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Lecture 18. Learning
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Admin

HW4 questions?
HW4 extension: was due Tue, now Thu
Project interim reports

reminder: due 4/14
Midterm 4/9

prep sessions TBA

2



Review
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Probability

Expectation
Conditional expectation

law of iterated expectations
Sample vs. population quantities
Estimators; consistency
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Markov-Chain Monte Carlo

For computing:

Chief difficulty: finding a good importance 
distribution Q(x)
Metropolis-Hastings: optimal distribution 
(Q = P) using randomized search

EP (g(X)) =
∫

g(x)P (x)dx =
∫

f(x)dx
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Markov chain
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Stationary distribution
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Stationary distribution

Q(xt) = P(xt) ⇒ Q(xt+1) = P(xt+1)

Q(xt) = P(xt) ⇒ Q(xt+1) =
∫

P(xt+1,xt)dxt

Q(xt) = P(xt) ⇒ Q(xt+1) =
∫

P(xt+1 | xt)P(xt)dxt

Q(xt) = P(xt) ⇒ Q(xt+1) =
∫

P(xt+1 | xt)Q(xt)dxt
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Stationary distribution

Q(xt) = P(xt) ⇒ Q(xt+1) = P(xt+1)

Q(xt) = P(xt) ⇒ Q(xt+1) =
∫

P(xt+1,xt)dxt

Q(xt) = P(xt) ⇒ Q(xt+1) =
∫

P(xt+1 | xt)P(xt)dxt

Q(xt) = P(xt) ⇒ Q(xt+1) =
∫

P(xt+1 | xt)Q(xt)dxt
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MH algorithm

Sample x’ ~ Q(x’ | x)

Compute p =

With probability min(1, p), set x := x’
Repeat for T steps; sample is x1, …, xT 
(will usually contain duplicates)

P (x′)
P (x)

Q(x | x′)
Q(x′ | x)

note: we don’t 
need to know Z
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MH example
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MH considerations

Acceptance rate
Mixing rate = 1 / mixing time
Annealing (start at high temperature, 
reduce to T=1)
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MH proof
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MH proof

Write T(x’ | x) for transition probability
Write p(x’ | x) for acceptance probability

If x’ ≠ x, then
T(x’ | x) = Q(x’ | x) p(x’ | x)

min
(

1,
P (x′)
P (x)

Q(x | x′)
Q(x′ | x)

)
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Detailed balance

Proof based on detailed balance
If we can show detailed balance, P(x) is 
our stationary distribution: 

take integral dx on both sides
use law of total probability on RHS

P (x)T (x′ | x) = P (x′)T (x | x′) ∀x, x′
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Gibbs
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Gibbs sampler

Special case of MH
Divide X into blocks of r.v.s B(1), B(2), …
Proposal Q:

pick a block i uniformly (or round 
robin, or any other schedule)
sample XB(i) ~ P(XB(i) | X¬B(i))
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Gibbs example

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

19



Why is Gibbs useful?

For Gibbs, p = 
P (x′

i, x
′
¬i)

P (xi, x¬i)
P (xi | x′

¬i)
P (x′

i | x¬i)
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Gibbs derivation

P (x′
i, x

′
¬i)

P (xi, x¬i)
P (xi | x′

¬i)
P (x′

i | x¬i)

=
P (x′

i, x¬i)
P (xi, x¬i)

P (xi | x¬i)
P (x′

i | x¬i)

=
P (x′

i, x¬i)
P (xi, x¬i)

P (xi, x¬i)/P (x¬i)
P (x′

i, x¬i)/P (x¬i)
= 1
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Gibbs in practice

Above fact about p means Gibbs is often 
easy to implement
Often works well

if we choose good blocks (but there may 
be no good blocking!)

Fancier version: adaptive blocks, based 
on current x

22



Gibbs failure example
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Sequential sampling

In an HMM or DBN, to sample P(XT), start 
from X1 and sample forward step by step

Xt+1 ~ P(Xt+1 | Xt)
P(X1:T) = P(X1) P(X2 | X1) P(X3 | X2) …
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Particle filter

Can sample Xt+1 ~ P(Xt+1 | Xt) using any 
algorithm from above
If we use parallel importance sampling to 
get N samples at once from each P(Xt), we 
get a particle filter
Write xt,i (i = 1…N) for sample at time t
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Particle filter

Want one sample from each of P(Xt+1 | xt,i)
Have only Z P(Xt+1 | xt,i)
For each i, pick xt+1,i from proposal Q(x)
Compute unnormalized importance weight

