Sequential imperfect-information games

Case study: *Poker*

Tuomas Sandholm
Carnegie Mellon University
Computer Science Department
Sequential imperfect information games

- Players face uncertainty about the state of the world
- Most real-world games are like this
 - A robot facing adversaries in an uncertain, stochastic environment
 - Almost any card game in which the other players’ cards are hidden
 - Almost any economic situation in which the other participants possess private information (e.g. valuations, quality information)
 - Negotiation
 - Multi-stage auctions (e.g., English)
 - Sequential auctions of multiple items
 - ...

- This class of games presents several challenges for AI
 - Imperfect information
 - Risk assessment and management
 - Speculation and counter-speculation

- Techniques for solving sequential complete-information games (like chess) don’t apply
- Our techniques are domain-independent
Poker

- Recognized challenge problem in AI
 - Hidden information (other players’ cards)
 - Uncertainty about future events
 - Deceptive strategies needed in a good player
- Very large game trees
- Texas Hold’em: most popular variant

On NBC:
Finding equilibria

• In 2-person 0-sum games,
 – Nash equilibria are minimax equilibria => no equilibrium selection problem
 – If opponent plays a non-equilibrium strategy, that only helps me

• Any finite sequential game (satisfying perfect recall) can be converted into a matrix game
 – Exponential blowup in #strategies (even in reduced normal form)

• Sequence form: More compact representation based on sequences of moves rather than pure strategies [Romanovskii 62, Koller & Megiddo 92, von Stengel 96]
 – 2-person 0-sum games with perfect recall can be solved in time polynomial in size of game tree using LP
 – Cannot solve Rhode Island Hold’em (3.1 billion nodes) or Texas Hold’em (10^{18} nodes)
Our approach [Gilpin & Sandholm EC’06, JACM’07]
Now used by all competitive Texas Hold’em programs

Original game

Abstracted game

Automated abstraction

Compute Nash

Nash equilibrium

Reverse model

Nash equilibrium
Outline

• Automated abstraction
 – Lossless
 – Lossy

• New equilibrium-finding algorithms

• Stochastic games with >2 players, e.g., poker tournaments

• Current & future research
Lossless abstraction

[Gilpin & Sandholm EC’06, JACM’07]
Information filters

• **Observation**: We can make games smaller by filtering the information a player receives

• Instead of observing a specific signal exactly, a player instead observes a **filtered set** of signals
 – *E.g.* receiving signal \{A♥, A♣, A♦\} instead of A♥
Signal tree

• Each edge corresponds to the revelation of some signal by nature to at least one player

• Our abstraction algorithms operate on it
 – Don’t load full game into memory
Isomorphic relation

• Captures the notion of strategic symmetry between nodes
• Defined recursively:
 – Two leaves in signal tree are isomorphic if for each action history in the game, the payoff vectors (one payoff per player) are the same
 – Two internal nodes in signal tree are isomorphic if they are siblings and there is a bijection between their children such that only ordered game isomorphic nodes are matched
• We compute this relationship for all nodes using a DP plus custom perfect matching in a bipartite graph
 – Answer is stored
Abstraction transformation

• Merges two isomorphic nodes

• Theorem. *If a strategy profile is a Nash equilibrium in the abstracted (smaller) game, then its interpretation in the original game is a Nash equilibrium*

• Assumptions
 – Observable player actions
 – Players’ utility functions rank the signals in the same order
GameShrink algorithm

- **Bottom-up pass:** Run DP to mark isomorphic pairs of nodes in signal tree
- **Top-down pass:** Starting from top of signal tree, perform the transformation where applicable

- **Theorem.** Conducts all these transformations
 - $\tilde{O}(n^2)$, where n is #nodes in *signal tree*
 - Usually highly *sublinear* in game tree size

- **One approximation algorithm:** instead of requiring perfect matching, require a matching with a penalty below threshold
Algorithmic techniques for making GameShrink faster

• Union-Find data structure for efficient representation of the information filter (unioning finer signals into coarser signals)
 – Linear memory and almost linear time

• Eliminate some perfect matching computations using easy-to-check necessary conditions
 – Compact histogram databases for storing win/loss frequencies to speed up the checks
Solving Rhode Island Hold’em poker

