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Review
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Probability

Conditioning
Independence
Bayes Rule
Continuous distributions
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Factor graphs

Generalization of SAT, ILP to include 
probability
R.v.s connected by factors (= soft or hard 
constraints)
P = product of factors / Z
Partition function Z is hard part—makes 
most tasks NP- or #P-complete
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Inference

Dynamic programming for counting 
support or for calculating Z
Build probability tables for subsets of r.v.s
Marginalize onto r.v.s shared with 
neighboring factors, extend domain and 
multiply into neighboring factor
Allows us to forget exact settings of non-
shared r.v.s
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Example
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Calculate Z for this graph
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Eliminating partway

For Z, want to sum over all X
For marginal P(X45), eliminate X123678

Sum out 123, then 876, to get Z P(X45)
Sum out 45 to get Z
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Eliminating partway

Conditional P(X56 | X4) = P(X456) / P(X4)
Sum out 123, then 87, to get Z P(X456)
Sum out 56 to get Z P(X4)
Divide
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Conditioning on observations

We just computed P(X56 | X4)
What if we only want P(X56 | x4)

e.g., if we observed X4 = x4
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Conditioning on observations
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Conditioning on observations
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Conditioning on observations
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Graph separation = independence

Recall independence: P(X, Y) = P(X)P(Y)
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Using independence

So, for P(X56 | x4), we can ignore the X12 
piece and the X3 piece, and just work with 
the X5678 piece
Eliminate X78
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A more difficult example
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“Marrying” neighbors

When we sum out a variable X, we create 
a new factor whose domain is all 
neighboring r.v.s of X
If lots of neighbors, this can be very costly
Then, when we sum out another r.v. Y, we 
might create an even bigger factor, etc.
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Treewidth

Elimination order E: sum x1, then x5, …
treewidth(E) =

(size of largest factor formed) – 1
treewidth = minE treewidth(E)
Variable elimination uses space, time 
exponential in treewidth
Worse: even computing treewidth is NP-
complete
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Treewidth examples

Chain

 Tree
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Treewidth examples

Parallel chains

Cycle
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Aside: belief propagation

Suppose we want all 1-variable marginals
Could do N runs of variable elimination
Or: the BP algorithm simulates N runs for 
the price of 2
For details: Kschischang et al. reading
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HMMs and 
DBNs
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Inference over time

Consider a robot: 
true state (x, y, θ)
controls (v, w)
two range sensors (r, s)
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Model

xt+1 = xt + vt cos θt + noise
yt+1 = yt + vt sin θt + noise
θt+1 = θt + wt + noise

rt =
√

(xt − xR)2 + (yt − yR)2 + noise

st =
√

(xt − xS)2 + (yt − yS)2 + noise

24



Factor graph
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Dynamic Bayes Network

DBN: factor graph composed of a single 
structural unit repeated over time

conceptually infinite to right, but in 
practice cut off at some maximum T

Factors must be conditional distributions

∀xt.
∑

xt+1

φ(xt, xt+1) = 1

∀xt.
∑

yt

φ(xt, yt) = 1
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Three kinds of variable

Control

State

Observation
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Condition on obs, control

Control

State

Observation
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Condition on obs, control

Control

State

Observation
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Simplified version

State: xt ∈ {1, 2, 3}

Observation: yt ∈ {L, R}

Control: just one, “move randomly”
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Factor graph
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Potentials
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Hidden Markov Models

This is an HMM—a DBN with:
one state variable
one observation variable
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HMM inference

Condition on y1 = H, y2 = H, y3 = L
What is P(X2 | HHL)?
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Forward-backward

You may recognize the above as the 
forward-backward algorithm
Special case of belief propagation
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Approximate 
Inference
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Most of the time…

Treewidth is big
Variables are high-arity or continuous
Can’t afford exact inference

Partition function = numerical integration 
(and/or summation)
We’ll look at randomized algorithms
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Numerical integration
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Integration in 1000s of dims
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Simple 1D problem
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Simplest randomized algorithm
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Uniform sampling: sum(f(xi))/N
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Uniform sampling

So, V E(f(X)) is desired integral
But standard deviation can be big
Can reduce it by averaging many samples
But only at rate 1/sqrt(N)

E(f(X)) =
∫

P (x)f(x)dx

=
1
V

∫
f(x)dx
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Importance sampling

Instead of x ~ uniform, use x ~ Q(x)
Q = importance distribution
Should have Q(x) large where f(x) is large
Problem:

EQ(f(X)) =
∫

Q(x)f(x)dx
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Importance sampling

h(x) ≡ f(x)/Q(x)

EQ(h(X)) =
∫

Q(x)h(x)dx

=
∫

Q(x)f(x)/Q(x)dx

=
∫

f(x)dx
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Importance sampling

So, take samples of h(X) instead of f(X)
wi = 1/Q(xi) is importance weight
Q = uniform yields uniform sampling
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Importance sampling
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Variance

How does this help us control variance?
Suppose f big ==> Q big
And Q small ==> f small
Then h = f/Q never gets too big
Variance of each sample is lower ==> 
need fewer samples
A good Q makes a good IS
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Importance sampling, part II

Suppose we want

Pick N samples xi from proposal Q(X)
Average wi g(xi), where wi = P(xi)/Q(xi) is 
importance weight

∫
f(x)dx =

∫
P (x)g(x)dx = EP (g(X))

EQ(Wg(X)) =
∫

Q(x)[P (x)/Q(x)]g(x)dx =
∫

P (x)g(x)dx
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Parallel importance sampling

Suppose we want

But P(x) is unnormalized (e.g., represented 
by a factor graph)—know only Z P(x)

