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Review
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Spatial planning

C-space
Ways of splitting up C-space

Visibility graph
Voronoi
Cell decomposition
Variable resolution or adaptive cells 
(quadtree, parti-game)
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RRTs

Build tree by randomly picking a point, 
extending tree toward it
Optionally:

build forward and backward at once
cross-link within tree

Plan within tree to get close enough to 
goal
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RRTs

Tend to break up large Voronoi regions

So, RRT search is coarse to fine

First path found usually suboptimal; if we 
continue to grow tree and cross-link, get 
optimality in limit
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Probability

Random variables
Events (atomic, composite, AND/OR/NOT)
Distributions: joint, marginal
Law of total probability

P(X) = P(X, Y=y1) + P(X, Y=y2) + …
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Probability
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Conditional: incorporating 
observations
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Conditioning

In general, divide a row or column by sum
P(X | Y=y) = P(X, Y=y) / P(Y=y)

P(Y=y) is a marginal probability
P(X | Y=y) is a row or column of table
Thought experiment: what happens if we 
condition on an event of zero probability?
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Notation

P(X | Y) is a function: x, y → P(X=x | Y=y)

As is standard, expressions are evaluated 
separately for each realization:

P(X | Y) P(Y) means the function          
x, y → P(X=x | Y=y) P(Y=y)
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Independence

X and Y are independent if, for all 
possible values of y, P(X) = P(X | Y=y)

equivalently, for all possible values of x, 
P(Y) = P(Y | X=x)
equivalently, P(X, Y) = P(X) P(Y)

Knowing X or Y gives us no information 
about the other
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Independence: probability = 
product of marginals
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Bayes Rule

For any X, Y, C
P(X | Y, C) P(Y | C) = P(Y | X, C) P(X | C)

Simple version (without context)
P(X | Y) P(Y) = P(Y | X) P(X)

Proof: both sides are just P(X, Y)
P(X | Y) = P(X, Y) / P(Y)    (by def’n of 
conditioning)
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Continuous distributions

What if X is real-valued?
Atomic event: (X ≤ x), (X ≥ x)

any* other subset via AND, OR, NOT
X=x has zero* probability

P(X=x, Y=y) means 
lim P(x ≤ X ≤ x+ε, Y = y) / ε      ε → 0+
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Factor 
Graphs

15



Factor graphs

Strict generalization of SAT to include 
uncertainty
Factor graph = (variables, constraints)

variables: set of discrete r.v.s
constraints: set of (possibly) soft or 
probabilistic constraints called factors 
or potentials
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Factors

Hard constraint: X + Y ≥ 3
Soft constraint: X + Y ≥ 3 is more 
probable than X + Y < 3, all else equal
Domain of factor: set of relevant variables

{X, Y} in this case
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Factors
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Factor graphs

Variables and factors connected according 
to domains
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Factor graphs

Omit single-argument factors from graph 
to reduce clutter
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Factor graphs: probability model
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Normalizing constant

Also called partition function
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Factors

Ra O W Φ1

T T T 3
T T F 1
T F T 3
T F F 3
F T T 3
F T F 3
F F T 3
F F F 3

W M Ru Φ2

T T T 3
T T F 1
T F T 3
T F F 3
F T T 3
F T F 3
F F T 3
F F F 3
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Unary factors

Ra Φ3

T 1

F 2

W Φ4

T 1

F 1
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T 5

F 2

M Φ6

T 10

F 1

Ru Φ7

T 1

F 3
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Inference Qs

Is Z > 0?
What is P(E)?
What is P(E1 | E2)?
Sample a random configuration according 
to P(.) or P(. | E)
Hard part: taking sums of Φ (such as Z)
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Example

What is P(T, T, T, T, T)?
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Example

What is P(Rusty=T | Rains=T)?
This is P(Rusty=T, Rains=T) / P(Rains=T)
P(Rains) is a marginal of P(…)
So is P(Rusty, Rains)
Note: Z cancels, but still have to sum lots 
of entries to get each marginal
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Relationship to SAT, ILP

Easy to write a clause or a linear 
constraint as a factor: 1 if satisfied, 0 o/w
Feasibility problem: is Z > 0?

more generally, count satisfying 
assignments (determine Z)
NP or #P complete (respectively)

Sampling problem: return a satisfying 
assignment uniformly at random
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Inference
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Notation

Boldface = vector of r.v.s or values
X = (X1, X2, X3, X4, X5)
x = (x1, x2, x3, x4, x5)

Set index = subvector
If D = {1, 3, 4} then XD = (X1, X3, X4)