- AI challenge problem [Shi & Littman 01]
 - 3.1 billion nodes in game tree
- Without abstraction, LP has 91,224,226 rows and columns => unsolvable
- GameShrink runs in one second
- After that, LP has 1,237,238 rows and columns
- Solved the LP
 - CPLEX barrier method took 8 days & 25 GB RAM
- Exact Nash equilibrium
- Largest incomplete-info (poker) game solved to date by over 4 orders of magnitude
Lossy abstraction
Texas Hold’em poker

- 2-player Limit Texas Hold’em has $\sim 10^{18}$ leaves in game tree
 - Losslessly abstracted game too big to solve
 - abstract more
 - lossy
Poker Academy Pro

GSIBot
$99
Call $0.50

Limit Ring Game: $1/$2 Stakes

Session Stats

Hand Evaluator

Transcript

HAND #428,331
GSIBot blinds $0.50
Andrew blinds $1
Your hole cards are: 2a Kh
GSIBot calls $0.50

Poker Academy

Bet: $2

Fold
Check
Bet $1

Andrew

2️⃣
Ace

Heart

Diamond
HAND #428,331
GSI Bot blinds $0.50
Andrew blinds $1
Your hole cards are: 2s Kh
GSI Bot calls $0.50
Andrew checks
FLOP: Od 7s 4c
Hand #420,331
GSIBot blinds $0.50
Andrew blinds $1
Your hole cards are: 2s Kh
GSIBot calls $0.50
Andrew checks
FLOP: Qd 7s 4c
Andrew checks
GSIBot bets $1

Pot: $3

GSIBot $1
Bet $1

Poker Academy Pro
Lobby Options Dealer Table Window Help

Session Stats
Hand Evaluator
Transcript
Poker Academy Pro

Hand #428,331

GSIBot blinds $0.50
Andrew blinds $1
Your hole cards are: 2s Kh
GSIBot calls $0.50
Andrew checks

FLOP: 6d 7s 4c
Andrew checks
GSIBot bets $1
Andrew calls $1

TURN: 9d 7s 4c 3s

Pot: $4

Check

BET $2
Hand #428,331
GSIBot folds $0.50
Andrew checks
Your hole cards are: 2a Kh
GSIBot calls $0.50
Andrew checks
FLOP: Od 7s 4c
Andrew checks
GSIBot bets $1
Andrew calls $1
TURN: Od 7s 4c 2s
Andrew bets $2
GSIBot calls $2
RIVER: Od 7e 4c 3c Qs
Put: $3
Hand: 2c Kd
Pocket: Qc
_check
Bet $2
Hand #428,331
GSIBot antes $0.50
Andrew antes $1
Your hole cards are: 2s Kh
GSIBot calls $0.50
Andrew canta

FLOP: Od 7s 4c
Andrew checks
GSIBot bets $1
Andrew calls $1

TURNS: Od 7s 4c 2s
Andrew antes $2
GSIBot calls $2

RIVER: Od 7s 4c 3c Qc
Andrew checks
GSIBot antes $2
GSIBot wins $12 with Two Pair, Queens and Sevens

HAND #428331
GSIBot blinds $0.50
Andrew blinds $1
Your hole cards are: 2s Kh
GSIBot calls $0.50
Andrew checks
FLOP: Od 7s 4c
Andrew checks
GSIBot bets $1
Andrew calls $1
TURN: Od 7s 4c 2s
Andrew bets $2
GSIBot calls $2
RIVER: Od 7s 4c 2s Qs
Andrew checks
GSIBot bets $2
Andrew calls $2
GSIBot shows 2c 7c
Andrew shows 2s Kh
GSIBot wins $12 with Two Pair, Queens and Sevens
GS1

Our first program for 2-person Limit Texas Hold’em
First Texas Hold’em program to use automated abstraction
 - Lossy version of Gameshrink
• We split the 4 betting rounds into two phases
 – Phase I (first 2 rounds) solved offline using approximate version of GameShrink followed by LP
 • Assuming rollout
 – Phase II (last 2 rounds):
 • abstractions computed offline
 – betting history doesn’t matter & suit isomorphisms
 • real-time equilibrium computation using anytime LP
 – updated hand probabilities from Phase I equilibrium (using betting histories and community card history):

\[
Pr[\theta_i \mid h, s_i] = \frac{Pr[h \mid \theta_i, s_i]Pr[\theta_i]}{Pr[h \mid s_i]} = \frac{Pr[h \mid \theta_i, s_i]Pr[\theta_i]}{\sum_{\theta'_i \in \Theta} Pr[h \mid \theta'_i, s_i]}
\]

