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Spatial 
Planning
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Plans in Space…

A* can be used for many things
Here, A* for spatial planning (in contrast 
to, e.g., jobshop scheduling)
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Figure 10: Environment used in our second experiment, along with the optimal solution and the end-effector trajectory (without
any dynamic obstacles). Also shown are the solution cost of the path traversed and the number of states expanded by each of
the three algorithms compared.

other words, by adding a fixed value to the key of each new
state placed on the queue, the old states are given a rela-
tive advantage in their queue placement. When a state is
popped off the queue whose key value is not in line with
the current bias term, it is placed back on the queue with an
updated key value. The intuition is that only a small num-
ber of the states previously on the queue may ever make
it to the top, so it can be much more efficient to only re-
order the ones that do. We can use the same idea when ε
decreases (from εo to εn, say) to increase the bias term by
(εo − εn) · maxs∈OPEN h(sstart, s). The key value of each
state becomes
key(s) = [min(g(s), rhs(s)) + ε · h(sstart, s) + bias,

min(g(s), rhs(s))].
By using the maximum heuristic value present in the queue
to update the bias term, we are guaranteeing that each state
already on the queue will be at least as elevated on the queue
as it should be relative to the new states being added. It is
future work to implement this approach but it appears to be
a promising modification.

Finally, it may be possible to reduce the effect of un-
derconsistent states in our repair of previous solution paths.
With the current version of AD*, underconsistent states need
to be placed on the queue with a key value that uses an un-
inflated heuristic value. This is because they could reside on
the old solution path and their true effect on the start state
may be much more than the inflated heuristic would suggest.
This means, however, that the underconsistent states quickly
rise to the top of the queue and are processed before many
overconsistent states. At times, these underconsistent states
may not have any effect on the value of the start state (for
instance when they do not reside upon the current solution
path). We are currently looking into ways of reducing the
number of underconsistent states examined, using ideas very
recently developed (Ferguson & Stentz 2005). This could
prove very useful in the current framework, where much of
the processing is done on underconsistent states that may not
turn out to have any bearing on the solution.

Conclusions
We have presented Anytime Dynamic A*, a heuristic-based,
anytime replanning algorithm able to efficiently generate so-

lutions to complex, dynamic path planning problems. The
algorithm works by continually decreasing a suboptimal-
ity bound on its solution, reusing previous search efforts as
much as possible. When changes in the environment are
encountered, it is able to repair its previous solution incre-
mentally. Our experiments and application of the algorithm
to two real-world robotic systems have shown it to be a valu-
able addition to the family of heuristic-based path planning
algorithms, and a useful tool in practise.
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What’s wrong w/ A* guarantees?

(optimality) A* finds a solution of cost g*
(efficiency) A* expands no nodes that have 
f(node) > g*

4



What’s wrong with A*?

Discretized space into tiny little chunks
a few degrees rotation of a joint
Lots of states ⇒ lots of states w/ f ≤ g*

Discretized actions too
one joint at a time, discrete angles

Results in jagged paths
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Figure 10: Environment used in our second experiment, along with the optimal solution and the end-effector trajectory (without
any dynamic obstacles). Also shown are the solution cost of the path traversed and the number of states expanded by each of
the three algorithms compared.
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What’s wrong with A*?
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Snapshot of A*
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Wouldn’t it be nice…

… if we could break things up based more 
on the real geometry of the world?
Robot Motion Planning by Jean-Claude Latombe
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Physical system

A moderate number of real-valued 
coordinates
Deterministic, continuous dynamics
Continuous goal set (or a few pieces)
Cost = time, work, torque, …
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Typical physical system
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A kinematic chain

Rigid links connected by joints
revolute or prismatic 

Configuration
q = (q1, q2, …)

qi = angle or length of joint i
Dimension of q = “degrees of 
freedom”
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Mobile robots

Translating in space = 2 dof
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More mobility

Translation + rotation = 3 dof
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Q: How many dofs?

3d translation & rotation
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credit: Andrew
 M

oore
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Robot kinematic motion planning

Now let’s add obstacles
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Configuration space

For any configuration q, can test whether 
it intersects obstacles
Set of legal configs is “configuration 
space” C (a subset of a dof-dimensional 
vector space) 
Path is a continuous function from [0,1] 
into C with q(0) = qs and q(1) = qg
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Note: dynamic planning

Includes inertia as well as configuration
q, q
Harder, since twice as many dofs
More later…
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C-space example
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More C-space examples
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Another C-space example

image: J Kuffner
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Topology of C-space

Topology of C-space can be something 
other than the familiar Euclidean world
E.g. set of angles = unit circle = SO(2)

not [0, 2π) !

