15-780: Graduate AI
Lecture 2. Proofs & FOL

Geoff Gordon (this lecture)
Tuomas Sandholm
TAs Erik Zawadzki, Abe Othman
Admin

- **Recitations**: Fri. 3PM here (GHC 4307)
- **Vote**: useful to have one tomorrow? [No]
 - would cover propositional & FO logic
- **Draft schedule of due dates up on web**
 - subject to change with notice
Course email list

- 15780students AT cs.cmu.edu
- Everyone’s official email should be in the list—we’ve sent a test message, so if you didn’t get it, let us know
Review
What is AI?

- *Lots of examples:* poker, driving robots, flying birds, RoboCup
- *Things that are easy for humans/animals to do, but no obvious algorithm*
- *Search / optimization / summation*
- *Handling uncertainty*
- *Sequential decisions*
Propositional logic

- **Syntax**
 - variables, constants, operators
 - literals, clauses, sentences
- **Semantics (model \(\rightarrow \{T, F\} \))**
- **Truth tables, how to evaluate formulas**
- **Satisfiable, valid, contradiction**
- **Relationship to CSPs**
Propositional logic

- Manipulating formulas (e.g., de Morgan)
- Normal forms (e.g., CNF)
- Tseitin transformation to CNF
- Handling uncertainty (independent Nature choices + logical consequences)
- Compositional semantics
- How to translate informally-specified problems into logic (e.g., 3-coloring)
Satisfiability

- **SAT**: determine whether a propositional logic sentence has a satisfying model
- **A decision problem**: instance \rightarrow yes or no
- **Fundamental problem in CS**
 - many decision problems **reduce** to SAT
 - informally, if we can solve SAT, we can solve these other problems
- **A SAT solver is a good AI building block**
Example decision problem

- \textit{k-coloring}: can we color a map using only \textit{k} colors in a way that keeps neighboring regions from being the same color?
Reduction

- Loosely, “A reduces to B” means that if we can solve B then we can solve A
- Formally, let A, B be decision problems (instances → Y or N)
- A reduction is a poly-time function f such that, given an instance a of A
 - f(a) is an instance of B, and
 - A(a) = B(f(a))
Reduction picture

Problem A

Problem B

All instances

All instances
Reduction picture

Problem A

Problem B

function f

All instances

All instances
Reduction picture
Reducing k-coloring \rightarrow SAT

$(a_r \lor a_g \lor a_b) \land (b_r \lor b_g \lor b_b) \land (c_r \lor c_g \lor c_b) \land$
$(d_r \lor d_g \lor d_b) \land (e_r \lor e_g \lor e_b) \land (z_r \lor z_g \lor z_b) \land$
$(\neg a_r \lor \neg b_r) \land (\neg a_g \lor \neg b_g) \land (\neg a_b \lor \neg b_b) \land$
$(\neg a_r \lor \neg z_r) \land (\neg a_g \lor \neg z_g) \land (\neg a_b \lor \neg z_b) \land$

\ldots
Direction of reduction

- **When A reduces to B:**
 - if we can solve B, we can solve A
 - so B must be at least as hard as A
 - Trivially, can take an easy problem and reduce it to a hard one
Not-so-useful reduction

- Path planning reduces to SAT
- Variables: is edge e in path?
- Constraints:
 - exactly 1 path-edge touches start
 - exactly 1 path-edge touches goal
 - either 0 or 2 touch each other node
More useful: SAT \rightarrow CNF-SAT

- Given any propositional formula, Tseitin transformation produces (in poly time) an equivalent CNF formula
- So, given a CNF-SAT solver, we can solve SAT with general formulas
More useful: CNF-SAT \rightarrow 3SAT

- Can reduce even further, to 3SAT
 - is 3CNF formula satisfiable?
 - 3CNF: at most 3 literals per clause
- Useful if reducing SAT/3SAT to another problem (to show other problem hard)
CNF-SAT \rightarrow 3SAT

- **Must get rid of long clauses**
- **E.g.,** $(a \lor \neg b \lor c \lor d \lor e \lor \neg f)$
- **Replace with**

\[
(a \lor \neg b \lor x) \land (\neg x \lor c \lor y) \land \\
(\neg y \lor d \lor z) \land (\neg z \lor e \lor \neg f)
\]
A decision problem is in NP if it reduces to SAT