– \(s_i \) is player i’s strategy, h is an information set
Some additional techniques used

• Precompute several databases
• Conditional choice of primal vs. dual simplex for real-time equilibrium computation
 – Achieve anytime capability for the player that is us
• Dealing with running off the equilibrium path
• **Sparbot**: Game-theory-based player, manual abstraction
• **Vexbot**: Opponent modeling, miximax search with statistical sampling
• **GS1** performs well, despite using very little domain-knowledge and no adaptive techniques
 – No statistical significance
GS2 [Gilpin & Sandholm AAMAS’07]

• 2/2006-7/2006

• Original version of GameShrink is “greedy” when used as an approximation algorithm => lopsided abstractions

• GS2 instead finds abstraction via clustering & IP
 – Round by round starting from round 1

• Other ideas in GS2:
 – Overlapping phases so Phase I would be less myopic
 • Phase I = round 1, 2, and 3; Phase II = rounds 3 and 4
 – Instead of assuming rollout at leaves of Phase I (as was done in SparBot and GS1), use statistics to get a more accurate estimate of how play will go
 • Statistics from 100,000’s hands of SparBot in self-play
GS2

[Gilpin & Sandholm AAMAS’07]
Optimized approximate abstractions

• Original version of GameShrink is “greedy” when used as an approximation algorithm => lopsided abstractions

• GS2 instead finds an abstraction via clustering & IP

• For round 1 in signal tree, use 1D k-means clustering
 – Similarity metric is win probability (ties count as half a win)

• For each round $2..3$ of signal tree:
 – For each group i of hands (children of a parent at round $– 1$):
 • use 1D k-means clustering to split group i into k_i abstract “states”
 • for each value of k_i, compute expected error (considering hand probs)
 – IP decides how many children different parents (from round $– 1$) may have: Decide k_i’s to minimize total expected error, subject to $\sum_i k_i \leq K_{\text{round}}$
 • K_{round} is set based on acceptable size of abstracted game
 • Solving this IP is fast in practice
Phase I (first three rounds)

- Optimized abstraction
 - Round 1
 - There are 1,326 hands, of which 169 are strategically different
 - We allowed 15 abstract states
 - Round 2
 - There are 25,989,600 distinct possible hands
 - GameShrink (in lossless mode for Phase I) determined there are \(\sim 10^6 \) strategically different hands
 - Allowed 225 abstract states
 - Round 3
 - There are 1,221,511,200 distinct possible hands
 - Allowed 900 abstract states

- Optimizing the approximate abstraction took 3 days on 4 CPUs

- LP took 7 days and 80 GB using CPLEX’s barrier method
Mitigating effect of round-based abstraction (i.e., having 2 phases)

- For leaves of Phase I, GS1 & SparBot assumed rollout
- Can do better by estimating the actions from later in the game (betting) using statistics
- For each possible hand strength and in each possible betting situation, we stored the probability of each possible action
 - Mine history of how betting has gone in later rounds from 100,000’s of hands that SparBot played
 - E.g. of betting in 4th round
 - Player 1 has bet. Player 2’s turn

![Graph showing probability of actions based on hand strength](image)
Phase II (rounds 3 and 4)

- Abstraction computed using the same optimized abstraction algorithm as in Phase I

- Equilibrium solved in real time (as in GS1)
 - Beliefs for the beginning of Phase II determined using Bayes rule based on observations and the computed equilibrium strategies from Phase I
Precompute several databases

- **db5**: possible wins and losses (for a single player) for every combination of two hole cards and three community cards (25,989,600 entries)
 - Used by *GameShrink* for quickly comparing the similarity of two hands
- **db223**: possible wins and losses (for both players) for every combination of pairs of two hole cards and three community cards based on a roll-out of the remaining cards (14,047,378,800 entries)
 - Used for computing payoffs of the Phase I game to speed up the LP creation
- **handval**: concise encoding of a 7-card hand rank used for fast comparisons of hands (133,784,560 entries)
 - Used in several places, including in the construction of **db5** and **db223**
- Colexicographical ordering used to compute indices into the databases allowing for very fast lookups
GS2 experiments