Ball & socket joint (3d angle) ⊆ unit 
sphere = SO(3)
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Topology example

Compare L to R: 2 planar angles v. one 
solid angle — both 2 dof (and neither the 
same as Euclidean 2-space)
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Back to planning

Complaint with A* was that it didn’t break 
up space intelligently
How might we do better?
Lots of roboticists have given lots of 
answers!
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Shortest path in C-space

25



Shortest path in C-space
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Shortest path

Suppose a planar polygonal C-space
Shortest path in C-space is a sequence of 
line segments
Each segment’s ends are either start or 
goal or one of the vertices in C-space
In 3-d or higher, might lie on edge, face, 
hyperface, …
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Visibility graph

http://www.cse.psu.edu/~rsharma/robotics/notes/notes2.html
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Naive algorithm

For i = 1 … points
For j = 1 … points

included = t
For k = 1 … edges

if segment ij intersects edge k
included = f
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Complexity

Naive algorithm is O(n3) in planar C-
space
For algorithms that run faster, O(n2) and 
O(k + n log n), see [Latombe, pg 157]

k = number of edges that wind up in 
visibility graph

Once we have graph, search it!
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Discussion of visibility graph

Good: finds shortest path
Bad: complex C-space yields long 
runtime, even if problem is easy

get my 23-dof manipulator to move 
1mm when nearest obstacle is 1m

Bad: no margin for error
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Getting bigger margins

Could just pad obstacles
but how much is enough? might make 
infeasible…

What if we try to stay as far away from 
obstacles as possible?
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Voronoi graph
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Voronoi graph

Given a set of point obstacles
Find all places that are equidistant from 
two or more of them
Result: network of line segments
Called Voronoi graph
Each line stays as far away as possible 
from two obstacles while still going 
between them
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Voronoi from polygonal C-space
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Voronoi from polygonal C-space

Set of points which are equidistant from 2 
or more closest points on border of C-
space
Polygonal C-space in 2d yields lines & 
parabolas intersecting at points

lines from 2 points
parabolas from line & point
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Voronoi method for planning

Compute Voronoi diagram of C-space
Go straight from start to nearest point on 
diagram
Plan within diagram to get near goal (e.g., 
with A*)
Go straight to goal
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Discussion of Voronoi

Good: stays far away from obstacles
Bad: assumes polygons
Bad: gets kind of hard in higher 
dimensions (but see Howie Choset’s web 
page and book)
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Voronoi discussion

Bad: kind of gun-shy about obstacles
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(Approximate) cell 
decompositions
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Planning algorithm

Lay down a grid in C-space
Delete cells that intersect obstacles
Connect neighbors
A*
If no path, double resolution and try again

never know when we’re done
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Approximate cell decomposition

This decomposition is what we were using 
for A* in examples from above
Works pretty well except:

need high resolution near obstacles
want low res away from obstacles
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Fix: variable resolution

Lay down a coarse grid
Split cells that intersect obstacle borders

empty cells good
full cells also don’t need splitting

Stop at fine resolution
Data structure: quadtree
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Discussion

Works pretty well, except:
Still don’t know when to stop
Won’t find shortest path
Still doesn’t really scale to high-d
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Better yet

Adaptive decomposition
Split only cells that actually make a 
difference

are on path from start
make a difference to our policy
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An adaptive splitter: parti-game

G

Start

Goal

G

G

G
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9dof planar arm

Fixed

base

Start

Goal

85 partitions total
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Parti-game paper

Andrew Moore and Chris Atkeson. The 
Parti-game Algorithm for Variable 
Resolution Reinforcement Learning in 
Multidimensional State-spaces 
http://www.autonlab.org/autonweb/14699.html
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Randomness 
in search
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Rapidly-exploring Random Trees

Put landmarks into C-space
Break up C-space into Voronoi regions 
around landmarks
Put landmarks densely only if high 
resolution is needed to find a path
Will not guarantee optimal path (*)
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RRT assumptions

RANDOM_CONFIG
samples from C-space

EXTEND(q, q’)
local controller, heads toward q’ from q
stops before hitting obstacle

FIND_NEAREST(q, Q)
searches current tree Q for point near q
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Path Planning with RRTs

[ Kuffner & LaValle , ICRA’00]

RRT = Rapidly-Exploring Random Tree

BUILT_RRT(qinit) {

 T = qinit

 for k = 1 to K {

 
 qrand = RANDOM_CONFIG()

 
 EXTEND(T, qrand);

 }
}

EXTEND(T, q) {

 qnear = FIND_NEAREST(q, T)

 qnew = EXTEND(qnear, q)

