15-780: Graduate Al
Lecture 17. Inference Learmng
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Alexander Pope on the converse
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Sir, I admit your general rule

That every poet is a fool:

But you yourself may serve to show it,
That every fool is not a poet.

—Alexander Pope
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Factor graph (exact) inference
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Conditional independence
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o Conditioning on a variable can break a
factor graph into disconnected parts

o R.v.s in separate parts are conditionally
independent—simplifies conditional
inference



Approximate inference

'hnm“*"“ J—'ﬁ“tﬂtzau.-h‘ibiﬁ_.;ihiql-M“-&W‘*““ ) - - - . - -y, _“

o Uniform sampling
o Importance sampling
o importance weights
o Parallel importance sampling
o allows unnormalized importance ZP(x)

o but biased (bias — 0 as samples — )
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Expectation
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o Expectation Ep(f(X)) = the average value
of f(X) when x ~ P(X)

o Average: if each xi, x2, ..., xy ~ P(X),
N
1
L3 @) - BU(X) as N
i=1

o Will omit P when clear from context



Expectation
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Expectation example
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probability

15-780 15-780
A | A- | B+ A | A- | B+
Al2ilazlorl<|l Al 413733
N <t
= =
Tla- a7l aslos| =l A | 4 | 37133
B+l o7l o6l o4l |B+| 4 13733

f(HWA4, 15-780)




Expectation example

15-780
A A- B+
A | 21%4|.17%3.7| .07%3.3
% > P(x)f(x)
A- | 17%4|.15%3.7| 06%3.3 _ 3767
B+ | .07%4 | .06%3.7| .04%3.3
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Conditional expectation
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o) E(f(X) | event) = EP(xIevent)(f(X))

o Expectation under conditional distribution
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Conditional expectation example
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15-780
A | A- | B+
Al21.17] .07
N
=
Tl A | g7] 15| 06
B+ | .07 06| .04

15-780

N(X)
A | 41 A | 4.0
A- | 35 A- | 3.7
B+ | .24 B+ | 3.3

E(f| HW4=B+) = 3.73
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Expecting expectations
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o Interpret: E(E((X)1Y))

o Law of iterated expectations:

o E(E((X)1Y))=E(f(X))
o Proofis algebra on definition of E():
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Proof of iterated expectations

E(E(f(X

) [Y))
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2 (Z P(x | Y)f(flf))
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Sample vs. population
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o P(X) describes “true’ probability dist’n
for a population (all realizations of X)

o If x1 ~P(X), x2~P(X), ..., xyn~ P(X), all
independent, the x; are a sample from P(X)

o Finite N means that actual proportion of
any outcome X=x may differ from P(X=x)

o E.g., flip 100 coins: may get 53 heads
or 46 heads instead of 50
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Estimator
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o Want a population gquantity, e.g., Ep(f(X))

o If we don’t know P, or if P is hard to
compute, population value is inaccessible

o But if we have a sample xi, ..., xy ~ P(X),
we can use (e.g.) the estimator

1 &Y
f= N ; f (i)
as a proxy for population value Ep(f(X))
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Estimator
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o Estimator = r.v. M that tells us about a
population value u

o often, My depends on sample xi, ..., Xy
o Desirable property: consistency
My —u as N — o0

o E.g., sample mean is a consistent estimate
of population expectation”
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MCMC
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Integration problem

o Recall: wanted

E(f(X)) = / f(x) P(z)da

o And therefore, wanted good importance
distribution Q(x)
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Back to high dimensions
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o

Picking a good importance distribution is
hard in high-D

Major contributions to integral can be
hidden in small areas

o recall, want (P big ==> Q big)
Would like to search for areas of high P(x)

But searching could bias our estimates
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Markov-Chain Monte Carlo
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o Design a randomized search procedure M
which tends to increase P(x) if it is small

o Run M for a while, take resulting x as a
sample

o Importance distribution Q(x)?
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Markov-Chain Monte Carlo
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o Design a randomized search procedure M
which tends to increase P(x) if it is small

o Run M for a while, take resulting x as a
sample

o Importance distribution Q(x)?
Q = stationary distribution of M...
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Stationary distribution
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o If x;is a sample from Q(x), then x:+;1 is also
a sample from Q(x)