<table>
<thead>
<tr>
<th>Opponent</th>
<th>Series won by GS2</th>
<th>Win rate (small bets per hand)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS1</td>
<td>38 of 50</td>
<td>+0.031</td>
</tr>
<tr>
<td></td>
<td>p=.00031</td>
<td></td>
</tr>
<tr>
<td>Sparbot</td>
<td>28 of 50</td>
<td>+0.0043</td>
</tr>
<tr>
<td></td>
<td>p=.48</td>
<td></td>
</tr>
<tr>
<td>Vexbot</td>
<td>32 of 50</td>
<td>-0.0062</td>
</tr>
<tr>
<td></td>
<td>p=.065</td>
<td></td>
</tr>
</tbody>
</table>
GS3

[Gilpin, Sandholm & Sørensen AAAI’07]

GS4 is similar
Entire game solved holistically

• We no longer break game into phases
 – Because our new equilibrium-finding algorithms can solve games of the size that stem from reasonably fine-grained abstractions of the entire game

• => better strategies & no need for real-time computation
Potential-aware automated abstraction

• All prior abstraction algorithms (including ours) had myopic probability of winning as the similarity metric
 – Does not address potential, e.g., hands like flush draws where although the probability of winning is small, the payoff could be high
• Potential not only positive or negative, but also “multidimensional”
• GS3’s abstraction algorithm takes potential into account...
• Idea: similarity metric between hands at round R should be based on the vector of probabilities of transitions to abstracted states at round $R+1$
 – E.g., L_1 norm
• In the last round, the similarity metric is simply probability of winning (assuming rollout)
• This enables a bottom
Bottom-up pass to determine abstraction for round 1

- Clustering using L_1 norm
 - Predetermined number of clusters, depending on size of abstraction we are shooting for

- In the last (4th) round, there is no more potential => we use probability of winning (assuming rollout) as similarity metric
Determining abstraction for round 2

• For each 1st-round bucket i:
 – Make a bottom-up pass to determine 3rd-round buckets, considering only hands compatible with i
 – For $k_i \in \{1, 2, \ldots, \text{max}\}$
 • Cluster the 2nd-round hands into k_i clusters
 – based on each hand’s histogram over 3rd-round buckets

• IP to decide how many children each 1st-round bucket may have, subject to $\sum_i k_i \leq K_2$
 – Error metric for each bucket is the sum of L_2 distances of the hands from the bucket’s centroid
 – Total error to minimize is the sum of the buckets’ errors
 • weighted by the probability of reaching the bucket
Determining abstraction for round 3

- Done analogously to how we did round 2
Determining abstraction for round 4

• Done analogously, except that now there is no potential left, so clustering is done based on probability of winning (assuming rollout)

• Now we have finished the abstraction!
Potential-aware vs win-probability-based abstraction

- Both use clustering and IP
- Experiment conducted on Heads-Up Rhode Island Hold’em
 - Abstracted game solved exactly

Winnings to potential-aware
(small bets per hand)

13 buckets in first round is lossless

Potential-aware becomes lossless,
win-probability-based is as good as it gets, never lossless

[Gilpin & Sandholm AAAI-08]
Potential-aware vs win-probability-based abstraction

[Gilpin & Sandholm AAAI-08 & new]

<table>
<thead>
<tr>
<th>Granularity</th>
<th>EB payoff</th>
<th>EB² payoff</th>
<th>PA payoff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>versus EB²</td>
<td>versus PA</td>
<td>versus EB</td>
</tr>
<tr>
<td>13-25-125</td>
<td>0.1490</td>
<td>16.6223</td>
<td>-0.1490</td>
</tr>
<tr>
<td>13-50-250</td>
<td>-0.1272</td>
<td>-1.0627</td>
<td>0.1272</td>
</tr>
<tr>
<td>13-75-500</td>
<td>0.2340</td>
<td>-6.9880</td>
<td>-0.2340</td>
</tr>
<tr>
<td>13-100-750</td>
<td>0.1813</td>
<td>-5.5707</td>
<td>-0.1813</td>
</tr>
<tr>
<td>13-125-1000</td>
<td>0.0000</td>
<td>-0.0877</td>
<td>0.0000</td>
</tr>
<tr>
<td>13-205-1774</td>
<td>0.0000</td>
<td>-0.0877</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