 T = T + (qnear, qnew)
}
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Path Planning with RRTs

qinit

[ Kuffner & LaValle , ICRA’00]

RRT = Rapidly-Exploring Random Tree

BUILT_RRT(qinit) {

 T = qinit

 for k = 1 to K {

 
 qrand = RANDOM_CONFIG()

 
 EXTEND(T, qrand);

 }
}

EXTEND(T, q) {

 qnear = FIND_NEAREST(q, T)

 qnew = EXTEND(qnear, q)

 T = T + (qnear, qnew)
}

56



Path Planning with RRTs

qinit
qrand

[ Kuffner & LaValle , ICRA’00]

RRT = Rapidly-Exploring Random Tree

BUILT_RRT(qinit) {

 T = qinit

 for k = 1 to K {

 
 qrand = RANDOM_CONFIG()

 
 EXTEND(T, qrand);

 }
}

EXTEND(T, q) {

 qnear = FIND_NEAREST(q, T)

 qnew = EXTEND(qnear, q)

 T = T + (qnear, qnew)
}
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Path Planning with RRTs

qnearqinit
qrand

[ Kuffner & LaValle , ICRA’00]

RRT = Rapidly-Exploring Random Tree

BUILT_RRT(qinit) {

 T = qinit

 for k = 1 to K {

 
 qrand = RANDOM_CONFIG()

 
 EXTEND(T, qrand);

 }
}

EXTEND(T, q) {

 qnear = FIND_NEAREST(q, T)

 qnew = EXTEND(qnear, q)

 T = T + (qnear, qnew)
}
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Path Planning with RRTs

qnear

qnew

qinit
qrand

[ Kuffner & LaValle , ICRA’00]

RRT = Rapidly-Exploring Random Tree

BUILT_RRT(qinit) {

 T = qinit

 for k = 1 to K {

 
 qrand = RANDOM_CONFIG()

 
 EXTEND(T, qrand);

 }
}

EXTEND(T, q) {

 qnear = FIND_NEAREST(q, T)

 qnew = EXTEND(qnear, q)

 T = T + (qnear, qnew)
}
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RRTs explore coarse to fine

Tend to break up large Voronoi regions

higher probability of qrand being in them

Limiting distribution of vertices given by 
RANDOM_CONFIG

as RRT grows, probability that qrand is 
reachable with local controller (and so 
immediately becomes a new vertex) 
approaches 1
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RRT example
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RRT for a car (3 dof)
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Planning with RRTs

Build RRT from start until we add a node 
that can reach goal using local controller
(Unique) path: root → last node → goal

Optional: cross-link tree by testing local 
controller, search within tree using A*
Optional: grow forward and backward
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What you should know

C-space
Ways of splitting up C-space

Visibility graph
Voronoi
Cell decomposition
Variable resolution or adaptive cells 
(quadtree, parti-game)

RRTs
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AI + 
Uncertainty
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Uncertainty is ubiquitous

Random outcomes (coin flip, who’s behind 
the door, …)
Incomplete observations (occlusion, 
sensor noise)
Behavior of other agents (intentions, 
observations, goals, beliefs)
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Propositional v. lifted

We’ve talked about both propositional and 
lifted logical representations

SAT v. FOL
Can add uncertainty to both
We’ll do just propositional; uncertainty in 
lifted representations is a topic of current 
research
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Review: 
probability
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Random variables

Uncertain analog of propositions in SAT 
or variables in MILP
Tomorrow’s weather, change in AAPL 
stock price, grade on HW4
Observations convert random variables 
into fixed realizations
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Notation

X=x means r.v. X is realized as x
P(X=x) means probability of X=x

if clear from context, may omit “X=”
instead of P(Weather=rain), just P(rain)

P(X) means a function: x → P(X=x)

P(X=x, Y=y) means probability that both 
realizations happen simultaneously
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Discrete distributions
W

ea
th

er

AAPL price A A- B+

A .21 .17 .07

A- .17 .15 .06

B+ .07 .06 .04
H

W
4

15-780

up same down

sun .09 .15 .06

rain .21 .35 .14
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Joint distribution

Atomic event: a joint realization of all 
random variables of interest
Joint distribution: assigns a probability to 
each atomic event

W
ea

th
er

AAPL

up same down

sun .09 .15 .06

rain .21 .35 .14

e = sun, same 
P(e) = 0.15
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Events

An event is a set of atomic events
E = { (sun, same), (rain, same) }

P(E) = ∑ P(e) = .15 + .35 = .5

This one is written “AAPL = same”

e ∈ E
W

ea
th

er

AAPL

up same down

sun .09 .15 .06

rain .21 .35 .14
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AND, OR, NOT

