15-780: Graduate AI Lecture 18. Learning

Geoff Gordon (this lecture)
Tuomas Sandholm
TAs Sam Ganzfried, Byron Boots

Admin

- HW4 questions?
- HW4 extension: was due Tue, now Thu
- Project interim reports
 - reminder: due 4/14
- Midterm 4/9
 - prep sessions TBA

Review

Probability

- Expectation
- Conditional expectation
 - law of iterated expectations
- Sample vs. population quantities
- Estimators; consistency

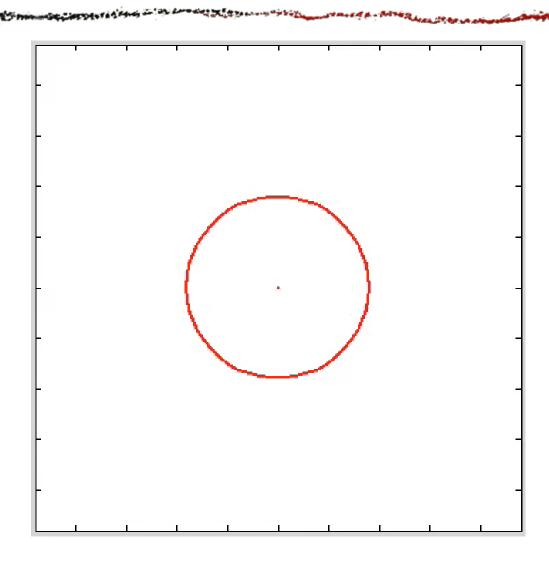
Markov-Chain Monte Carlo

• For computing:

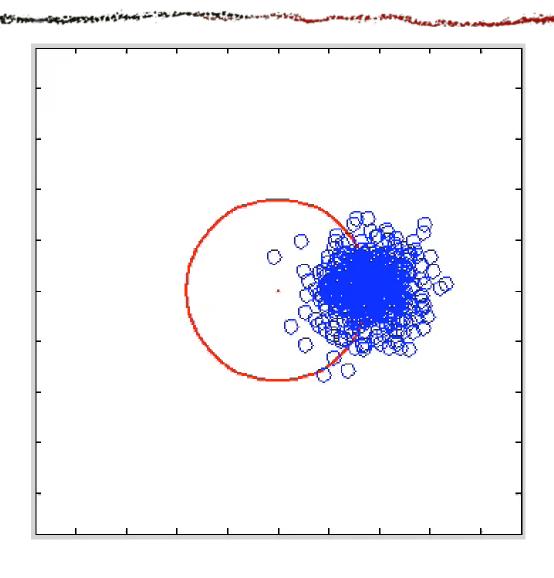
$$E_P(g(X)) = \int g(x)P(x)dx = \int f(x)dx$$

- Chief difficulty: finding a good importance distribution Q(x)
- Metropolis-Hastings: optimal distribution (Q = P) using randomized search

Markov chain



Stationary distribution



Stationary distribution

$$Q(\mathbf{x}_{t}) = \mathbb{P}(\mathbf{x}_{t}) \quad \Rightarrow \quad Q(\mathbf{x}_{t+1}) = \mathbb{P}(\mathbf{x}_{t+1})$$

$$Q(\mathbf{x}_{t}) = \mathbb{P}(\mathbf{x}_{t}) \quad \Rightarrow \quad Q(\mathbf{x}_{t+1}) = \int \mathbb{P}(\mathbf{x}_{t+1}, \mathbf{x}_{t}) d\mathbf{x}_{t}$$

$$Q(\mathbf{x}_{t}) = \mathbb{P}(\mathbf{x}_{t}) \quad \Rightarrow \quad Q(\mathbf{x}_{t+1}) = \int \mathbb{P}(\mathbf{x}_{t+1} \mid \mathbf{x}_{t}) \mathbb{P}(\mathbf{x}_{t}) d\mathbf{x}_{t}$$

$$Q(\mathbf{x}_{t}) = \mathbb{P}(\mathbf{x}_{t}) \quad \Rightarrow \quad Q(\mathbf{x}_{t+1}) = \int \mathbb{P}(\mathbf{x}_{t+1} \mid \mathbf{x}_{t}) Q(\mathbf{x}_{t}) d\mathbf{x}_{t}$$