13 buckets in first round is lossless

Potential-aware becomes lossless, win-probability-based is as good as it gets, *never* lossless
Equilibrium-finding algorithms

Solving the (abstracted) game

Now we move from discussing general-sum n-player games to discussing 2-player 0-sum games
Scalability of (near-)equilibrium finding in 2-person 0-sum games
Manual approaches can only solve games with a handful of nodes

Nodes in game tree

1,000,000,000,000
100,000,000,000
10,000,000,000
1,000,000,000
10,000,000
1,000,000
100,000
100,000

Koller & Pfeffer
Using sequence form & LP (simplex)

Billings et al.
LP (CPLEX interior point method)

Gilpin & Sandholm
LP (CPLEX interior point method)

Zinkevich et al.
Counterfactual regret

Gilpin, Hoda, Peña & Sandholm
Scalable EGT

Gilpin, Sandholm & Sørensen
Scalable EGT

AAAI poker competition announced
(Un)scalability of LP solvers

- Rhode Island Hold’em LP
 - 91,000,000 rows and columns
 - After GameShrink, 1,200,000 rows and columns, and 50,000,000 non-zeros
 - CPLEX’s barrier method uses 25 GB RAM and 8 days

- Texas Hold’em poker much larger
 - => would need to use extremely coarse abstraction

- Instead of LP, can we solve the equilibrium-finding problem in some other way?
Excessive gap technique (EGT)

- LP solvers only scale to \(\sim 10^7 \) nodes. Can we do better than use LP?
- Usually, gradient-based algorithms have poor convergence, but…
- Theorem [Nesterov 05]. There is a gradient-based algorithm (for a class of minmax problems) that finds an \(\varepsilon \)-equilibrium in \(O(1/\varepsilon) \) iterations
- In general, work per iteration is as hard as solving the original problem, but…
- Can make each iteration faster by considering problem structure:
- Theorem [Hoda et al. 06]. In sequential games, each iteration can be solved in time linear in the size of the game tree
Scalable EGT [Gilpin, Hoda, Peña, Sandholm WINE’07]

Memory saving in poker & many other games

- Main space bottleneck is storing the game’s payoff matrix A
- **Definition.** Kronecker product

$$X \in \mathbb{R}^{m \times n}, \ Y \in \mathbb{R}^{p \times q}, \quad X \otimes Y = \begin{bmatrix} x_{11}Y & \cdots & x_{1n}Y \\ \vdots & \ddots & \vdots \\ x_{m1}Y & \cdots & x_{mn}Y \end{bmatrix} \in \mathbb{R}^{mp \times nq}$$

- In Rhode Island Hold’em:

$$A = \begin{bmatrix} A_1 \\ A_2 \\ A_3 \end{bmatrix}$$

- Using **independence of card deals and betting options**, can represent this as
 $$A_1 = F_1 \boxtimes B_1 \quad A_2 = F_2 \boxtimes B_2 \quad A_3 = F_3 \boxtimes B_3 + S \boxtimes W$$
- F_r corresponds to sequences of moves in round r that end in a fold
- S corresponds to sequences of moves in round 3 that end in a showdown
- B_r encodes card buckets in round r
- W encodes win/loss/draw probabilities of the buckets
<table>
<thead>
<tr>
<th>Instance</th>
<th>CPLEX barrier</th>
<th>CPLEX simplex</th>
<th>Our method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Losslessly abstracted Rhode Island Hold’em</td>
<td>25.2 GB</td>
<td>>3.45 GB</td>
<td>0.15 GB</td>
</tr>
<tr>
<td>Lossily abstracted Texas Hold’em</td>
<td>>458 GB</td>
<td>>458 GB</td>
<td>2.49 GB</td>
</tr>
</tbody>
</table>
Memory usage

<table>
<thead>
<tr>
<th>Instance</th>
<th>CPLEX barrier</th>
<th>CPLEX simplex</th>
<th>Our method</th>
</tr>
</thead>
<tbody>
<tr>
<td>10k</td>
<td>0.082 GB</td>
<td>>0.051 GB</td>
<td>0.012 GB</td>
</tr>
<tr>
<td>160k</td>
<td>2.25 GB</td>
<td>>0.664 GB</td>
<td>0.035 GB</td>
</tr>
<tr>
<td>Losslessly abstracted RI Hold’em</td>
<td>25.2 GB</td>
<td>>3.45 GB</td>
<td>0.15 GB</td>
</tr>
<tr>
<td>Lossily abstracted TX Hold’em</td>
<td>>458 GB</td>
<td>>458 GB</td>
<td>2.49 GB</td>
</tr>
</tbody>
</table>
Scalable EGT [Gilpin, Hoda, Peña, Sandholm WINE’07]

