Segment: Computational game theory

Lecture 1b: Complexity
Tuomas Sandholm
Computer Science Department
Carnegie Mellon University
Complexity of equilibrium concepts from (noncooperative) game theory

• Solutions are less useful if they cannot be determined
 – So, their computational complexity is important

• Early research studied complexity of board games
 – E.g. chess, Go
 – Complexity results here usually depend on structure of game
 (allowing for concise representation)
 • Hardness result \Rightarrow exponential in the size of the representation
 – Usually zero-sum, alternating move

• Real-world strategic settings are much richer
 – Concise representation for all games is impossible
 – Not necessarily zero-sum/alternating move
 – Sophisticated agents need to be able to deal with such games…
Why study computational complexity of solving games?

• Determine whether game theory can be used to model real-world settings in all detail (=> large games) rather than studying simplified abstractions
 – Solving requires the use of computers
• Program strategic software agents
• Analyze whether a solution concept is realistic
 – If solution is too hard to find, it will not occur
• Complexity of solving gives a lower bound on complexity (reasoning+interaction) of learning to play equilibrium
• In mechanism design
 – Agents might not find the optimal way the designer motivated them to play
 – To identify where the opportunities are for doing better than revelation principle would suggest
• Hardness can be used as a barrier for playing optimally for oneself [Conitzer & Sandholm LOFT-04, Othman & Sandholm COMSOC-08, …]
Nash equilibrium: example

<table>
<thead>
<tr>
<th></th>
<th>50%</th>
<th>50%</th>
<th>0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>1,2</td>
<td>2,1</td>
<td>6,0</td>
</tr>
<tr>
<td>50%</td>
<td>2,1</td>
<td>1,2</td>
<td>7,0</td>
</tr>
<tr>
<td>0%</td>
<td>0,6</td>
<td>0,7</td>
<td>5,5</td>
</tr>
</tbody>
</table>
Nash equilibrium: example

<table>
<thead>
<tr>
<th>Audience</th>
<th>Pay attention</th>
<th>Don’t pay attention</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>4,4</td>
<td>-2,0</td>
</tr>
<tr>
<td>0%</td>
<td>-14,-16</td>
<td>0,0</td>
</tr>
<tr>
<td>Tuomas</td>
<td>100% 0% 10%</td>
<td>0% 100% 90%</td>
</tr>
<tr>
<td>80%</td>
<td>100%</td>
<td>90%</td>
</tr>
<tr>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>20%</td>
<td>100%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>20%</td>
<td>100%</td>
</tr>
</tbody>
</table>
Complexity of finding a mixed-strategy Nash equilibrium in a normal-form game

• PPAD-complete even with just 2 players [Cheng & Deng FOCS-06]

• …even if all payoffs are in \{0,1\} [Abbott, Kane & Valiant 2005]
Rest of this slide pack is about [Conitzer&Sandholm IJCAI-03, GEB-08]

- Solved several questions related to Nash equilibrium
 - Is the question easier for symmetric games?
 - Hardness of finding certain types of equilibrium
 - Hardness of finding equilibria in more general game representations: Bayesian games, Markov games

- All of our results are for standard matrix representations
 - None of the hardness derives from compact representations, such as graphical games, Go
 - Any fancier representation must address at least these hardness results, as long as the fancy representation is general
Does symmetry make equilibrium finding easier?

• No: just as hard as the general question

• Let G be any game (not necessarily symmetric) whose equilibrium we want to find
 – WLOG, suppose all payoffs > 0

• Given an algorithm for solving symmetric games…

• We can feed it the following game:
 – G' is G with the players switched

<table>
<thead>
<tr>
<th></th>
<th>r</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>0</td>
<td>G</td>
</tr>
<tr>
<td>c</td>
<td>G'</td>
<td>0</td>
</tr>
</tbody>
</table>

• G or G' (or both) must be played with nonzero probability in equilibrium. WLOG, by symmetry, say at least G