Stationary distribution

$$Q(\mathbf{x}_{t}) = \mathbb{P}(\mathbf{x}_{t}) \implies Q(\mathbf{x}_{t+1}) = \mathbb{P}(\mathbf{x}_{t+1})$$

$$Q(\mathbf{x}_{t}) = \mathbb{P}(\mathbf{x}_{t}) \implies Q(\mathbf{x}_{t+1}) = \int \mathbb{P}(\mathbf{x}_{t+1}, \mathbf{x}_{t}) d\mathbf{x}_{t}$$

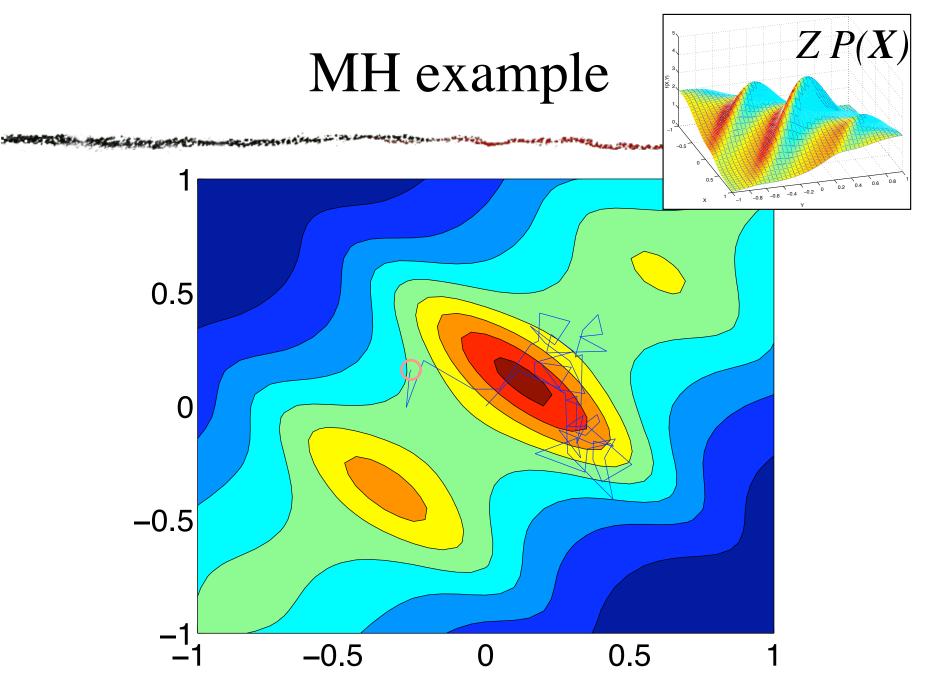
$$Q(\mathbf{x}_{t}) = \mathbb{P}(\mathbf{x}_{t}) \implies Q(\mathbf{x}_{t+1}) = \int \mathbb{P}(\mathbf{x}_{t+1} \mid \mathbf{x}_{t}) \mathbb{P}(\mathbf{x}_{t}) d\mathbf{x}_{t}$$

$$Q(\mathbf{x}_{t}) = \mathbb{P}(\mathbf{x}_{t}) \implies Q(\mathbf{x}_{t+1}) = \int \mathbb{P}(\mathbf{x}_{t+1} \mid \mathbf{x}_{t}) Q(\mathbf{x}_{t}) d\mathbf{x}_{t}$$