E.g., TSP, k-coloring, propositional planning, integer programming (decision versions)

E.g., path planning, solving linear equations
NP-complete

- Many decision problems reduce back and forth to SAT: they are **NP-complete**
 - Cook showed how to simulate any poly-time nondeterministic computation w/ (very complicated, but still poly-size) SAT problem
 - Equivalently, SAT is exactly as hard (in theory at least) as these other problems

Open question: $P = \text{NP}$

- $P = \text{there is a poly-time algorithm to solve}$
- $\text{NP} = \text{reduces to SAT}$
- $\text{We know of no poly-time algorithm for SAT, but we also can’t prove that SAT requires more than about linear time!}$
Cost of reduction

- Complexity theorists often ignore little things like constant factors (or even polynomial factors!)
- So, is it a good idea to reduce your decision problem to SAT?
- Answer: sometimes…
Cost of reduction

- *SAT is well studied* ⇒ *fast solvers*

- *So, if there is an efficient reduction, ability to use fast SAT solvers can be a win*
 - e.g., 3-coloring
 - another example later (*SATplan*)

- *Other times, cost of reduction is too high*
 - usu. because instance gets bigger
 - will also see example later (*MILP*)
Choosing a reduction

- May be many reductions from problem A to problem B
- May have wildly different properties
 - e.g., solving transformed instance may take seconds vs. days
Proofs
Entailment

- *Sentence A entails sentence B, A |= B, if B is true in every model where A is*
 - *same as saying that (A ⇒ B) is valid*
Proof tree

- A tree with a formula at each node
- At each internal node, children \models parent
- Leaves: assumptions or premises
- Root: consequence
- If we believe assumptions, we should also believe consequence
Proof tree example

\[\text{rains} \Rightarrow \text{pours} \]
\[\text{pours} \land \text{outside} \Rightarrow \text{rusty} \]
\[\text{rains} \land \text{outside} \]

\[\Gamma \vdash \text{pours} \]

\[\Gamma \vdash \text{rusty} \]
Proof by contradiction

- Assume opposite of what we want to prove, show it leads to a contradiction
- Suppose we want to show $KB \models S$
- Write KB' for $(KB \land \neg S)$
- Build a proof tree with
 - assumptions drawn from clauses of KB'
 - conclusion $= F$
- so, $(KB \land \neg S) \models F$ (contradiction)
Proof by contradiction

\[KB \]
\[\text{rains} \Rightarrow \text{pours} \]
\[\text{pours} \lor \text{outside} \Rightarrow \text{rusty} \]
\[\text{rains} \]
\[\text{outside} \]
\[\neg \text{rusty} \]
\[\neg \text{rusted} \]
\[\neg \text{negation of desired conclusion} \]
Proof by contradiction

\[\text{KB} \]

\[\text{rains} \Rightarrow \text{pours} \]
\[\text{pours \& outside} \Rightarrow \text{rusty} \]
\[\text{rains} \]
\[\text{outside} \]
\[\neg \text{rusty} \]
\[\neg \text{negation of desired conclusion} \]
Inference rules
Inference rule

- To make a proof tree, we need to be able to figure out new formulas entailed by KB
- Method for finding entailed formulas = inference rule
- We’ve implicitly been using one already
Modus ponens

\[(a \land b \land c \Rightarrow d) \quad a \quad b \quad c \quad d\]

- *Probably most famous inference rule:* all men are mortal, Socrates is a man, therefore Socrates is mortal

- *Quantifier-free version:*

\[
\text{man}(Socrates) \land \\
(\text{man}(Socrates) \Rightarrow \text{mortal}(Socrates))
\]
Another inference rule

\[(a \Rightarrow b) \quad \neg b \quad \overline{\quad \neg a \quad} \]

- **Modus tollens**
- *If it’s raining the grass is wet; the grass is not wet, so it’s not raining*
One more…

\[(\alpha \lor c) \ (\neg c \lor \beta) \]
\[\alpha \lor \beta\]

- **Resolution**
 - \(\alpha, \beta\) are arbitrary subformulas
 - *Combines two formulas that contain a literal and its negation*
 - *Not as commonly known as modus ponens / tollens*
Resolution example