Speed

- Fewer iterations
 - With *Euclidean prox fn*, gap was reduced by an order of magnitude more (at given time allocation) compared to *entropy-based prox fn*
 - Heuristics
 - Less conservative shrinking of w_1 and w_2
 - Sometimes need to reduce (halve) t
 - Balancing w_1 and w_2 periodically
 - Often allows reduction in the values
 - Gap was reduced by an order of magnitude (for given time allocation)

- Faster iterations
 - Parallelization in each of the 3 matrix-vector products in each iteration => near-linear speedup
Iterated smoothing [Gilpin, Peña & Sandholm AAAI-08]

- Input: Game and ϵ_{target}
- Initialize strategies x and y arbitrarily
- $\epsilon \leq \epsilon_{\text{target}}$
- repeat
 - $\epsilon \leftarrow \frac{\text{gap}(x, y)}{\epsilon}$
 - $(x, y) \leftarrow \text{SmoothedGradientDescent}(f, \epsilon, x, y)$
 - until $\text{gap}(x, y) < \epsilon_{\text{target}}$

$O\left(\frac{1}{\epsilon}\right)$ \leq $O\left(\log\left(\frac{1}{\epsilon}\right)\right)$
Solving GS3’s four-round model

[Gilpin, Sandholm & Sørensen AAAI’07]

• Computed abstraction with
 – 20 buckets in round 1
 – 800 buckets in round 2
 – 4,800 buckets in round 3
 – 28,800 buckets in round 4

• Our version of excessive gap technique used 30 GB RAM
 – (Simply representing as an LP would require 32 TB)
 – Outputs new, improved solution every 2.5 days
 – 4 1.65GHz CPUs: 6 months to gap 0.028 small bets per hand
Results (for GS4)

- AAAI-08 Computer Poker Competition
 - GS4 won the Limit Texas Hold’em bankroll category
 - Played 4-4 in the pairwise comparisons. 4th of 9 in elimination category
 - Tartanian did the best in terms of bankroll in No-Limit Texas Hold’em
 - 3rd out of 4 in elimination category
Comparison to prior poker AI

- **Rule-based**
 - Limited success in even small poker games
- **Simulation/Learning**
 - Do not take multi-agent aspect into account
- **Game-theoretic**
 - Small games
 - Manual abstraction + LP for equilibrium finding [Billings et al. IJCAI-03]
 - **Ours**
 - Automated abstraction
 - Custom solver for finding Nash equilibrium
 - Domain independent
>2 players

(Actually, our abstraction algorithms, presented earlier in this talk, apply to >2 players)
Games with >2 players

• Matrix games:
 – 2-player zero-sum: solvable in polytime
 – >2 players zero-sum: PPAD-complete [Chen & Deng, 2006]
 – No previously known algorithms scale beyond tiny games with >2 players

• Stochastic games (undiscounted):
 – 2-player zero-sum: Nash equilibria exist
 – 3-player zero-sum: Existence of Nash equilibria still open
Poker tournaments

• Players buy in with cash (e.g., $10) and are given chips (e.g., 1500) that have no monetary value
• Lose all your chips => eliminated from tournament
• Payoffs depend on finishing order (e.g., $50 for 1st, $30 for 2nd, $20 for 3rd)
• Computational issues:
 – >2 players
 – Tournaments are stochastic games (potentially infinite duration): each game state is a vector of stack sizes (and also encodes who has the button)
Jam/fold strategies

• **Jam/fold strategy:** in the first betting round, go all-in or fold
• In 2-player poker tournaments, when blinds become high compared to stacks, provably near-optimal to play jam/fold strategies [Miltersen & Sørensen 2007]