Q(ri41) = Plxega)
— /P(att+1,azt)dmt

— /P(ajt—l—l ‘ $t)P($t)dajt
— /P(It+1 | 24)Q(xy)dxy
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Stationary distribution
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o If we run M a long time, eventually we
won't” be able to tell where we started

o Limit is stationary distribution of M

o ...which is why we use Q = stationary
distribution in importance weight
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Designing a search chain
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/ f(x)de = / P(2)g(z)dz = Ep(g(z))
o Would like O(x) = P(x)

o makes importance weight = 1

o Turns out we can get this exactly, using
Metropolis-Hastings
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Metropolis-Hastings
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o Way of designing chain w/ Q(x) = P(x)

o

o

o

Basic strategy: start from arbitrary x
Repeatedly tweak x to get x’

If P(x’) = P(x), move to x’

If P(x’) << P(x), stay at x

In intermediate cases, randomize
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Proposal distribution
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o Left open: what does “tweak” mean?
o Parameter of MH: OQ(x’ | x)
o one-step proposal distribution

o Good proposals explore quickly, but
remain in regions of high P(x)

o Optimal proposal?
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MH algorithm
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o Sample x’~ Q(x’ | x)
P(x') Q(z | 2')

P(z) Q2 | x)
o With probability min(1, p), set x := x’

o Compute p =

o Repeat for T steps; sample is xj, ..., Xt
(will usually contain duplicates)
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MH algorithm

e T L tanie . PRSI Eo SRR S

note: we don'’t

o Sample x’~ Q(x’ | x) /need to know Z
P(') Q(z | o)

P(z) Q2 | x)
o With probability min(1, p), set x := x’

o Compute p =

o Repeat for T steps; sample is xj, ..., Xt
(will usually contain duplicates)
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MH example
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0.5

-0.5
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Acceptance rate
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o Moving to new x’is accepting

o Want acceptance rate (avg p) to be large,
so we don'’t get big runs of the same x

o Want OQ(x’| x) to move long distances (to
explore quickly)

o Tension between Q and P(accept):

P(z") Q(z | 2')
P(z) Q2 | x)

p:
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Mixing rate, mixing time
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o If we pick a good proposal, we will move
rapidly around domain of P(x)

o After a short time, won't be able to tell
where we started

o This is short mixing time = # steps until
we can't tell which starting point we used

o Mixing rate = 1 / (mixing time)
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MH estimate
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o Once we have our samples xj, x2, ...
o Optional: discard initial “burn-in” range
o allows time to reach stationary dist’n

Estimated int [ 1 il
o) Stimaltled initegrat.
s NZQ(%)
1=1
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In example
o g(x) = x?
o True E(g(X)) = 0.26...
o Proposal: Q(z'|x)= N(2'|z,0.25%])
o Acceptance rate 55-60%

o After 1000 samples, minus burn-in of 100:

.282361
271167
.322270
.306541
.308716

final estimate
final estimate
final estimate
final estimate
final estimate

o O O O O



Annealing
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o MH acceptance probability:

win (1. 563 3 1)

o What if we use instead.:
P(x' 16 /
win (1 P@) Q)
P(z)? Q' | x)
T = 1/P is temperature
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Effect of temperature
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o What if we had done MH with P’ instead?
P'(z) = P(x)"/Z
o Acceptance probability would be

win (1, 2D QL) (, 2 e )
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Effect of temperature
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o What happens to acceptance probability
as T grows (3 shrinks)?

P(z")P
P(x)P
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Annealing in MH
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o Start with T big (easy to sample)
o Let T shrink slowly until T = 1
o When T reaches 1, MH has already mixed!

o If we care about most likely x, we can let
T shrink still further
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Gibbs sampler
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o Special case of MH
o Divide X into blocks of rv.s B(1), B(2), ...
o Proposal Q:

o pick a block i uniformly

o sample Xpi)~ P(Xpi) | X-p(i))
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Gibbs example
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Gibbs example
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Why 1s G1bbs useful?
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o For Gibbs, p =
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