- *Modus ponens / tollens are special cases*

- *Modus tollens:*

 \[(\neg \text{raining} \lor \text{grass-wet}) \land \neg \text{grass-wet} \vdash \neg \text{raining}\]
Resolution example

- $rains \Rightarrow pours$
- $pours \land outside \Rightarrow rusty$
- *Can we conclude* $rains \land outside \Rightarrow rusty$?
Resolution example

- \(\text{rains} \Rightarrow \text{pours} \)
- \(\text{pours} \land \text{outside} \Rightarrow \text{rusty} \)
- \text{Can we conclude rains} \land \text{outside} \Rightarrow \text{rusty}? \)

\[\neg\text{rains} \lor \text{pours} \]
\[\neg\text{pours} \lor \neg\text{outside} \lor \text{rusty} \]
Resolution example

- $\text{rains} \Rightarrow \text{pours}$
- $\text{pours} \land \text{outside} \Rightarrow \text{rusty}$
- Can we conclude $\text{rains} \land \text{outside} \Rightarrow \text{rusty}$?

$$
\neg \text{rains} \lor \text{pours} \\
\neg \text{pours} \lor \neg \text{outside} \lor \text{rusty} \\
\neg \text{rains} \lor \neg \text{outside} \lor \text{rusty}
$$
Resolution

$(\alpha \lor c) \quad (\neg c \lor \beta)$

\[\alpha \lor \beta \]

- *Simple proof by case analysis*
- *Consider separately cases where we assign $c = True$ and $c = False$*
Resolution case analysis

\[(\alpha \lor c) \land (\neg c \lor \beta)\]

\[c = T:\]
\[T \land \beta = \beta\]

\[c = F:\]
\[\alpha \land T = \alpha\]
\[\alpha \lor \beta\]
Soundness and completeness

- An inference procedure is \textbf{sound} if it can only conclude things entailed by KB
 - common sense; haven’t discussed anything unsound

- A procedure is \textbf{complete} if it can conclude everything entailed by KB
Completeness

- Modus ponens by itself is incomplete
- Resolution + proof by contradiction is complete for propositional formulas represented as sets of clauses
 - famous theorem due to Robinson
 - if $KB \models F$, we’ll derive empty clause
- Caveat: also need factoring, removal of redundant literals $(a \lor b \lor a) \models (a \lor b)$
Algorithms

- We now have our first* algorithm for SAT
 - remove redundant literals (factor) wherever possible
 - pick an application of resolution according to some fair rule
 - add its consequence to KB
 - repeat

- Not a great algorithm, but works
Variations

- *Horn clause inference*
- *MAXSAT*
- *Nonmonotonic logic*
Horn clauses

- **Horn clause**: \((a \land b \land c \Rightarrow d)\)
- **Equivalently**, \((\neg a \lor \neg b \lor \neg c \lor d)\)
- **Disjunction of literals**, at most one of which is positive
- **Positive literal** = head, rest = body
Use of Horn clauses

- People find it easy to write Horn clauses (listing out conditions under which we can conclude head)

 \[\text{happy(John)} \land \text{happy(Mary)} \Rightarrow \text{happy(Sue)} \]

- No negative literals in above formula; again, easier to think about
Why are Horn clauses important

- Modus ponens alone is complete
- So is modus tollens alone
- Inference in a KB of propositional Horn clauses is linear
 - e.g., by forward chaining
Forward chaining

- Look for a clause with all body literals satisfied
- Add its head to KB (modus ponens)
- Repeat
- See RN for more details
MAXSAT

- Given a CNF formula $C_1 \land C_2 \land \ldots \land C_n$
- Clause weights $w_1, w_2, \ldots w_n$ (weighted version) or $w_i = 1$ (unweighted)
- Find model which satisfies clauses of maximum total weight
 - decision version: max weight $\geq w$?
- More generally, weights on variables (bonus for setting to T): MAXVARSAT
Nonmonotonic logic

Suppose we believe all birds can fly

Might add a set of sentences to KB

\[
\begin{align*}
\text{bird}(Polly) & \Rightarrow \text{flies}(Polly) \\
\text{bird}(Tweety) & \Rightarrow \text{flies}(Tweety) \\
\text{bird}(Tux) & \Rightarrow \text{flies}(Tux) \\
\text{bird}(John) & \Rightarrow \text{flies}(John)
\end{align*}
\]

...
Nonmonotonic logic

- *Fails if there are penguins in the KB*
- *Fix: instead, add*

\[\text{bird}(Polly) \land \neg \text{ab}(Polly) \Rightarrow \text{flies}(Polly)\]
\[\text{bird}(Tux) \land \neg \text{ab}(Tux) \Rightarrow \text{flies}(Tux)\]

...