• Given that Row is playing in r, it must be a best response to Column’s strategy \textit{given} that Column is playing in c, and vice versa

• So we can normalize Row’s distribution on r given that Row plays r, and Column’s distribution on c given that Column plays c, to get a NE for G!
Example: asymmetric “chicken”

<table>
<thead>
<tr>
<th></th>
<th>dodge</th>
<th>straight</th>
</tr>
</thead>
<tbody>
<tr>
<td>dodge</td>
<td>9,9</td>
<td>8,10</td>
</tr>
<tr>
<td>straight</td>
<td>10,8</td>
<td>1,5</td>
</tr>
</tbody>
</table>

(Column player has an SUV…)

\[
\begin{array}{cc}
0.470 & 0 \\
0.00 & 0.00 \\
9.9 & 8.10 \\
10.8 & 5.1 \\
0.00 & 0.00 \\
0.00 & 0.00 \\
\end{array}
\]

\[
\begin{array}{cc}
0.464 & 0.066 \\
0.00 & 0.00 \\
9.9 & 8.10 \\
10.8 & 5.1 \\
0.00 & 0.00 \\
0.00 & 0.00 \\
\end{array}
\]

\[
\begin{array}{cc}
.358 & .119 \\
0 & 0.522 \\
9.9 & 8.10 \\
10.8 & 5.1 \\
0.00 & 0.00 \\
0.00 & 0.00 \\
\end{array}
\]

\[
\begin{array}{cc}
.875 & .125 \\
.75 & .25 \\
9.9 & 8.10 \\
10.8 & 1.5 \\
\end{array}
\]

\[
\begin{array}{cc}
0 & 1 \\
9.9 & 8.10 \\
10.8 & 1.5 \\
\end{array}
\]
Review of computational complexity

- Algorithm’s running time is a fn of length n of the input
- Complexity of problem is fastest algorithm’s running time
- Classes of problems, from narrower to broader
 - P: If there is an algorithm for a problem that is $O(p(n))$ for some polynomial $p(n)$, then the problem is in P
 - Necessary & sufficient to be considered “efficiently computable”
 - NP: A problem is in NP if its answer can be verified in polynomial time
 - if the answer is positive
 - #P = problems of counting the number of solutions to problems in NP
 - PSPACE = set of problems solvable using polynomial memory
- Problem is “C-hard” if it is at least as hard as every problem in C
 - Highly unlikely that NP-hard problems are in P
- Problem is “C-complete” if it is C-hard and in C
Theorem. SAT-solutions correspond to mixed-strategy equilibria of the following game (each agent randomizes uniformly on support)

SAT Formula: $$(x_1 \text{ or } -x_2) \text{ and } (-x_1 \text{ or } x_2)$$

Solutions:
- $$x_1=\text{true}, x_2=\text{true}$$
- $$x_1=\text{false}, x_2=\text{false}$$

Game:

<table>
<thead>
<tr>
<th></th>
<th>$$x_1$$</th>
<th>$$x_2$$</th>
<th>$$+x_1$$</th>
<th>$$-x_1$$</th>
<th>$$+x_2$$</th>
<th>$$-x_2$$</th>
<th>($$x_1 \text{ or } -x_2$$)</th>
<th>(-$$x_1 \text{ or } x_2$$)</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td>$$x_1$$</td>
<td>-2,-2</td>
<td>-2,-2</td>
<td>0,-2</td>
<td>0,-2</td>
<td>2,-2</td>
<td>2,-2</td>
<td>-2,-2</td>
<td>-2,-2</td>
<td>0,1</td>
</tr>
<tr>
<td>$$x_2$$</td>
<td>-2,-2</td>
<td>-2,-2</td>
<td>2,-2</td>
<td>2,-2</td>
<td>0,-2</td>
<td>0,-2</td>
<td>-2,-2</td>
<td>-2,-2</td>
<td>0,1</td>
</tr>
<tr>
<td>$$-x_1$$</td>
<td>-2,0</td>
<td>-2,2</td>
<td>-2,-2</td>
<td>1,1</td>
<td>-2,-2</td>
<td>1,1</td>
<td>-2,-2</td>
<td>-2,-2</td>
<td>0,1</td>
</tr>
<tr>
<td>$$+x_2$$</td>
<td>-2,0</td>
<td>-2,2</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>-2,-2</td>
<td>-2,-2</td>
<td>0,1</td>
</tr>
<tr>
<td>$$-x_2$$</td>
<td>-2,2</td>
<td>-2,0</td>
<td>1,1</td>
<td>1,1</td>
<td>-2,-2</td>
<td>1,1</td>
<td>-2,-2</td>
<td>-2,-2</td>
<td>0,1</td>
</tr>
<tr>
<td>$$x_1$$</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td>$$\epsilon, \epsilon$$</td>
</tr>
</tbody>
</table>

