
15-780: Graduate AI
Lecture 16. Inference

Geoff Gordon (this lecture)
Tuomas Sandholm

TAs Sam Ganzfried, Byron Boots

1

Review

2

Probability

Conditioning
Independence
Bayes Rule
Continuous distributions

3

Factor graphs

Generalization of SAT, ILP to include
probability
R.v.s connected by factors (= soft or hard
constraints)
P = product of factors / Z
Partition function Z is hard part—makes
most tasks NP- or #P-complete

4

Inference

Dynamic programming for counting
support or for calculating Z
Build probability tables for subsets of r.v.s
Marginalize onto r.v.s shared with
neighboring factors, extend domain and
multiply into neighboring factor
Allows us to forget exact settings of non-
shared r.v.s

5

Example

6

Calculate Z for this graph

7

Eliminating partway

For Z, want to sum over all X
For marginal P(X45), eliminate X123678

Sum out 123, then 876, to get Z P(X45)
Sum out 45 to get Z

8

Eliminating partway

Conditional P(X56 | X4) = P(X456) / P(X4)
Sum out 123, then 87, to get Z P(X456)
Sum out 56 to get Z P(X4)
Divide

9

Conditioning on observations

We just computed P(X56 | X4)
What if we only want P(X56 | x4)

e.g., if we observed X4 = x4

10

Conditioning on observations

11

Conditioning on observations

12

Conditioning on observations

13

Graph separation = independence

Recall independence: P(X, Y) = P(X)P(Y)

14

Using independence

So, for P(X56 | x4), we can ignore the X12
piece and the X3 piece, and just work with
the X5678 piece
Eliminate X78

15

A more difficult example

16

“Marrying” neighbors

When we sum out a variable X, we create
a new factor whose domain is all
neighboring r.v.s of X
If lots of neighbors, this can be very costly
Then, when we sum out another r.v. Y, we
might create an even bigger factor, etc.

17

Treewidth

Elimination order E: sum x1, then x5, …
treewidth(E) =

(size of largest factor formed) – 1
treewidth = minE treewidth(E)
Variable elimination uses space, time
exponential in treewidth
Worse: even computing treewidth is NP-
complete

18

Treewidth examples

Chain

 Tree

19

Treewidth examples

Parallel chains

Cycle

20

Aside: belief propagation

Suppose we want all 1-variable marginals
Could do N runs of variable elimination
Or: the BP algorithm simulates N runs for
the price of 2
For details: Kschischang et al. reading

21

HMMs and
DBNs

22

Inference over time

Consider a robot:
true state (x, y, θ)
controls (v, w)
two range sensors (r, s)

23

Model

xt+1 = xt + vt cos θt + noise
yt+1 = yt + vt sin θt + noise
θt+1 = θt + wt + noise

rt =
√

(xt − xR)2 + (yt − yR)2 + noise

st =
√

(xt − xS)2 + (yt − yS)2 + noise

24

Factor graph

25

Dynamic Bayes Network

DBN: factor graph composed of a single
structural unit repeated over time

conceptually infinite to right, but in
practice cut off at some maximum T

Factors must be conditional distributions

∀xt.
∑

xt+1

φ(xt, xt+1) = 1

∀xt.
∑

yt

φ(xt, yt) = 1

26

Three kinds of variable

Control

State

Observation

27

Condition on obs, control

Control

State

Observation

28

Condition on obs, control

Control

State

Observation

29

Simplified version

State: xt ∈ {1, 2, 3}

Observation: yt ∈ {L, R}

Control: just one, “move randomly”

30

Factor graph

31

Potentials

1 2 3
1 .67 .33 0

2 .33 .33 .33

3 0 .33 .67

Xt+1

Xt

L H
1 .67 .33

2 .5 .5

3 .33 .67

Yt

Xt

32

Hidden Markov Models

This is an HMM—a DBN with:
one state variable
one observation variable

33

HMM inference

Condition on y1 = H, y2 = H, y3 = L
What is P(X2 | HHL)?