- *\text{ab}(Tux) is an “abnormality predicate”*
- *Need separate \text{ab}_i(x) for each type of rule*
Nonmonotonic logic

- Now set as few abnormality predicates as possible (a MAXVARSAT problem)
- Can prove flies(Polly) or flies(Tux) with no \(ab(x) \) assumptions
- If we assert \(\neg \text{flies}(Tux) \), must now assume \(ab(Tux) \) to maintain consistency
- Can’t prove \(\text{flies}(Tux) \) any more, but can still prove \(\text{flies}(Polly) \)
Nonmonotonic logic

- Works well as long as we don’t have to choose between big sets of abnormalities
 - is it better to have 3 flightless birds or 5 professors that don’t wear jackets with elbow-patches?
 - even worse with nested abnormalities: birds fly, but penguins don’t, but superhero penguins do, but …
First-order logic
First-order logic

- So far we’ve been using opaque vars like \textit{rains} or \textit{happy(John)}
- Limits us to statements like “it’s raining” or “if John is happy then Mary is happy”
- Can’t say “all men are mortal” or “if John is happy then someone else is happy too”
Predicates and objects

- *Interpret* happy(John) or likes(Joe, pizza) *as a* predicate *applied to some objects*

- *Object* = an object in the world

- *Predicate* = boolean-valued function of objects

- Zero-argument predicate x() plays same role that Boolean variable x did before
Distinguished predicates

- We will assume three distinguished predicates with fixed meanings:
 - True / T, False / F
 - Equal(x, y)
- We will also write \((x = y)\) and \((x \neq y)\)
Equality satisfies usual axioms

- Reflexive, transitive, symmetric
- Substituting equal objects doesn’t change value of expression

\[(\text{John} = \text{Jonathan}) \land \text{loves(Mary, John)} \Rightarrow \text{loves(Mary, Jonathan)}\]
Functions

- Functions map zero or more objects to another object
 - e.g., professor(15-780), last-common-ancestor(John, Mary)
- Zero-argument function is the same as an object—John v. John()
The **nil** object

- *Functions are untyped: must have a value for any set of arguments*
- *Typically add a **nil** object to use as value when other answers don’t make sense*
Types of values

- Expressions in propositional logic could only have Boolean (T/F) values
- Now we have two types of expressions: object-valued and Boolean-valued
 - \(\text{done(slides(15-780))} \Rightarrow \text{happy(professor(15-780))} \)
- Functions map objects to objects; predicates map objects to Booleans; connectives map Booleans to Booleans
Definitions

- **Term** = expression referring to an object
 - John
 - `left-leg-of(father-of(president-of(USA)))`
- **Atom** = predicate applied to objects
 - `happy(John)`
 - `raining`
 - `at(robot, Wean-5409, 11AM-Wed)`
Definitions

- **Literal** = possibly-negated atom
 - happy(John), ¬happy(John)

- **Sentence or formula** = literals joined by connectives like ∧ ∨ ¬ ⊨
 - raining
 - done(slides(780)) ⊨ happy(professor)

- **Expression** = term or formula
Semantics

- Models are now much more complicated
 - List of objects (nonempty, may be infinite)
 - Lookup table for each function mentioned
 - Lookup table for each predicate mentioned
- Meaning of sentence: model $\rightarrow \{T, F\}$
- Meaning of term: model \rightarrow object
For example
KB describing example

- alive(cat)
- ear-of(cat) = ear
- in(cat, box) ∨ in(ear, box)
- ¬in(box, cat) ∨ ¬in(cat, nil) …
- ear-of(box) = ear-of(ear) = ear-of(nil) = nil
- cat ≠ box ∨ cat ≠ ear ∨ cat ≠ nil …
Aside: avoiding verbosity

- **Closed-world assumption**: literals not assigned a value in KB are false
 - avoid stating $\neg \text{in}(\text{box, cat})$, etc.