Proof sketch:

- Playing opposite literals (with any probability) is unstable
- If you play literals (with probabilities), you should make sure that
 - for every clause, the probability of playing a literal in that clause is high enough, and
 - for every variable, the probability of playing a literal that corresponds to that variable is high enough
 (otherwise the other player will play this clause/variable and hurt you)
- So equilibria where both randomize over literals can only occur when both randomize over same SAT solution
- These are the only equilibria (in addition to the “bad” default equilibrium)

As #vars gets large enough, all payoffs are nonnegative
Complexity of mixed-strategy Nash equilibria
with certain properties

• This reduction implies that there is an equilibrium where players get expected utility \(n-1 \) (\(n=\#vars \)) each iff the SAT formula is satisfiable
 – Any reasonable objective would prefer such equilibria to \(\epsilon \)-payoff equilibrium

• **Corollary.** Deciding whether a “good” equilibrium exists is NP-complete:
 – 1. equilibrium with high social welfare
 – 2. Pareto-optimal equilibrium
 – 3. equilibrium with high utility for a given player \(i \)
 – 4. equilibrium with high minimal utility

• Also NP-complete (from the same reduction):
 – 5. Does more than one equilibrium exists?
 – 6. Is a given strategy ever played in any equilibrium?
 – 7. Is there an equilibrium where a given strategy is never played?
 – 8. Is there an equilibrium with >1 strategies in the players’ supports?

• (5) & weaker versions of (4), (6), (7) were known [Gilboa, Zemel GEB-89]

• All these hold even for symmetric, 2-player games
More implications: coalitional deviations

- **Def.** A Nash equilibrium is a *strong Nash equilibrium* if there is no *joint* deviation by (any subset of) the players making them all better off.
- In our game, the ε, ε equilibrium is not strong: can switch to $n-1,n-1$.
- But any $n-1,n-1$ equilibrium (if it exists) is strong, so…
- **Corollary.** Deciding whether a strong NE exists is NP-complete
 - Even in 2-player symmetric game.
More implications: approximability

- How *approximable* are the objectives we might maximize under the constraint of Nash equilibrium?
 - E.g., social welfare

- **Corollary.** The following are inapproximable to any ratio in the space of Nash equilibria (unless P=NP):
 - maximum social welfare
 - maximum egalitarian social welfare (worst-off player’s utility)
 - maximum player 1’s utility

- **Corollary.** The following are inapproximable to ratio $o(#\text{strategies})$ in the space of Nash equilibria (unless P=NP):
 - maximum number of strategies in one player’s support
 - maximum number of strategies in both players’ supports
Counting the number of mixed-strategy Nash equilibria

• Why count equilibria?
 – If we cannot even count the equilibria, there is little hope of getting a good overview of the overall strategic structure of the game

• Unfortunately, our reduction implies:
 – **Corollary.** Counting Nash equilibria is \#P-hard
 • Proof. \#SAT is \#P-hard, and the number of equilibria is 1 + \#SAT
 – **Corollary.** Counting connected sets of equilibria is just as hard
 • Proof. In our game, each equilibrium is alone in its connected set
 – These results hold even for symmetric, 2-player games
Win-Loss Games/Zero-Sum Games