For events E, F:
E AND F means E ∩ F

E OR F means E ∪ F

NOT E means U – E
U is set of all possible joint realizations
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Marginal: eliminating unneeded r.v.s
W

ea
th

er

AAPL price

up same down

sun .09 .15 .06

rain .21 .35 .14

.09 + .15 + .06 = .3

.21 + .35 + .14 = .7

sun 0.3

rain 0.7W
ea

th
er
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Law of Total Probability

For any X, Y
P(X) = P(X, Y=y1) + P(X, Y=y2) + …
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Conditional: incorporating 
observations

A .41

A- .35

B+ .24

15
-7

80

A A- B+

A .21 .17 .07

A- .17 .15 .06

B+ .07 .06 .04

H
W

4

15-780

P(15-780=A | HW4=B+) = .04 / (.07+.06+.04)
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Conditioning

In general, divide a row or column by sum
P(X | Y=y) = P(X, Y=y) / P(Y=y)

P(Y=y) is a marginal probability, gotten 
by row or column sum
P(X | Y=y) is a row or column of table
Thought experiment: what happens if we 
condition on an event of zero probability?
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Notation

P(X | Y) is a function: x, y → P(X=x | Y=y)

Expressions are evaluated separately for 
each realization:

P(X | Y) P(Y) means the function          
x, y → P(X=x | Y=y) P(Y=y)
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Independence

X and Y are independent if, for all 
possible values of y, P(X) = P(X | Y=y)

equivalently, for all possible values of x, 
P(Y) = P(Y | X=x)
equivalently, P(X, Y) = P(X) P(Y)

Knowing X or Y gives us no information 
about the other
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Bayes Rule

For any X, Y, C
P(X | Y, C) P(Y | C) = P(Y | X, C) P(X | C)

Simple version (without context)
P(X | Y) P(Y) = P(Y | X) P(X)

Proof: both sides are just P(X, Y)
P(X | Y) = P(X, Y) / P(Y)    (by def’n of 
conditioning)
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Continuous distributions

What if X is real-valued?
Atomic event: (X ≤ x), (X ≥ x)

any* other subset via AND, OR, NOT
X=x has zero probability*

P(X=x, Y=y) means 
lim P(x ≤ X ≤ x+ε, Y = y) / ε
as ε → 0+
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Factor 
Graphs
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Factor graphs

Strict generalization of SAT to include 
uncertainty
Factor graph = (variables, constraints)

variables: set of discrete r.v.s
constraints: set of (possibly) soft or 
probabilistic constraints called factors 
or potentials
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Factors

Hard constraint: X + Y ≥ 3
Soft constraint: X + Y ≥ 3 is more 
probable than X + Y < 3, all else equal
Domain: set of relevant variables

{X, Y} in this case
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Factors

0 1 2
0 1 1 1

1 1 1 3

2 1 3 3

X

Y

0 1 2
0 0 0 0

1 0 0 1

2 0 1 1

X

Y

Hard Soft
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Factor graphs

Variables and factors connected according 
to domains
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Factor graphs

Omit single-argument factors from graph 
to reduce clutter
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Factor graphs: probability model
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Normalizing constant

Also called partition function
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Factors

Ra O W Φ1

T T T 3
T T F 1
T F T 3
T F F 3
F T T 3
F T F 3
F F T 3
F F F 3

W M Ru Φ2
T T T 3
T T F 1
T F T 3
T F F 3
F T T 3
F T F 3
F F T 3
F F F 3
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Unary factors

Ra Φ3

T 1

F 2

W Φ4

T 1

F 1

O Φ5

T 5

F 2

M Φ6

T 10

F 1

Ru Φ7

T 1

F 3
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Inference Qs

Is Z > 0?
What is P(E)?
What is P(E1 | E2)?
Sample a random configuration according 
to P(.) or P(. | E)
Hard part: taking sums of Φ (such as Z)
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Example

What is P(T, T, T, T, T)?
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Example

What is P(Rusty=T | Rains=T)?
This is P(Rusty=T, Rains=T) / P(Rains=T)
P(Rains) is a marginal of P(…)
So is P(Rusty, Rains)
Note: Z cancels, but still have to sum lots 
of entries to get each marginal
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Relationship to SAT, ILP

Easy to write a clause or a linear 
constraint as a factor: 1 if satisfied, 0 o/w
Feasibility problem: is Z > 0?

more generally, count satisfying 
assignments (determine Z)
NP or #P complete (respectively)

Sampling problem: return a satisfying 
assignment uniformly at random
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