MH algorithm

note: we don't need to know Z

- $Sample x' \sim Q(x' \mid x)$
- $\circ \ \textit{Compute } p = \frac{P(x')}{P(x)} \frac{Q(x \mid x')}{Q(x' \mid x)}$
- With probability min(1, p), set x := x'
- Repeat for T steps; sample is $x_1, ..., x_T$ (will usually contain duplicates)



MH considerations

- Acceptance rate
- Mixing rate = 1 / mixing time
- Annealing (start at high temperature, reduce to T=1)

MH proof

MH proof

- Write T(x'|x) for transition probability
- Write p(x'|x) for acceptance probability

$$\min\left(1, \frac{P(x')}{P(x)} \frac{Q(x \mid x')}{Q(x' \mid x)}\right)$$

 \circ If $x' \neq x$, then

$$T(x'|x) = Q(x'|x) p(x'|x)$$

Detailed balance

$$P(x)T(x' \mid x) = P(x')T(x \mid x') \qquad \forall x, x'$$

- Proof based on detailed balance
- If we can show detailed balance, P(x) is our stationary distribution:
 - take integral dx on both sides
 - use law of total probability on RHS

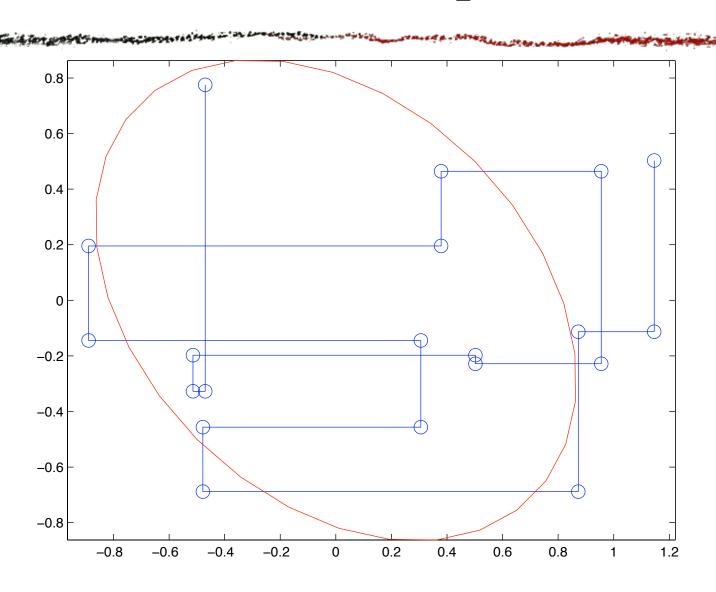
170(x) T(x) (x) = (x) T(x (x))dx = T(x') STOCKTOK P(x) T(x (x) = P(x) Q(x'1x)p(x'1x) = P(x) Q(x'1x)win(1, P(x)) Q(x|x') = 5P(x)Q(x'\x) case (P(x')Q(x\x') case Z

Gibbs

Gibbs sampler

- Special case of MH
- Divide X into blocks of r.v.s B(1), B(2), ...
- Proposal Q:
 - pick a block i uniformly (or round robin, or any other schedule)
 - \circ sample $X_{B(i)} \sim P(X_{B(i)} \mid X_{\neg B(i)})$

Gibbs example



Why is Gibbs useful?

• For Gibbs,
$$p = \frac{P(x_i', x_{\neg i}')}{P(x_i, x_{\neg i})} \frac{P(x_i \mid x_{\neg i}')}{P(x_i' \mid x_{\neg i})}$$

Gibbs derivation

$$\frac{P(x_{i}', x_{\neg i}')}{P(x_{i}, x_{\neg i})} \frac{P(x_{i} \mid x_{\neg i}')}{P(x_{i}' \mid x_{\neg i})}$$

$$= \frac{P(x_{i}', x_{\neg i})}{P(x_{i}, x_{\neg i})} \frac{P(x_{i} \mid x_{\neg i})}{P(x_{i}' \mid x_{\neg i})}$$