• **Solving a 3-player tournament** [Ganzfried & Sandholm AAMAS-08]
 – Compute an approximate equilibrium in jam/fold strategies
 – Strategy spaces 2^{169}, $2 \begin{array}{c} \forall \end{array} 2^{169}$, $3 \begin{array}{c} \forall \end{array} 2^{169}$
 – Algorithm combines
 • an extension of fictitious play to imperfect-information games
 • with a variant of value iteration
 – Our solution challenges *Independent Chip Model (ICM)* accepted by poker community
 – Unlike in 2-player case, tournament and cash game strategies differ substantially
Our first algorithm

• Initialize payoffs for all game states using heuristic from poker community (ICM)
• Repeat until “outer loop” converges
 – “Inner loop”:
 • Assuming current payoffs, compute an approximate equilibrium at each state using fictitious play
 • Can be done efficiently by iterating over each player’s information sets
 – “Outer loop”:
 • Update the values with the values obtained by new strategy profile
 • Similar to value iteration in MDPs
Ex-post check

- Our algorithm is not guaranteed to converge, and can converge to a non-equilibrium (we constructed example)

- We developed an *ex-post* check to verify how much any player could gain by deviating [Ganzfried & Sandholm IJCAI-09]
 - Constructs an undiscounted MDP from the strategy profile, and solves it using variant of policy iteration
 - Showed that no player could gain more than 0.1% of highest possible payoff by deviating from our profile
New algorithms [Ganzfried & Sandholm IJCAI-09]

- Developed 3 new algorithms for solving multiplayer stochastic games of imperfect information
 - Unlike first algorithm, if these algorithms converge, they converge to an equilibrium
 - First known algorithms with this guarantee
 - They also perform competitively with the first algorithm

- The algorithms combine fictitious play variant from first algorithm with techniques for solving undiscounted MDPs (i.e., maximizing expected total reward)
Best one of the new algorithms

- Initialize payoffs using ICM as before
- Repeat until “outer loop” converges
 - “Inner loop”:
 - Assuming current payoffs, compute an approximate equilibrium at each state using our variant of fictitious play as before
 - “Outer loop”: update the values with the values obtained by new strategy profile S_t using a modified version of policy iteration:
 - Create the MDP M induced by others’ strategies in S_t (and initialize using own strategy in S_t):
 - Run modified policy iteration on M
 - In the matrix inversion step, always choose the minimal solution
 - If there are multiple optimal actions at a state, prefer the action chosen last period if possible
Second new algorithm

- Interchanging roles of fictitious play and policy iteration:
 - Policy iteration used as inner loop to compute best response
 - Fictitious play used as outer loop to combine BR with old strategy

- Initialize strategies using ICM
- Inner loop:
 - Create MDP M induced from strategy profile
 - Solve M using policy iteration variant (from previous slide)
- Outer loop:
 - Combine optimal policy of M with previous strategy using fictitious play updating rule
Third new algorithm

- Using value iteration variant as the inner loop
- Again we use MDP solving as inner loop and fictitious play as outer loop
- Same as previous algorithm except different inner loop

New inner loop:
- Value iteration, but make sure initializations are pessimistic (underestimates of optimal values in the MDP)
- Pessimistic initialization can be accomplished by matrix inversion using outer loop strategy as initialization in induced MDP
Summary

• Domain-independent techniques
• Automated lossless abstraction
 – Solved Rhode Island Hold’em exactly
 • 3.1 billion nodes in game tree, biggest solved before had 140,000
• Automated lossy abstraction
 – k-means clustering & integer programming
 – Potential-aware
• Novel scalable equilibrium-finding algorithms
 – Scalable EGT & iterated smoothing
• DBs, data structures, …
• Won AAAI-08 Computer Poker Competition Limit Texas Hold’em bankroll category (and did best in bankroll in No-Limit also)
 – Competitive with world’s best professional poker players?
• First algorithms for solving large stochastic games with >2 players (3-player jam/fold poker tournaments)
Current & future research

• Abstraction
 – Provable approximation (*ex ante* / *ex post*)
 – Action abstraction (requires reverse model) -> *Tartanian* for No-Limit Texas Hold’em [Gilpin, Sandholm & Sørensen AAMAS-08]
 – Other types of abstraction
• Equilibrium-finding algorithms with even better scalability
• Other solution concepts: sequential equilibrium, coalitional deviations,…
• Even larger #players (cash game & tournament)
• Opponent modeling
• Actions beyond the ones discussed in the rules:
 – Explicit information-revelation actions
 – Timing, …
• Trying these techniques in other games