34

Forward-backward

You may recognize the above as the
forward-backward algorithm
Special case of belief propagation

35

Approximate
Inference

36

Most of the time…

Treewidth is big
Variables are high-arity or continuous
Can’t afford exact inference

Partition function = numerical integration
(and/or summation)
We’ll look at randomized algorithms

37

Numerical integration

−1

−0.5

0

0.5

1
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

Y
X

f(X
,Y
)

38

Integration in 1000s of dims

El
ia

za
r a

nd
 P

ar
r,

IJ
C

AI
-0

3

39

Simple 1D problem

−1 −0.5 0 0.5 10

10

20

30

40

50

60

70

40

Simplest randomized algorithm

−1 −0.5 0 0.5 10

10

20

30

40

50

60

70

Uniform sampling: sum(f(xi))/N
41

Uniform sampling

So, V E(f(X)) is desired integral
But standard deviation can be big
Can reduce it by averaging many samples
But only at rate 1/sqrt(N)

E(f(X)) =
∫

P (x)f(x)dx

=
1
V

∫
f(x)dx

42

Importance sampling

Instead of x ~ uniform, use x ~ Q(x)
Q = importance distribution
Should have Q(x) large where f(x) is large
Problem:

EQ(f(X)) =
∫

Q(x)f(x)dx

43

Importance sampling

h(x) ≡ f(x)/Q(x)

EQ(h(X)) =
∫

Q(x)h(x)dx

=
∫

Q(x)f(x)/Q(x)dx

=
∫

f(x)dx

44

Importance sampling

So, take samples of h(X) instead of f(X)
wi = 1/Q(xi) is importance weight
Q = uniform yields uniform sampling

45

Importance sampling

−1 −0.5 0 0.5 10

10

20

30

40

50

60

70

46

Variance

How does this help us control variance?
Suppose f big ==> Q big
And Q small ==> f small
Then h = f/Q never gets too big
Variance of each sample is lower ==>
need fewer samples
A good Q makes a good IS

47

Importance sampling, part II

Suppose we want

Pick N samples xi from proposal Q(X)
Average wi g(xi), where wi = P(xi)/Q(xi) is
importance weight

∫
f(x)dx =

∫
P (x)g(x)dx = EP (g(X))

EQ(Wg(X)) =
∫

Q(x)[P (x)/Q(x)]g(x)dx =
∫

P (x)g(x)dx

48

Parallel importance sampling

Suppose we want

But P(x) is unnormalized (e.g., represented
by a factor graph)—know only Z P(x)

∫
f(x)dx =

∫
P (x)g(x)dx = EP (g(X))

49

Parallel IS

Pick N samples xi from proposal Q(X)
If we knew wi = P(xi)/Q(xi), could do IS
Instead, set ŵi = ZP (xi)/Q(xi)

50

Parallel IS

So, is an unbiased estimate of Zw̄ =
1
N

∑

i

ŵi

E(Ŵ) =
∫

Q(x)(ZP (x)/Q(x))dx

= Z

∫
P (x)dx

= Z

51

Parallel IS

So, is an estimate of wi, computed
without knowing Z
Final estimate:

ŵi/w̄

∫
f(x)dx ≈ 1

n

∑
i

ŵi
w̄ g(xi)

52

Parallel IS is biased

0 1 2 30

0.5

1

1.5

2

2.5

3

mean(weights)

1
/ m

ea
n(

we
ig

ht
s)

E(mean(weights))

E(W̄) = Z, but E(1/W̄) != 1/Z in general
53

−2 −1 0 1 2−2

−1

0

1

2

Q : (X, Y) ∼ N(1, 1) θ ∼ U(−π,π)
f(x, y, θ) = Q(x, y, θ)P (o = 0.8 | x, y, θ)/Z

54

−2 −1 0 1 2−2

−1

0

1

2

Posterior E(X, Y, θ) = (0.496, 0.350, 0.084)

55

Back to high dimensions

Picking a good importance distribution is
hard in high-D
Major contributions to integral can be
hidden in small areas

recall, want (P big ==> Q big)
Would like to search for areas of high P(x)
But searching could bias our estimates

56

MCMC

57

Markov-Chain Monte Carlo

Design a randomized search procedure M
which tends to increase P(x) if it is small
Run M for a while, take resulting x as a
sample
Importance weight P(x)/Q(x)?