∫
f(x)dx =

∫
P (x)g(x)dx = EP (g(X))
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Parallel IS

Pick N samples xi from proposal Q(X)
If we knew wi = P(xi)/Q(xi), could do IS
Instead, set ŵi = ZP (xi)/Q(xi)

50



Parallel IS

So,                          is an unbiased estimate of Zw̄ =
1
N

∑

i

ŵi

E(Ŵ ) =
∫

Q(x)(ZP (x)/Q(x))dx

= Z

∫
P (x)dx

= Z
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Parallel IS

So,           is an estimate of wi, computed 
without knowing Z
Final estimate:

ŵi/w̄

∫
f(x)dx ≈ 1

n

∑
i

ŵi
w̄ g(xi)
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Parallel IS is biased
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E(W̄ ) = Z, but E(1/W̄ ) != 1/Z in general
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Q : (X, Y ) ∼ N(1, 1) θ ∼ U(−π,π)
f(x, y, θ) = Q(x, y, θ)P (o = 0.8 | x, y, θ)/Z
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Posterior E(X, Y, θ) = (0.496, 0.350, 0.084)
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Back to high dimensions

Picking a good importance distribution is 
hard in high-D
Major contributions to integral can be 
hidden in small areas

recall, want (P big ==> Q big)
Would like to search for areas of high P(x)
But searching could bias our estimates
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MCMC
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Markov-Chain Monte Carlo

Design a randomized search procedure M 
which tends to increase P(x) if it is small
Run M for a while, take resulting x as a 
sample
Importance weight P(x)/Q(x)?
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Markov-Chain Monte Carlo

Design a randomized search procedure M 
which tends to increase P(x) if it is small
Run M for a while, take resulting x as a 
sample
Importance weight P(x)/Q(x)?                     
Q = stationary distribution of M
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Stationary distribution

If we run M a long time, eventually we 
won’t* be able to tell where we started
Now look at current value of x
This is a sample from stationary 
distribution of M
…which is why we use Q = stationary 
distribution in importance weight
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Designing a search chain

Would like Q(x) = P(x)
makes importance weight = 1

Turns out we can get this exactly, using 
Metropolis-Hastings

∫
f(x)dx =

∫
P (x)g(x)dx = EP (g(x))
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Metropolis-Hastings

Way of designing chain w/ Q(x) = P(x)
Basic strategy: start from arbitrary x
Repeatedly tweak x to get x’
If P(x’) ≥ P(x), move to x’
If P(x’) << P(x), stay at x
In intermediate cases, randomize
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Proposal distribution

Left open: what does “tweak” mean?
Parameter of MH: Q(x’ | x)

one-step proposal distribution
Good proposals explore quickly, but 
remain in regions of high P(x)
Optimal proposal?
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MH algorithm

Sample x’ ~ Q(x’ | x)

Compute p =

With probability min(1, p), set x := x’
Repeat for T steps; sample is x1, …, xT 
(will usually contain duplicates)

P (x′)
P (x)

Q(x | x′)
Q(x′ | x)
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MH algorithm

Sample x’ ~ Q(x’ | x)

Compute p =

With probability min(1, p), set x := x’
Repeat for T steps; sample is x1, …, xT 
(will usually contain duplicates)

P (x′)
P (x)

Q(x | x′)
Q(x′ | x)

note: we don’t 
need to know Z
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MH example

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

65



Acceptance rate

Moving to new x’ is accepting
Want acceptance rate (avg p) to be large 
(so we don’t get big runs of the same x)
Want Q(x’ | x) to move long distances (to 
explore quickly)
Tension between Q and P(accept):

P (x′)
P (x)

Q(x | x′)
Q(x′ | x)

p =
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Mixing rate, mixing time

If we pick a good proposal, we will move 
rapidly around domain of P(x)
After a short time, won’t be able to tell 
where we started
This is fast mixing rate = 1 / (mixing time)
Mixing time = # steps until we can’t tell 
accurately which starting point we used
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MH estimate

Once we have our samples x1, x2, …
Optional: discard initial “burn-in” range

allows time to reach stationary dist’n
Estimated integral: 1

N

N∑

i=1

f(xi)
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In example

f(x) = x2

True E(f(x)) = 0.28…
Proposal: 
Acceptance rate 55–60%
After 1000 samples, minus burn-in of 100:

final estimate 0.282361
final estimate 0.271167
final estimate 0.322270
final estimate 0.306541
final estimate 0.308716

Q(x′ | x) = N(x′ | x, 0.252I)
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MH proof

Write T(x’ | x) for transition probability
Write p(x’ | x) for acceptance probability

If x’ ≠ x, then
T(x’ | x) = Q(x’ | x) p(x’ | x)

min
(

1,
P (x′)
P (x)

Q(x | x′)
Q(x′ | x)

)
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Detailed balance

Detailed balance implies that P(x) is our 
stationary distribution: 

take integral dx on both sides
use Bayes rule, law of total probability 
on RHS

P (x)T (x′ | x) = P (x′)T (x | x′) ∀x, x′
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Gibbs sampler

Special case of MH
Divide X into blocks of r.v.s B(1), B(2), …
Proposal Q:

pick a block i uniformly
sample XB(i) ~ P(XB(i) | X¬B(i))
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Gibbs example
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Gibbs example
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Why is Gibbs useful?

For Gibbs, p = 
P (x′

i, x
′
¬i)

P (xi, x¬i)
P (xi | x′

¬i)
P (x′

i | x¬i)
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Gibbs in practice

Above fact about p means Gibbs is often 
easy to implement
Often works well

if we choose good blocks (but there may 
be no good blocking!)

Fancier version: adaptive blocks, based 
on current x
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Gibbs failure example
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