• "Win-loss" games = two-player games where the utility vector is always (0, 1) or (1, 0)

• **Theorem.** For every m by n zero-sum (normal form) game with player 1’s payoffs in \{0, 1, ... , r\}, we can construct an \(rm\) by \(rn\) win-loss game with the “same” equilibria
 – Probability on strategy \(i\) in original ~ Sum of probabilities on \(i\)th block of \(r\) strategies in new

<table>
<thead>
<tr>
<th></th>
<th>(0, 0)</th>
<th>(-1, 1)</th>
<th>(1, -1)</th>
<th>(0, 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, 0)</td>
<td>(-1, 1)</td>
<td>(1, -1)</td>
<td>(0, 0)</td>
<td></td>
</tr>
<tr>
<td>(1, -1)</td>
<td>(0, 0)</td>
<td>(-1, 1)</td>
<td>(0, 0)</td>
<td></td>
</tr>
</tbody>
</table>

• So, cannot be much easier to construct minimax strategy in win-loss game than in zero-sum game
Complexity of finding pure-strategy equilibria

• Pure strategy equilibria are nice
 – Avoids randomization over strategies between which players are indifferent

• In a matrix game, it is easy to find pure strategy equilibria
 – Can simply look at every entry and see if it is a Nash equilibrium

• Are pure-strategy equilibria easy to find in more general game structures?

• Games with private information

• In such games, often the space of all possible strategies is no longer polynomial
Bayesian games

• In Bayesian games, players have private information about their preferences (utility function) about outcomes
 – This information is called a type
 – In a more general variant, may also have information about others’ payoffs
 • Our hardness result generalizes to this setting

• There is a commonly known prior over types

• Each players can condition his strategy on his type
 – With 2 actions there are $2^{\#\text{types}}$ pure strategy combinations

• In a Bayes-Nash equilibrium, each player’s strategy (for every type) is a best response to other players’ strategies
 – In expectation with respect to the prior
Bayesian games: Example

Player 1, type 1

\[\text{Probability .6} \]

\[
\begin{array}{cc}
2,\ast & 2,\ast \\
1,\ast & 3,\ast \\
\end{array}
\]

Player 2, type 1

\[\text{Probability .7} \]

\[
\begin{array}{cc}
\ast,1 & \ast,2 \\
\ast,2 & \ast,1 \\
\end{array}
\]

Player 1, type 2

\[\text{Probability .4} \]

\[
\begin{array}{cc}
10,\ast & 5,\ast \\
5,\ast & 10,\ast \\
\end{array}
\]

Player 2, type 2

\[\text{Probability .3} \]

\[
\begin{array}{cc}
\ast,1 & \ast,2 \\
\ast,10 & \ast,1 \\
\end{array}
\]
Complexity of *Bayes-Nash* equilibria

- **Theorem.** Deciding whether a pure-strategy Bayes-Nash equilibrium exists is NP-complete

 - *Proof sketch.* (easy to make the game symmetric)

 - Each of player 1’s strategies, even if played with low probability, makes some of player 2’s strategies unappealing to player 2

 - With these, player 1 wants to “cover” all of player 2’s strategies that are bad for player 1. But player 1 can only play so many strategies (one for each type)

 - This is SET-COVER
Complexity of Nash equilibria in stochastic (Markov) games

- We now shift attention to games with multiple stages
- Some NP-hardness results have already been shown here
- Ours is the first PSPACE-hardness result (to our knowledge)
- PSPACE-hardness results from e.g. Go do not carry over
 - Go has an exponential number of states
 - For general representation, we need to specify states explicitly
- We focus on Markov games
Stochastic (Markov) game: Definition