ŵi = ZP (xt+1,i | xt,i)/Q(xt+1,i)
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Particle filter

Normalize weights:

Now, (wi, xt+1,i) is an approximate 
weighted sample from P(Xt+1)
To get an unweighted sample, resample

w̄ =
1
N

∑

i

ŵi wi = ŵi/w̄
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Resampling

Sample N times (with replacement) from  
xt+1,i with probabilities wi/N

alternate method: deterministically take 
floor(wi) copies of xt+1,i and sample only 
from [wi – floor(wi)]

Each xt+1,i appears wi times on average, so 
we’re still a sample from P(Xt+1)
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Particle filter example
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Learning
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Learning

So far we’ve assumed our model of the 
world (factor graph, or SAT formula, or 
MILP, etc.) was given
In fact, one of the most important 
attributes of an intelligent agent is that it 
learns from experience
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Learning

Basic learning problem: given some 
experience, find a new or improved model
Experience: a sample x1, …, xN

Model: want to predict xN+1, …
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Example

Experience = range sensor readings & 
odometry from robot
Model = map of the world
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Example

Experience = physical measurements of 
surveyed specimens & expert judgements 
of their true species
Model = factor graph relating species to 
measurements
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Sample data

sepal 
length

sepal 
width

petal 
length

petal 
width species

5.1 3.5 1.4 0.2 Iris 
setosa

5.6 3.0 4.5 1.5 Iris 
versicolor

4.9 3.0 1.4 0.2 Iris 
setosa

6.4 2.8 5.6 2.1 Iris 
virginica

5.8 2.7 4.1 1.0 Iris 
versicolor
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Factor graph

One of many possible factor graphs
Values of Φs not shown, but part of model
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ϕ1
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In general

For our purposes, a model is exactly a 
joint distribution P(X) over possible 
samples
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Comparing models

When is a model P(X) better than another 
model P’(X)?
Need to make future decisions based on 
model; better model = better decisions
E.g., suppose robot runs on I. versicolor, 
but I. setosa is poisonous to it
Knowing P(I. setosa | petal length = 4.2) 
lets us weigh risks of eating specimen
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The problem

We don’t know what future examples we’ll 
see, or what decisions we’ll have to make 
about them
So, we’ll use various proxies
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Conditional model

Split variables into (X, Y)
Suppose we always observe X
Two ways P(X, Y) and P’(X, Y) can differ:

P(X) ≠ P’(X),  and/or
P(Y | X) ≠ P’(Y | X)

First way doesn’t matter for decisions
Conditional model: only specifies P(Y | X)
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Conditional model example

Experience = samples of (X, Y)
X = features of object
Y = whether object is a “framling”
Model = rule for deciding whether a new 
object is a framling

41



Sample data & possible model

tall pointy blue framling

T T F T
T F F T
F T F F
T T T F
T F F T

H = tall ∧ ¬blue
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Hypothesis space

Hypothesis space H = set of models we 
are willing to consider

for philosophical or computational 
reasons

E.g., all factor graphs of a given structure
Or, all conjunctions of up to two literals
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A simple learning algorithm

Conditional learning: samples (xi, yi)
Let H  be a set of propositional formulae

H  = { H1, H2, … }
H is consistent if H(xi) = yi for all i
Version space V = { all consistent H } ⊆ H

Version space algorithm: predict y = 
majority vote of H(x) over all H ∈ V
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Framlings

H  = { conjunctions of up to 2 literals } = 
{ T, F, tall, pointy, blue, ¬tall, ¬pointy, 
¬blue, tall ∧ pointy, tall ∧ blue, pointy ∧ 
blue, ¬tall ∧ pointy, … }

tall pointy blue framling
T T F T
T F F T
F T F F
T T T F
T F F T

45



Analysis

Mistake = make wrong prediction
If some H ∈ H  is always right, eventually 
we’ll eliminate all competitors, and make 
no more mistakes
If no H ∈ H  is always right, eventually V 
will become empty

e.g., if label noise or feature noise
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Analysis

Suppose | H  | = N

How many mistakes could we make?
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Analysis

Suppose | H  | = N

How many mistakes could we make?
Since we predict w/ majority of V, after 
any mistake, we eliminate half (or more) 
of V
Can’t do that more than log2(N) times
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Discussion

In example, N = 20, log2(N) = 4.32
Made only 2 mistakes
Mistake bound: limits wrong decisions, as 
desired
But, required strong assumptions (no 
noise, true H contained in H )

Could be very slow!
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