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Admin

HW3 back
HW4 out
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Alexander Pope on the converse

Sir, I admit your general rule
That every poet is a fool:
But you yourself may serve to show it,
That every fool is not a poet.

—Alexander Pope
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Review
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Factor graph (exact) inference

Variable elimination
Treewidth
HMMs and DBNs = factor 
graphs shaped like chains 
or parallel chains

forward-backward 
algorithm
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Conditional independence

Conditioning on a variable can break a 
factor graph into disconnected parts
R.v.s in separate parts are conditionally 
independent—simplifies conditional 
inference
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Approximate inference

Uniform sampling
Importance sampling

importance weights
Parallel importance sampling

allows unnormalized importance ZP(x)
but biased (bias → 0 as samples → ∞)
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More 
probability
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Expectation

Expectation EP(f(X)) = the average value 
of f(X) when x ~ P(X)
Average: if each x1, x2, …, xN ~ P(X), 

Will omit P when clear from context

1
N

N∑

i=1

f(xi)→ E(f(X)) as N →∞
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Expectation

Formula:

EP (f(X)) =
∑

x

P (x)f(x)

EP (f(X)) =
∫

P (x)f(x)dx
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Expectation example

A A- B+

A .21 .17 .07

A- .17 .15 .06

B+ .07 .06 .04

H
W

4

15-780

A A- B+

A 4 3.7 3.3

A- 4 3.7 3.3

B+ 4 3.7 3.3

H
W

4

15-780

probability f(HW4, 15-780)
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Expectation example

A A- B+

A .21*4 .17*3.7 .07*3.3

A- .17*4 .15*3.7 .06*3.3

B+ .07*4 .06*3.7 .04*3.3

H
W

4

15-780

∑

x

P (x)f(x)

= 3.767
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Conditional expectation

E(f(X) | event) = EP(x | event)(f(X))
Expectation under conditional distribution
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Conditional expectation example

A .41

A- .35

B+ .24
15

-7
80

A A- B+

A .21 .17 .07

A- .17 .15 .06

B+ .07 .06 .04

H
W

4

15-780

A 4.0

A- 3.7

B+ 3.3

f(X)

E(f | HW4=B+) = 3.73
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Expecting expectations

Interpret: E(E(f(X) | Y))
Law of iterated expectations:

E(E(f(X) | Y)) = E(f(X))
Proof is algebra on definition of E():
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Proof of iterated expectations

E(E(f(X) | Y )) = E

(
∑

x

P (x | Y )f(x)

)

=
∑

y

P (y)
∑

x

P (x | y)f(x)

=
∑

y

∑

x

P (x, y)f(x)

= E(f(X))
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Sample vs. population

P(X) describes “true” probability dist’n 
for a population (all realizations of X)
If x1 ~ P(X), x2 ~ P(X), …, xN ~ P(X), all 
independent, the xi are a sample from P(X)
Finite N means that actual proportion of 
any outcome X=x may differ from P(X=x)

E.g., flip 100 coins: may get 53 heads 
or 46 heads instead of 50
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Estimator

Want a population quantity, e.g., EP(f(X))
If we don’t know P, or if P is hard to 
compute, population value is inaccessible
But if we have a sample x1, …, xN ~ P(X), 
we can use (e.g.) the estimator

as a proxy for population value EP(f(X))

f̄ =
1
N

N∑

i=1

f(xi)

18



Estimator

Estimator = r.v. M that tells us about a 
population value μ

often, MN depends on sample x1, …, xN

Desirable property: consistency

E.g., sample mean is a consistent estimate 
of population expectation*

MN → µ as N →∞
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MCMC
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Integration problem

Recall: wanted

And therefore, wanted good importance 
distribution Q(x)

E(f(X)) =
∫

f(x)P (x)dx
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Back to high dimensions

Picking a good importance distribution is 
hard in high-D
Major contributions to integral can be 
hidden in small areas

recall, want (P big ==> Q big)
Would like to search for areas of high P(x)
But searching could bias our estimates
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Markov-Chain Monte Carlo

Design a randomized search procedure M 
which tends to increase P(x) if it is small
Run M for a while, take resulting x as a 
sample
Importance distribution Q(x)?
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Markov-Chain Monte Carlo

Design a randomized search procedure M 
which tends to increase P(x) if it is small
Run M for a while, take resulting x as a 
sample
Importance distribution Q(x)?                     
Q = stationary distribution of M…
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Stationary distribution