- At each stage, the game is in a given *state*.
 - Each state has its own matrix game associated with it.
- For every state, for every combination of pure strategies, there are *transition probabilities* to the other states.
 - The next stage’s state will be chosen according to these probabilities.
- There is a *discount factor* $\delta < 1$.
- Player j’s total utility = $\sum_i \delta^i u_{ij}$ where u_{ij} is player j’s utility in stage i.
- A number N of stages (possibly infinite).
- The following may, or may not, or may partially be, known to the players:
 - Current and past states
 - Others’ past actions
 - Past payoffs
Markov Games: example

S1

<table>
<thead>
<tr>
<th></th>
<th>5,5</th>
<th>0,6</th>
</tr>
</thead>
<tbody>
<tr>
<td>6,0</td>
<td>1,1</td>
<td></td>
</tr>
</tbody>
</table>

S2

<table>
<thead>
<tr>
<th></th>
<th>2,1</th>
<th>0,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0</td>
<td>1,2</td>
<td></td>
</tr>
</tbody>
</table>

S3

<table>
<thead>
<tr>
<th></th>
<th>2,1</th>
<th>1,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2</td>
<td>2,1</td>
<td></td>
</tr>
</tbody>
</table>

Transition Probabilities:

- From S1 to S1: 0.6
- From S1 to S2: 0.3
- From S1 to S3: 0.1
- From S2 to S1: 0.5
- From S2 to S3: 0.1
- From S3 to S1: 0.2
- From S3 to S2: 0.8
Complexity of Nash equilibria in stochastic (Markov) games…

• Strategy spaces here are rich (agents can condition on past events)
 – So maybe high-complexity results are not surprising, but …

• High complexity even when players cannot condition on anything!
 – No feedback from the game: the players are playing “blindly”

• **Theorem.** Even under this restriction, deciding whether a pure-strategy Nash equilibrium exists is PSPACE-hard
 – even if game is 2-player, symmetric, and transition process is deterministic
 – **Proof sketch.** Reduction is from PERIODIC-SAT, where an infinitely repeating formula must be satisfied [Orlin, 81]

• **Theorem.** Even under this restriction, deciding whether a pure-strategy Nash equilibrium exists is NP-hard even if game has a finite number of stages
Conclusions

• Finding a NE in a symmetric game is as hard as in a general 2-person matrix game
• General reduction (SAT-> 2-person symmetric matrix game) =>
 – Finding a “good” NE is NP-complete
 • Approximating “good” to any ratio is NP-hard
 – Does more than one NE exist? …NP-complete
 – Is a given strategy ever played in any NE? …NP-complete
 – Is there a NE where a given strategy is never played? …NP-complete
 – Approximating large-support NE is hard to o(#strategies)
 – Counting NEs is #P-hard
 – Determining existence of strong NE is NP-complete
• Deciding whether pure-strategy BNE exists is NP-complete
• Deciding whether pure-strategy NE in a (even blind) Markov game exists is PSPACE-hard
 – Remains NP-hard even if the number of stages is finite
Complexity results about iterated elimination

1. NP-complete to determine whether a particular strategy can be eliminated using iterated weak dominance

2. NP-complete to determine whether we can arrive at a unique solution (one strategy for each player) using iterated weak dominance
 - Both hold even with 2 players, even when all payoffs are \(\{0, 1\} \), whether or not dominance by mixed strategies is allowed
 - [Gilboa, Kalai, Zemel 93] show (2) for dominance by pure strategies only, when payoffs in \(\{0, 1, 2, 3, 4, 5, 6, 7, 8\} \)
 - In contrast, these questions are easy for iterated strict dominance because of order independence (using LP to check for mixed dominance)
New definition of eliminability

• Incorporates some level of equilibrium reasoning into eliminability
 – Spans a spectrum of strength from strict dominance to Nash equilibrium
• Can solve games that iterated elimination cannot
• Can provide a stronger justification than Nash
• Operationalizable using MIP
• Can be used in other algorithms (e.g., for Nash finding) to prune pure strategies along the way
Motivating example

