable* (entailed statements are *recursively enumerable*)
Variation

- **Restrict semantics so we only need to check one finite propositional KB**
 - *NP-complete much better than RE*
- **Unique names**: objects with different names are different (John ≠ Mary)
- **Domain closure**: objects without names given in KB don’t exist
Who? What? Where?
Wh-questions

- We’ve shown how to answer a question like “is Socrates mortal?”
- What if we have a question whose answer is not just yes/no, like “who killed JR?” or “where is my robot?”
- Simplest approach: prove $\exists x. \text{killed}(x, \text{JR})$, hope the proof is constructive
Answer literals

- Simple approach doesn’t always work
- Instead of \(\neg S(x) \), add \((\neg S(x) \lor \text{answer}(x)) \)
- If there’s a contradiction, we can eliminate \(\neg S(x) \) by resolution and unification, leaving \(\text{answer}(x) \) with \(x \) bound to a value that causes a contradiction
Example

\[\text{kills (Jack, Cat)} \lor \text{kills (Curiosity, Cat)}\]

\[\neg \text{kills (Jack, x)}\]
Extensions
Equality

- **Paramodulation** is sound and complete for FOL+equality (see RN)
- *Or, resolution + axiom schema*
Uncertainty

- *Same trick as before: many independent random choices by Nature, logical rules for their consequences*

- *Two new difficulties*
 - *ensuring satisfiability (not new, harder)*
 - *describing set of random choices*
Independent Choice Logic

- Generalizes Bayes nets, Markov logic, Prolog programs—incomparable to FOL
- Satisfiability: uses only acyclic KBs (always feasible)
- Random choices: assume all syntactically distinct terms are distinct (so we know what objects are in our model)
- Attach random choices to tuples of objects
Other choices: Markov logic

- Assume unique names, domain closure, known fns: KB determines finite universe
- Each FO statement now has a known set of ground instances
 - e.g., loves(x,y) ⇒ happy(x) has n^2 instances if there are n people
- One random choice per rule instance: enforce w/p p (KBs that satisfy the rule are $p/(1-p)$ times more likely)
Inference under uncertainty

- Wide open topic: lots of recent work!
- We’ll cover only the special case of propositional inference under uncertainty
- The extension to FO is left as an exercise for the listener
Second order logic

- SOL adds quantification over predicates
- E.g., principle of mathematical induction:
 - $\forall P. P(0) \land (\forall x. P(x) \Rightarrow P(S(x)))$
 - $\Rightarrow \forall x. P(x)$
- There is no sound and complete inference procedure for SOL (Gödel’s famous incompleteness theorem)
Others

- Temporal and modal logics ("P(x) will be true at some time in the future," "John believes P(x)")
- Nonmonotonic FOL
- First-class functions (lambda operator, application)
- ...