If xt is a sample from Q(x), then xt+1 is also 
a sample from Q(x)

Q(xt+1) = P(xt+1)

=
∫

P(xt+1, xt)dxt

=
∫

P(xt+1 | xt)P(xt)dxt

=
∫

P(xt+1 | xt)Q(xt)dxt
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Stationary distribution

If we run M a long time, eventually we 
won’t* be able to tell where we started
Limit is stationary distribution of M
…which is why we use Q = stationary 
distribution in importance weight
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Designing a search chain

Would like Q(x) = P(x)
makes importance weight = 1

Turns out we can get this exactly, using 
Metropolis-Hastings

∫
f(x)dx =

∫
P (x)g(x)dx = EP (g(x))
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Metropolis-Hastings

Way of designing chain w/ Q(x) = P(x)
Basic strategy: start from arbitrary x
Repeatedly tweak x to get x’
If P(x’) ≥ P(x), move to x’
If P(x’) << P(x), stay at x
In intermediate cases, randomize
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Proposal distribution

Left open: what does “tweak” mean?
Parameter of MH: Q(x’ | x)

one-step proposal distribution
Good proposals explore quickly, but 
remain in regions of high P(x)
Optimal proposal?
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MH algorithm

Sample x’ ~ Q(x’ | x)

Compute p =

With probability min(1, p), set x := x’
Repeat for T steps; sample is x1, …, xT 
(will usually contain duplicates)

P (x′)
P (x)

Q(x | x′)
Q(x′ | x)
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MH algorithm

Sample x’ ~ Q(x’ | x)

Compute p =

With probability min(1, p), set x := x’
Repeat for T steps; sample is x1, …, xT 
(will usually contain duplicates)

P (x′)
P (x)

Q(x | x′)
Q(x′ | x)

note: we don’t 
need to know Z
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MH example

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1
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Acceptance rate

Moving to new x’ is accepting
Want acceptance rate (avg p) to be large, 
so we don’t get big runs of the same x
Want Q(x’ | x) to move long distances (to 
explore quickly)
Tension between Q and P(accept):

P (x′)
P (x)

Q(x | x′)
Q(x′ | x)

p =
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Mixing rate, mixing time

If we pick a good proposal, we will move 
rapidly around domain of P(x)
After a short time, won’t be able to tell 
where we started
This is short mixing time = # steps until 
we can’t tell which starting point we used
Mixing rate = 1 / (mixing time)
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MH estimate

Once we have our samples x1, x2, …
Optional: discard initial “burn-in” range

allows time to reach stationary dist’n
Estimated integral: 1

N

N∑

i=1

g(xi)
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In example

g(x) = x2

True E(g(X)) = 0.28…
Proposal: 
Acceptance rate 55–60%
After 1000 samples, minus burn-in of 100:

final estimate 0.282361
final estimate 0.271167
final estimate 0.322270
final estimate 0.306541
final estimate 0.308716

Q(x′ | x) = N(x′ | x, 0.252I)
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Annealing

MH acceptance probability:

What if we use instead:

min
(

1,
P (x′)
P (x)

Q(x | x′)
Q(x′ | x)

)

min
(

1,
P (x′)β

P (x)β

Q(x | x′)
Q(x′ | x)

)

T = 1/β is temperature
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Effect of temperature

What if we had done MH with P’ instead?

Acceptance probability would be
P ′(x) = P (x)β/Z

min
(

1,
P ′(x′)
P ′(x)

Q(x | x′)
Q(x′ | x)

)
= min

(
1,

P (x′)β

P (x)β

Q(x | x′)
Q(x′ | x)

)
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Effect of temperature

What happens to acceptance probability 
as T grows (β shrinks)?

P (x′)β

P (x)β
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Annealing in MH

Start with T big (easy to sample)
Let T shrink slowly until T = 1
When T reaches 1, MH has already mixed!

If we care about most likely x, we can let 
T shrink still further
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Gibbs sampler

Special case of MH
Divide X into blocks of r.v.s B(1), B(2), …
Proposal Q:

pick a block i uniformly
sample XB(i) ~ P(XB(i) | X¬B(i))
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Gibbs example

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
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Gibbs example

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1
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Why is Gibbs useful?

For Gibbs, p = 
P (x′

i, x
′
¬i)

P (xi, x¬i)
P (xi | x′

¬i)
P (x′

i | x¬i)

43