<table>
<thead>
<tr>
<th></th>
<th>(c_1)</th>
<th>(c_2)</th>
<th>(c_3)</th>
<th>(c_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_1)</td>
<td>? , ?</td>
<td>? , 2</td>
<td>? , 0</td>
<td>? , 0</td>
</tr>
<tr>
<td>(r_2)</td>
<td>2 , ?</td>
<td>2 , 2</td>
<td>2 , 0</td>
<td>2 , 0</td>
</tr>
<tr>
<td>(r_3)</td>
<td>0 , ?</td>
<td>0 , 2</td>
<td>3 , 0</td>
<td>0 , 3</td>
</tr>
<tr>
<td>(r_4)</td>
<td>0 , ?</td>
<td>0 , 2</td>
<td>0 , 3</td>
<td>3 , 0</td>
</tr>
</tbody>
</table>

- \(r_2\) *almost* dominates \(r_3\) and \(r_4\); \(c_2\) *almost* dominates \(c_3\) and \(c_4\)
- R should not play \(r_3\) unless C plays \(c_3\) at least 2/3 of time
- C should not play \(c_3\) unless R plays \(r_4\) at least 2/3 of time
- R should not play \(r_4\) unless C plays \(c_4\) at least 2/3 of time
- But C cannot play 2 strategies with probability 2/3 each!
- So: \(r_3\) should not be played
Definition

- Let D_r, E_r be subsets of row player’s pure strategies
- Let D_c, E_c be subsets of column player’s pure strategies
- Let $e_r^* \not\in E_r$ be the strategy to eliminate
- e_r^* is not eliminable relative to D_r, E_r, D_c, E_c if there exist $p_r : E_r \subseteq [0, 1]$ and $p_c : E_c \subseteq [0, 1]$ with $p_r(e_r) \geq 1$, $p_c(e_c) \not\geq 1$, and $p_r(e_r^*) > 0$, such that:

 1. For any $e_r \not\in E_r$ with $p_r(e_r) > 0$, for any mixed strategy d_r that uses only strategies in D_r, there is some $s_c \not\in E_c$ such that if the column player places its remaining probability on s_c, e_r is at least as good as d_r
 - (If there is no probability remaining ($\not\geq p_c(e_c) = 1$), e_r should simply be at least as good as d_r)

 2. Same for the column player
Definition of new concept (as argument between defender & attacker)

Given: subsets $D_r, D_c, E_r, E_c,$ and e_r^*

Defender of e_r^* specifies a justification, i.e., probabilities on E sets (must give nonzero to e_r^*)

Attacker picks a pure strategy e (of positive probability) from one of the E sets to attack, and attacking mixed strategy d from same player’s D

Defender completes probability distribution. Defender wins (strategy is not eliminated) iff d does not do better than e
Spectrum of strength

- **Thrm.** If there is a Nash equilibrium with probability on s_r, then s_r is not eliminable relative to any D_r, E_r, D_c, E_c

- **Thrm.** Suppose we make D_r, E_r, D_c, E_c as large as possible (each contains all strategies of the appropriate player). Then s_r is eliminable iff no Nash equilibrium puts probability on s_r
 - **Corollary:** checking eliminability in this case is coNP-complete (because checking whether any Nash eq puts probability on a given strategy is NP-complete [Gilboa & Zemel 89, Conitzer & Sandholm 03])

- **Thrm.** If s_r is strictly dominated by d_r then s_r is eliminable relative to any D_r, E_r, D_c, E_c
 - (as long as $s_r \nsubseteq E_r$ and d_r only uses strategies in D_r)

- **Thrm.** If $E_c = \emptyset$ and $E_r = \{s_r\}$, then s_r is eliminable iff it is strictly dominated by some d_r (that only uses strategies in D_r)
What is it good for?

• Suppose we can eliminate a strategy using the Nash equilibrium concept, but not using (iterated) dominance

• Then, using this definition, we may be able to make a stronger argument than Nash equilibrium for eliminating the strategy

• The smaller the sets relative to which we are eliminating, the more “local” the reasoning, and the closer we are to dominance
Thank you for your attention!