In particular, XD(Φ) = input to factor Φ
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Finding x w/ P(X=x)>0

{x | P(X=x)>0} = support of P(X)

Replace each factor Φ with Φ’ = I(Φ>0)
Now we have a CSP (or SAT); do DPLL
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Counting support

DPLL also works to count {x | P(X=x)>0}
Or, we can get smarter: dynamic 
programming
Example: (A ∨ B) ∧ (B ∨ C) ∧ (C ∨ D)
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DP: (A ∨ B) ∧ (B ∨ C) ∧ (C ∨ D)

Consider B=T and B=F separately
B=F: 1;    B=T: 2*2 = 4
Subtotal: |supp(ABC)| = 5; note C=F in 2

A B Φ1
T T 1
T F 1
F T 1
F F 0

B C Φ2
T T 1
T F 1
F T 1
F F 0

C D Φ3
T T 1
T F 1
F T 1
F F 0
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DP: (A ∨ B) ∧ (B ∨ C) ∧ (C ∨ D)

Consider C=T and C=F separately
C=F: 2*1=2;    C=T: 3*2 = 6
Total: |support| = 8

A B Φ1
T T 1
T F 1
F T 1
F F 0

B C Φ2
T T 1
T F 1
F T 1
F F 0

C D Φ3
T T 1
T F 1
F T 1
F F 0
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Quiz

What is size of support for
(A ∨ B) ∧ (B ∨ C) ∧ (C ∨ D) ∧ (D ∨ E)
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DP for finding Z

Same trick works for finding Z
not surprising: Z is a sum over support
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Factors

Ra O W Φ1

T T T 3
T T F 1
T F T 3
T F F 3
F T T 3
F T F 3
F F T 3
F F F 3

Ra Φ3

T 1

F 2

W Φ4

T 1

F 1

O Φ5

T 5

F 2
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Factors

Ra O W Φ1Φ3 Φ4Φ5 *
T T T 3 1 1 5 15
T T F 1 1 1 5 5
T F T 3 1 1 2 6
T F F 3 1 1 2 6
F T T 3 2 1 5 30
F T F 3 2 1 5 30
F F T 3 2 1 2 12
F F F 3 2 1 2 12

Ra Φ3

T 1

F 2

W Φ4

T 1

F 1

O Φ5

T 5

F 2
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Factors

Ra O W *
T T T 15
T T F 5
T F T 6
T F F 6
F T T 30
F T F 30
F F T 12
F F F 12

W λ

T 63

F 53
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Factors

W M RuΦ2Φ6Φ7 λ *
T T T 3 10 1 63 1890
T T F 1 10 3 63 1890
T F T 3 1 1 63 189
T F F 3 1 3 63 567
F T T 3 10 1 53 1590
F T F 3 10 3 53 4770
F F T 3 1 1 53 159
F F F 3 1 3 53 477

M Φ6

T 10

F 1

Ru Φ7

T 1

F 3

W λ

T 63

F 53
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Factors

W M Ru *
T T T 1890
T T F 1890
T F T 189
T F F 567
F T T 1590
F T F 4770
F F T 159
F F F 477

Z = 11532
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Variable elimination

Basic step: move a sum inward as far as 
possible, then do sum for each possible 
way of setting neighbors
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Eliminating partway

For Z, want to sum over all X
For marginal P(X45), eliminate X123678

Sum out 123, then 876, to get Z P(X45)
Sum out 45 to get Z
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Eliminating partway

Conditional P(X45 | X6) = P(X456) / P(X6)
Sum out 123, then 87, to get Z P(X456)
Sum out 45 to get Z P(X6)
Divide
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A more difficult example
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Treewidth

Elimination order E: sum x1, then x5, …
treewidth(E) =

(size of largest factor formed) – 1
treewidth = minE treewidth(E)
Variable elimination uses space, time 
exponential in treewidth
Worse: even computing treewidth is NP-
complete
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Belief propagation

Suppose we want all 1-variable marginals
Could do N runs of variable elimination
Or: the BP algorithm simulates N runs for 
the price of 2
For details: Kschischang et al. reading
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Approximate 
Inference
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Most of the time…

Treewidth is big
Variables are high-arity or continuous
Can’t afford exact inference

Partition function = numerical integration 
(and/or summation)
We’ll look at randomized algorithms
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Numerical integration

−1

−0.5

0

0.5

1
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

Y
X

f(X
,Y
)

50



Integration in 1000s of dims
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Simple 1D problem
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Simplest randomized algorithm
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Uniform sampling: sum(f(xi))/N
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Uniform sampling