- **Unique names assumption**: objects with separate names are separate
 - avoid $\text{box} \neq \text{cat}$, $\text{cat} \neq \text{ear}$, …
Aside: typed variables

- *KB also illustrates need for data types*
- *Don’t want to have to specify ear-of(box) or ¬in(cat, nil)*
- *Could design a type system*
 - *argument of happy() is of type animate*
- *Include rules saying function instances which disobey type rules have value nil*
Model of example

- **Objects**: C, B, E, N
- **Function values**:
 - cat: C, box: B, ear: E, nil: N
- **Predicate values**:
 - in(C, B), ¬in(C, C), ¬in(C, N), …
Failed model

- Objects: C, E, N
- *Fails because there’s no way to satisfy inequality constraints with only 3 objects*
Another possible model

- **Objects**: C, B, E, N, X
- *Extra object X could have arbitrary properties since it’s not mentioned in KB*
- *E.g., X could be its own ear*
An embarrassment of models

- In general, can be infinitely many models
 - unless KB limits number somehow
- Job of KB is to rule out models that don’t match our idea of the world
- Saw how to rule out CEN model
- Can we rule out CBENX model?
Getting rid of extra objects

- Can use quantifiers to rule out CBENX model:
 \[\forall x. x = \text{cat} \lor x = \text{box} \lor x = \text{ear} \lor x = \text{nil} \]

- Called a \textit{domain closure assumption}
Quantifiers, informally

- Add quantifiers and object variables
 - $\forall x. \text{man}(x) \Rightarrow \text{mortal}(x)$
 - $\neg \exists x. \text{lunch}(x) \land \text{free}(x)$

 - \forall: no matter how we replace object variables with objects, formula is still true
 - \exists: there is some way to fill in object variables to make formula true
New syntax

- **Object variables are terms**
- **Build atoms from variables** x, y, \ldots **as well as** constants John, Fred, …
 - $man(x), \ loves(John, z), \ mortal(brother(y))$
- **Build formulas from these atoms**
 - $man(x) \Rightarrow mortal(brother(x))$
- **New syntactic construct:** term or formula w/ free variables
New syntax ⇒ new semantics

○ *Variable assignment* for a model M maps syntactic variables to model objects
 ○ $x: C$, $y: N$

○ *Meaning of expression w/ free vars*: look up in assignment, then continue as before
 ○ *term*: $(model, var\ asst) \rightarrow object$
 ○ *formula*: $(model, var\ asst) \rightarrow truth\ value$
Example

- **Model:** CEBN model from above
- **Assignment:** \((x: C, y: N)\)
- \(\text{alive(ear}(x)) \leftrightarrow \text{alive}(\text{ear}(C)) \leftrightarrow \text{alive}(E) \leftrightarrow T\)
Working with assignments

- Write ε for an arbitrary assignment (e.g., all variables map to nil)
- Write $(V / x: obj)$ for the assignment which is just like V except that variable x maps to object obj
More new syntax: Quantifiers, binding

- For any variable \(x \) and formula \(F \), \((\forall x. F) \) and \((\exists x. F) \) are formulas

- Adding quantifier for \(x \) is called **binding** \(x \)
 - In \((\forall x. \text{likes}(x, y)) \), \(x \) is bound, \(y \) is free

- Can add quantifiers and apply logical operations like \(\land \lor \neg \) in any order

- But must eventually wind up with **ground** formula (no free variables)
Semantics of \forall

- Sentence $(\forall x. \ S)$ is T in (M, V) if S is T in $(M, V / x \colon \text{obj})$ for all objects obj in M
Example

○ M has objects (A, B, C) and predicate $happy(x)$ which is true for A, B, C

○ Sentence $\forall x. happy(x)$ is satisfied in (M, ε)
 ○ since $happy(A), happy(B), happy(C)$ are all satisfied in M
 ○ more precisely, $happy(x)$ is satisfied in $(M, \varepsilon/x:A), (M, \varepsilon/x:B), (M, \varepsilon/x:C)$
Semantics of \exists

- Sentence ($\exists x. S$) is true in (M, V) if there is some object obj in M such that S is true in $(M, V / x: \text{obj})$
Example