58

Markov-Chain Monte Carlo

Design a randomized search procedure M
which tends to increase P(x) if it is small
Run M for a while, take resulting x as a
sample
Importance weight P(x)/Q(x)?
Q = stationary distribution of M

59

Stationary distribution

If we run M a long time, eventually we
won’t* be able to tell where we started
Now look at current value of x
This is a sample from stationary
distribution of M
…which is why we use Q = stationary
distribution in importance weight

60

Designing a search chain

Would like Q(x) = P(x)
makes importance weight = 1

Turns out we can get this exactly, using
Metropolis-Hastings

∫
f(x)dx =

∫
P (x)g(x)dx = EP (g(x))

61

Metropolis-Hastings

Way of designing chain w/ Q(x) = P(x)
Basic strategy: start from arbitrary x
Repeatedly tweak x to get x’
If P(x’) ≥ P(x), move to x’
If P(x’) << P(x), stay at x
In intermediate cases, randomize

62

Proposal distribution

Left open: what does “tweak” mean?
Parameter of MH: Q(x’ | x)

one-step proposal distribution
Good proposals explore quickly, but
remain in regions of high P(x)
Optimal proposal?

63

MH algorithm

Sample x’ ~ Q(x’ | x)

Compute p =

With probability min(1, p), set x := x’
Repeat for T steps; sample is x1, …, xT
(will usually contain duplicates)

P (x′)
P (x)

Q(x | x′)
Q(x′ | x)

64

MH algorithm

Sample x’ ~ Q(x’ | x)

Compute p =

With probability min(1, p), set x := x’
Repeat for T steps; sample is x1, …, xT
(will usually contain duplicates)

P (x′)
P (x)

Q(x | x′)
Q(x′ | x)

note: we don’t
need to know Z

64

MH example

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

65

Acceptance rate

Moving to new x’ is accepting
Want acceptance rate (avg p) to be large
(so we don’t get big runs of the same x)
Want Q(x’ | x) to move long distances (to
explore quickly)
Tension between Q and P(accept):

P (x′)
P (x)

Q(x | x′)
Q(x′ | x)

p =

66

Mixing rate, mixing time

If we pick a good proposal, we will move
rapidly around domain of P(x)
After a short time, won’t be able to tell
where we started
This is fast mixing rate = 1 / (mixing time)
Mixing time = # steps until we can’t tell
accurately which starting point we used

67

MH estimate

Once we have our samples x1, x2, …
Optional: discard initial “burn-in” range

allows time to reach stationary dist’n
Estimated integral: 1

N

N∑

i=1

f(xi)

68

In example

f(x) = x2

True E(f(x)) = 0.28…
Proposal:
Acceptance rate 55–60%
After 1000 samples, minus burn-in of 100:

final estimate 0.282361
final estimate 0.271167
final estimate 0.322270
final estimate 0.306541
final estimate 0.308716

Q(x′ | x) = N(x′ | x, 0.252I)

69

MH proof

Write T(x’ | x) for transition probability
Write p(x’ | x) for acceptance probability

If x’ ≠ x, then
T(x’ | x) = Q(x’ | x) p(x’ | x)

min
(

1,
P (x′)
P (x)

Q(x | x′)
Q(x′ | x)

)

70

Detailed balance

Detailed balance implies that P(x) is our
stationary distribution:

take integral dx on both sides
use Bayes rule, law of total probability
on RHS

P (x)T (x′ | x) = P (x′)T (x | x′) ∀x, x′

71

Gibbs sampler

Special case of MH
Divide X into blocks of r.v.s B(1), B(2), …
Proposal Q:

pick a block i uniformly
sample XB(i) ~ P(XB(i) | X¬B(i))

72

Gibbs example

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

73

Gibbs example

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

74

Why is Gibbs useful?

For Gibbs, p =
P (x′

i, x
′
¬i)

P (xi, x¬i)
P (xi | x′

¬i)
P (x′

i | x¬i)

75

Gibbs in practice

Above fact about p means Gibbs is often
easy to implement
Often works well

if we choose good blocks (but there may
be no good blocking!)

Fancier version: adaptive blocks, based
on current x

76

Gibbs failure example

−6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

77