So, V E(f(X)) is desired integral
But standard deviation can be big
Can reduce it by averaging many samples
But only at rate 1/sqrt(N)

E(f(X)) =
∫

P (x)f(x)dx

=
1
V

∫
f(x)dx
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Nonuniform (importance) sampling
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Importance sampling

Instead of x ~ uniform, use x ~ Q(x)
Q = importance distribution
Should have Q(x) large where f(x) is large
Problem:

EQ(f(X)) =
∫

Q(x)f(x)dx
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Importance sampling

h(x) ≡ f(x)/Q(x)

EQ(h(X)) =
∫

Q(x)h(x)dx

=
∫

Q(x)f(x)/Q(x)dx

=
∫

f(x)dx
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Importance sampling

So, take samples of h(X) instead of f(X)
wi = 1/Q(xi) is importance weight
Q = uniform yields uniform sampling
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Variance

How does this help us control variance?
Suppose f big ==> Q big
And Q small ==> f small
Then h = f/Q never gets too big
Variance of each sample is lower ==> 
need fewer samples
A good Q makes a good IS
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Importance sampling, part II

Suppose we want

Pick N samples xi from proposal Q(X)
Average wi g(xi), where wi = P(xi)/Q(xi) is 
importance weight

∫
f(x)dx =

∫
P (x)g(x)dx = EP (g(X))

EQ(Wg(X)) =
∫

Q(x)[P (x)/Q(x)]g(x)dx =
∫

P (x)g(x)dx
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Parallel importance sampling

Suppose we want

But P(x) is unnormalized (e.g., represented 
by a factor graph)—know only Z P(x)

∫
f(x)dx =

∫
P (x)g(x)dx = EP (g(X))
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Parallel IS

Pick N samples xi from proposal Q(X)
If we knew wi = P(xi)/Q(xi), could do IS
Instead, set ŵi = ZP (xi)/Q(xi)
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Parallel IS

So,                          is an unbiased estimate of Zw̄ =
1
N

∑

i

ŵi

E(Ŵ ) =
∫

Q(x)(ZP (x)/Q(x))dx

= Z

∫
P (x)dx

= Z
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Parallel IS

So,           is an estimate of wi, computed 
without knowing Z
Final estimate:

ŵi/w̄

∫
f(x)dx ≈ 1

n

∑
i

ŵi
w̄ g(xi)
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Parallel IS is biased
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E(W̄ ) = Z, but E(1/W̄ ) != 1/Z in general
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−2 −1 0 1 2−2
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Q : (X, Y ) ∼ N(1, 1) θ ∼ U(−π,π)
f(x, y, θ) = Q(x, y, θ)P (o = 0.8 | x, y, θ)/Z
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Posterior E(X, Y, θ) = (0.496, 0.350, 0.084)
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Back to high dimensions

Picking a good importance distribution is 
hard in high-D
Major contributions to integral can be 
hidden in small areas

recall, want (f big ==> Q big)
Would like to search for areas of high f(x)
But searching could bias our estimates
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MCMC
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Markov-Chain Monte Carlo

Design a randomized search procedure M 
which tends to increase f(x) if it is small
Run M for a while, take resulting x as a 
sample
Importance weight Q(x)?
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Markov-Chain Monte Carlo

Design a randomized search procedure M 
which tends to increase f(x) if it is small
Run M for a while, take resulting x as a 
sample
Importance weight Q(x)?  Stationary 
distribution of M
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Designing a search chain

Would like Q(x) = P(x)
Turns out we can get this exactly, using 
Metropolis-Hastings

∫
f(x)dx =

∫
P (x)g(x)dx = EP (g(x))
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Metropolis-Hastings

Way of designing chain w/ Q(x) = P(x)
Basic strategy: start from arbitrary x
Repeatedly tweak x to get x’
If P(x’) ≥ P(x), move to x’
If P(x’) << P(x), stay at x
In intermediate cases, randomize
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Proposal distribution

Left open: what does “tweak” mean?
Parameter of MH: Q(x’ | x)

one-step proposal distribution
Good proposals explore quickly, but 
remain in regions of high P(x)
Optimal proposal?
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MH algorithm

Sample x’ ~ Q(x’ | x)

Compute p =

With probability p, set x := x’
Repeat for T steps (usually < T distinct 
samples)

P (x′)
P (x)

Q(x | x′)
Q(x′ | x)
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MH notes

Only need P(x) up to a constant factor
Efficiency determined by:

how fast Q(x’ | x) moves us around
how high acceptance probability p is

Tension between fast Q and high p
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