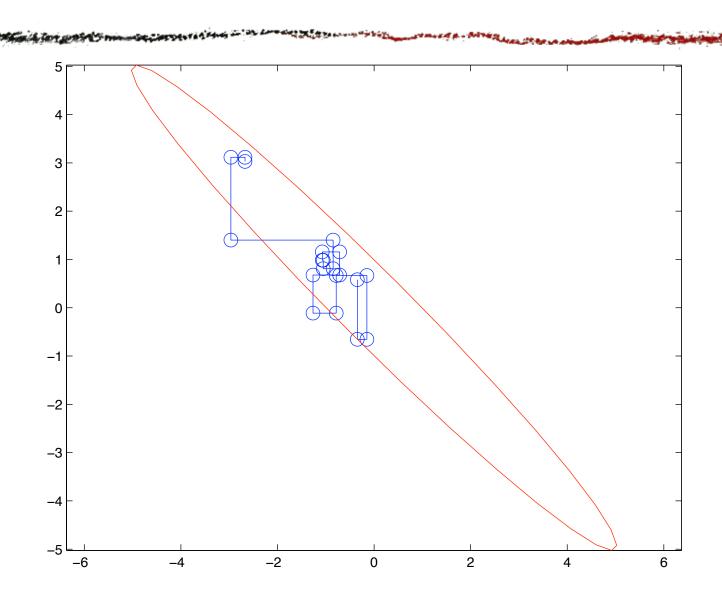
$$= \frac{P(x_{i}', x_{\neg i})}{P(x_{i}, x_{\neg i})} \frac{P(x_{i}, x_{\neg i})/P(x_{\neg i})}{P(x_{i}', x_{\neg i})/P(x_{\neg i})}$$

$$= 1$$

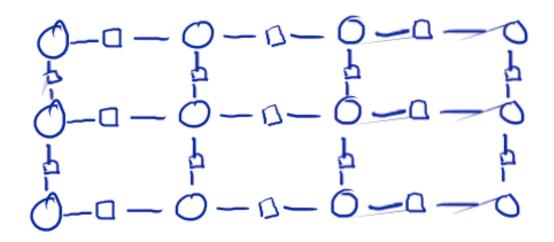
Gibbs in practice

- Above fact about p means Gibbs is often easy to implement
- Often works well
 - *if* we choose good blocks (but there may be no good blocking!)
- Fancier version: adaptive blocks, based on current x

Gibbs failure example



Sequential sampling



- In an HMM or DBN, to sample $P(X_T)$, start from X_1 and sample forward step by step
 - $\circ X_{t+1} \sim P(X_{t+1} \mid X_t)$
- $P(X_{1:T}) = P(X_1) P(X_2 | X_1) P(X_3 | X_2) \dots$

Particle filter

- Can sample $X_{t+1} \sim P(X_{t+1} \mid X_t)$ using any algorithm from above
- If we use parallel importance sampling to get N samples at once from each $P(X_t)$, we get a particle filter
- Write $\mathbf{x}_{t,i}$ (i = 1...N) for sample at time t

Particle filter

- Want one sample from each of $P(X_{t+1} | x_{t,i})$
- \circ Have only $ZP(X_{t+1} \mid x_{t,i})$
- For each i, pick $\mathbf{x}_{t+1,i}$ from proposal Q(x)
- Compute unnormalized importance weight

$$\hat{w}_i = ZP(\mathbf{x}_{t+1,i} \mid \mathbf{x}_{t,i})/Q(\mathbf{x}_{t+1,i})$$

Particle filter

• Normalize weights:

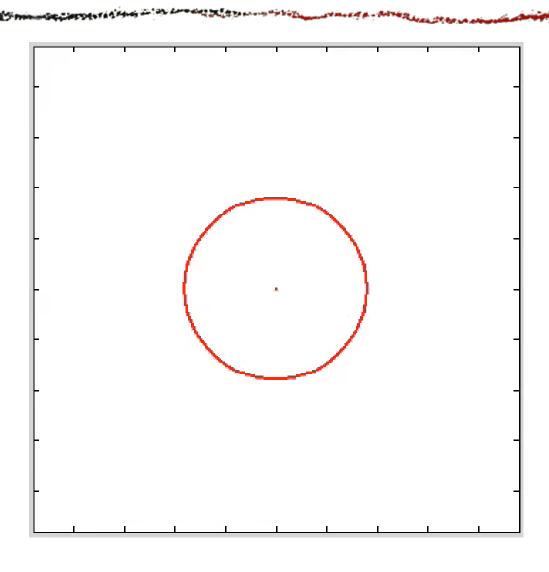
$$\bar{w} = \frac{1}{N} \sum_{i} \hat{w}_{i} \qquad w_{i} = \hat{w}_{i} / \bar{w}$$

- Now, $(w_i, \mathbf{x}_{t+1,i})$ is an approximate weighted sample from $P(\mathbf{X}_{t+1})$
- To get an unweighted sample, resample

Resampling

- Sample N times (with replacement) from $\mathbf{x}_{t+1,i}$ with probabilities w_i/N
 - alternate method: deterministically take $floor(w_i)$ copies of $\mathbf{x}_{t+1,i}$ and sample only $from [w_i floor(w_i)]$
- Each $\mathbf{x}_{t+1,i}$ appears w_i times on average, so we're still a sample from $P(\mathbf{X}_{t+1})$

Particle filter example



Learning

Learning

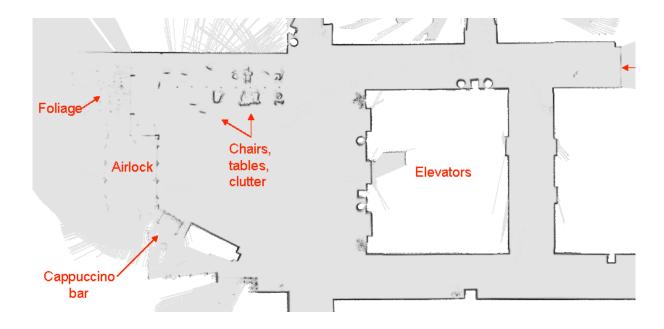
- So far we've assumed our model of the world (factor graph, or SAT formula, or MILP, etc.) was given
- In fact, one of the most important attributes of an intelligent agent is that it learns from experience

Learning

- Basic learning problem: given some experience, find a new or improved model
- Experience: a sample $x_1, ..., x_N$
- *Model:* want to predict x_{N+1} , ...

Example

- Experience = range sensor readings & odometry from robot
- \circ *Model* = map of the world



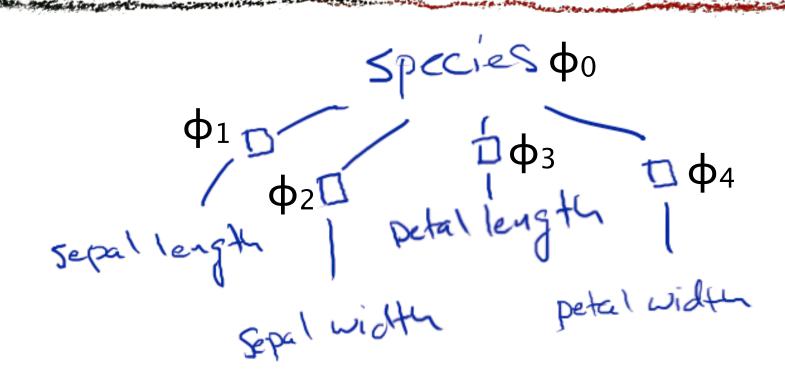
Example

- Experience = physical measurements of surveyed specimens & expert judgements of their true species
- Model = factor graph relating species to measurements