- M has objects (A, B, C) and predicate
 - $\text{happy}(A) = \text{happy}(B) = \text{True}$
 - $\text{happy}(C) = \text{False}$
- Sentence $\exists x. \text{happy}(x)$ is satisfied in (M, ε)
- Since $\text{happy}(x)$ is satisfied in $(M, \varepsilon/x:B)$
Scoping rules (so we don’t have to write a gazillion parens)

- In $(\forall x. F)$ and $(\exists x. F)$, $F = \text{scope} = \text{part of formula where quantifier applies}$
- Variable x is bound by **innermost** possible quantifier (matching name, in scope)
- Two variables in different scopes can have same name—they are still different vars
- Quantification has lowest precedence
Scoping examples

- \((\forall x. \text{happy}(x)) \lor (\exists x. \neg \text{happy}(x))\)
 - Either everyone’s happy, or someone’s unhappy
- \(\forall x. (\text{raining} \land \text{outside}(x) \implies (\exists x. \text{wet}(x)))\)
 - The x who is outside may not be the one who is wet
Scoping examples

- English sentence “everybody loves somebody” is ambiguous

- Translates to logical sentences
 - $\forall x. \exists y. \text{loves}(x, y)$
 - $\exists y. \forall x. \text{loves}(x, y)$
Equivalence in FOL
Entailment, etc.

- As before, entailment, satisfiability, validity, equivalence, etc. refer to all possible models.
 - These words only apply to ground sentences, so variable assignment doesn’t matter.
- But now, can’t determine by enumerating models, since there could be infinitely many.
- So, must do reasoning via equivalences or entailments.
Equivalences

- All transformation rules for propositional logic still hold
- In addition, there is a “De Morgan’s Law” for moving negations through quantifiers
 \[\neg \forall x. S \equiv \exists x. \neg S \]
 \[\neg \exists x. S \equiv \forall x. \neg S \]
- And, rules for getting rid of quantifiers
Generalizing CNF

- **Eliminate** \Rightarrow, move \neg in w/ De Morgan
 - *but* \neg moves through quantifiers too
- **Get rid of quantifiers (see below)**
- **Distribute** $\land \lor$, or use Tseitin
Do we really need \(\exists \)?

- \(\exists x. \text{happy}(x) \)
- \(\text{happy}({\text{happy_person()}}) \)
- \(\forall y. \exists x. \text{loves}(y, x) \)
- \(\forall y. \text{loves}(y, {\text{loved_one}(y)}) \)
Skolemization

- Called Skolemization (after Thoraf Albert Skolem)
- Eliminate \exists by substituting a function of arguments of all enclosing \forall quantifiers
- Make sure to use a new name!
Do we really need \forall?

- **Positions of quantifiers irrelevant (as long as variable names are distinct)**
 - $\forall x. \ happy(x) \land \forall y. \ takes(y, \ CS780)$
 - $\forall x. \ \forall y. \ happy(x) \land \ takes(y, \ CS780)$

- **So, might as well drop them**
 - $\ happy(x) \land \ takes(y, \ CS780)$
Getting rid of quantifiers

- **Standardize apart** *(avoid name collisions)*
- **Skolemize**
- **Drop \(\forall \) (free variables implicitly universally quantified)**
- **Terminology: still called “free” even though quantification is implicit**
For example

- $\forall x. \text{man}(x) \Rightarrow \text{mortal}(x)$
 - $\neg \text{man}(x) \lor \text{mortal}(x)$

- $\forall y. \exists x. \text{loves}(y, x)$
 - $\text{loves}(y, f(y))$

- $\forall x. \text{honest}(x) \Rightarrow \text{happy}(\text{Diogenes})$
 - $\neg \text{honest}(x) \lor \text{happy}(\text{Diogenes})$

- $(\forall x. \text{honest}(x)) \Rightarrow \text{happy}(\text{Diogenes})$
Exercise

- $(\forall x. \text{honest}(x)) \Rightarrow \text{happy}(\text{Diogenes})$

 $\neg (\forall x. \text{honest}(x)) \lor \text{happy}(D)$

 $(\exists x. \neg \text{honest}(x)) \lor \text{happy}(D)$

 $\neg \text{honest}(\text{foo}(1)) \lor \text{happy}(D)$
Proofs in FOL
FOL is special

- Despite being much more powerful than propositional logic, there is still a **sound** and **complete** inference procedure for FOL w/ equality

- Almost any significant extension breaks this property

- This is why FOL is popular: very powerful language with a sound & complete inference procedure
Proofs

- **Proofs by contradiction work as before:**
 - *add* $\neg S$ to KB
 - *put in CNF*
 - *run resolution*
 - *if we get an empty clause, we’ve proven S by contradiction*

- **But, CNF and resolution have changed**
Generalizing resolution

- *Propositional:* $\neg a \lor b \land a \models b$

- *FOL:*

 $\neg \text{man}(x) \lor \text{mortal}(x)) \land \text{man}(\text{Socrates})$

 $\models (\neg \text{man}(\text{Socrates}) \lor \text{mortal}(\text{Socrates}))$

 $\land \text{man}(\text{Socrates})$

 $\models \text{mortal}(\text{Socrates})$

- *Difference:* had to substitute $x \rightarrow \text{Socrates}$
Universal instantiation

- What we just did is UI:
 \[(\neg \text{man}(x) \lor \text{mortal}(x))\]
 \[\vdash (\neg \text{man}(\text{Socrates}) \lor \text{mortal}(\text{Socrates}))\]

- Works for \(x\) \(\rightarrow\) any term not containing \(x\)

 \[\vdash (\neg \text{man}(\text{uncle}(y)) \lor \text{mortal}(\text{uncle}(y)))\]

- For proofs, need a good way to find useful instantiations
Substitution lists

- List of variable \rightarrow term pairs
- Values may contain variables (leaving flexibility about final instantiation)
- But, no LHS may be contained in any RHS
 - i.e., applying substitution twice is the same as doing it once
- E.g., $L = (x \rightarrow \text{Socrates}, y \rightarrow \text{uncle}(z))$
Substitution lists

- Apply a substitution to an expression: syntactically substitute vars \rightarrow terms

- E.g., $L = (x \rightarrow \text{Socrates}, y \rightarrow \text{uncle}(z))$

 - $\text{mortal}(x) \land \text{man}(y): L \rightarrow$

 - $\text{mortal}(\text{Socrates}) \land \text{man}(\text{uncle}(z))$

- Substitution list \neq variable assignment
Unification

○ Two FOL terms **unify** with each other if there is a substitution list that makes them syntactically identical

○ \(\text{man}(x), \text{man}(\text{Socrates}) \) unify using the substitution \(x \rightarrow \text{Socrates} \)

○ *Importance*: purely syntactic criterion for identifying useful substitutions
Unification examples

- $\text{loves}(x, x), \text{loves}(\text{John, y})$ unify using
 $x \rightarrow \text{John}, y \rightarrow \text{John}$

- $\text{loves}(x, x), \text{loves}(\text{John, Mary})$ can’t unify

- $\text{loves}(\text{uncle}(x), y), \text{loves}(z, \text{aunt}(z))$:
Unification examples

- loves(x, x), loves(John, y) unify using
 \(x \rightarrow John, y \rightarrow John \)

- loves(x, x), loves(John, Mary) can’t unify

- loves(uncle(x), y), loves(z, aunt(z)):
 \(z \rightarrow uncle(x), y \rightarrow aunt(uncle(x)) \)

- loves(uncle(x), aunt(uncle(x)))
Quiz

- Can we unify
 \[\text{knows}(\text{John}, x) \quad \text{knows}(x, \text{Mary}) \]

- What about
 \[\text{knows}(\text{John}, x) \quad \text{knows}(y, \text{Mary}) \]
Quiz

○ Can we unify

\[\text{kows(John, x)} \quad \text{kows(x, Mary)} \]

\text{No!}

○ What about

\[\text{kows(John, x)} \quad \text{kows(y, Mary)} \]

\[x \rightarrow \text{Mary, y} \rightarrow \text{John} \]
Standardize apart

- But knows(x, Mary) is logically equivalent to knows(y, Mary)!
- Moral: standardize apart before unifying
Most general unifier

- **May be many substitutions that unify two formulas**
- **MGU is unique (up to renaming)**
- **Simple, moderately fast algorithm for finding MGU (see RN); more complex, linear-time algorithm**