Sample data

sepal length	sepal width	petal length	petal width	species
5.1	3.5	1.4	0.2	Iris setosa
5.6	3.0	4.5	1.5	Iris versicolor
4.9	3.0	1.4	0.2	Iris setosa
6.4	2.8	5.6	2.1	Iris virginica
5.8	2.7	4.1	1.0	Iris versicolor

Factor graph



- One of many possible factor graphs
- \circ Values of Φs not shown, but part of model

In general

 \circ For our purposes, a model is exactly a joint distribution P(X) over possible samples

Comparing models

- When is a model P(X) better than another model P'(X)?
- Need to make future decisions based on model; better model = better decisions
- E.g., suppose robot runs on I. versicolor,
 but I. setosa is poisonous to it
- Knowing $P(I. setosa \mid petal \ length = 4.2)$ lets us weigh risks of eating specimen

The problem

- We don't know what future examples we'll see, or what decisions we'll have to make about them
- So, we'll use various proxies

Conditional model

- Split variables into (X, Y)
- Suppose we always observe X
- Two ways P(X, Y) and P'(X, Y) can differ:
 - $\circ P(X) \neq P'(X)$, and/or
 - $\circ P(Y \mid X) \neq P'(Y \mid X)$
- First way doesn't matter for decisions
- \circ Conditional model: only specifies $P(Y \mid X)$

Conditional model example

- \circ Experience = samples of (X, Y)
- $\circ X = features \ of \ object$
- Y = whether object is a "framling"
- Model = rule for deciding whether a new object is a framling

Sample data & possible model

tall	pointy	blue	framling
T	T	F	T
T	F	F	T
$oxed{F}$	T	F	$oxed{F}$
T	T	T	$oxed{F}$
T	F	F	T

$$H = tall \land \neg blue$$

Hypothesis space

- Hypothesis space $\mathcal{H}=$ set of models we are willing to consider
 - for philosophical or computational reasons
- E.g., all factor graphs of a given structure
- Or, all conjunctions of up to two literals

A simple learning algorithm

- Conditional learning: samples (x_i, y_i)
- Let *H* be a set of propositional formulae

$$\circ \mathcal{H} = \{ H_1, H_2, \dots \}$$

- *H* is consistent if $H(x_i) = y_i$ for all i
- *Version space* $V = \{ all \ consistent \ H \} \subseteq \mathcal{H}$
- Version space algorithm: predict $y = majority \ vote \ of \ H(x) \ over \ all \ H \in V$

Framlings

tall	pointy	blue	framling
T	T	F	T
T	F	F	T
$oxed{F}$	T	F	F
T	T	T	F
T	\overline{F}	\overline{F}	T

∘ \mathcal{H} = { conjunctions of up to 2 literals } = { T, F, tall, pointy, blue, ¬tall, ¬pointy, ¬blue, tall ∧ pointy, tall ∧ blue, pointy ∧ blue, ¬tall ∧ pointy, ... }

Analysis

- Mistake = make wrong prediction
- If some $H \in \mathcal{H}$ is always right, eventually we'll eliminate all competitors, and make no more mistakes
- If no $H \in \mathcal{H}$ is always right, eventually V will become empty
 - e.g., if label noise or feature noise

Analysis

- \circ Suppose $|\mathcal{H}| = N$
- How many mistakes could we make?

Analysis

- \circ Suppose $|\mathcal{H}| = N$
- How many mistakes could we make?
- Since we predict w/ majority of V, after any mistake, we eliminate half (or more) of V
- Can't do that more than log₂(N) times

Discussion

- *In example,* N = 20, $log_2(N) = 4.32$
- Made only 2 mistakes
- Mistake bound: limits wrong decisions, as desired
- \circ But, required strong assumptions (no noise, true H contained in \mathcal{H})
- Could be very slow!