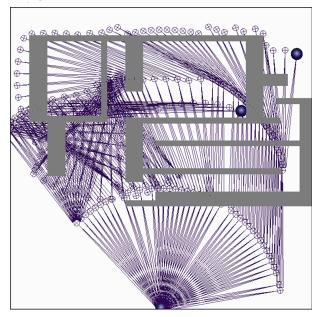
15-780: Graduate AI Lecture 14. Spatial Search; Uncertainty

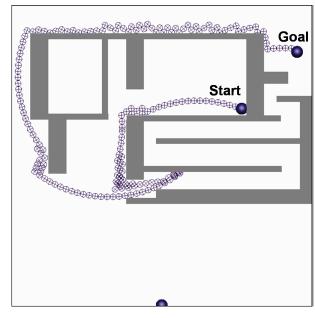
Geoff Gordon (this lecture)
Tuomas Sandholm
TAs Sam Ganzfried, Byron Boots

Spatial Planning

Plans in Space...



Optimal Solution



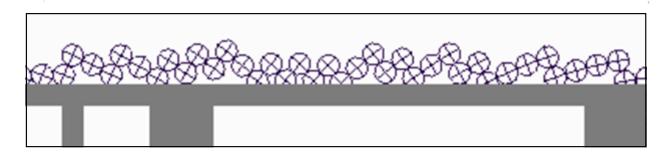
End-effector Trajectory

- A* can be used for many things
- Here, A* for spatial planning (in contrast to, e.g., jobshop scheduling)

What's wrong w/ A* guarantees?

- (optimality) A* finds a solution of cost g*
- (efficiency) A^* expands no nodes that have $f(node) > g^*$

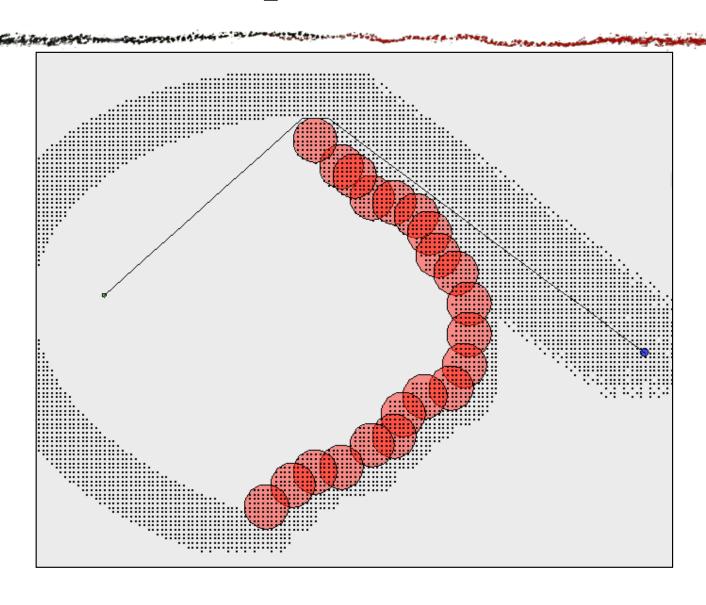
What's wrong with A*?



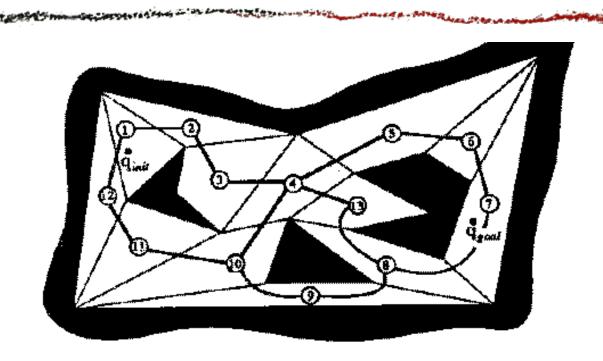
- Discretized space into tiny little chunks
 - a few degrees rotation of a joint
 - Lots of states \Rightarrow lots of states $w/f \le g^*$
- Discretized actions too
 - o one joint at a time, discrete angles
- Results in jagged paths

What's wrong with A*?

Snapshot of A*



Wouldn't it be nice...

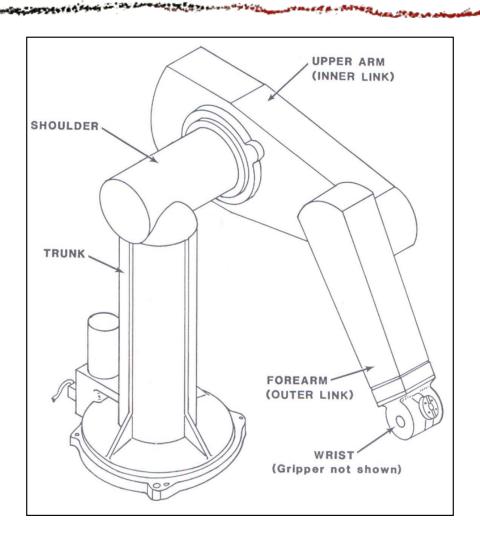


- ... if we could break things up based more on the real geometry of the world?
- Robot Motion Planning by Jean-Claude Latombe

Physical system

- A moderate number of real-valued coordinates
- Deterministic, continuous dynamics
- Continuous goal set (or a few pieces)
- \circ Cost = time, work, torque, ...

Typical physical system



A kinematic chain

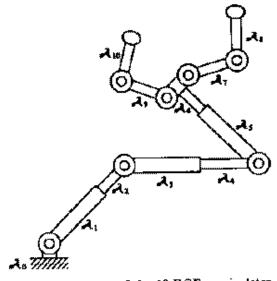


Fig. 11. Structure of the 10-DOF manipulator.

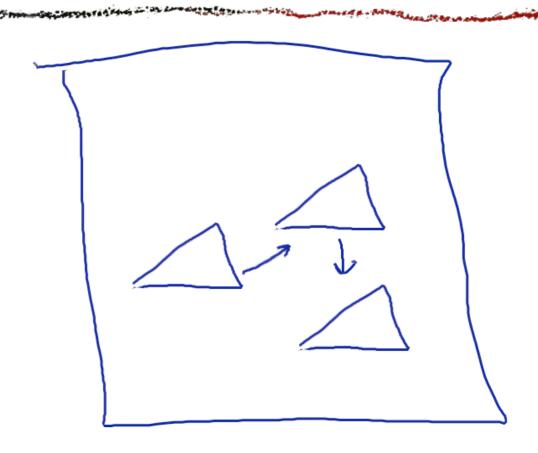
- Rigid links connected by joints
 - revolute or prismatic
- Configuration

$$\mathbf{q} = (q_1, q_2, ...)$$

 $q_i = angle \ or \ length \ of \ joint \ i$

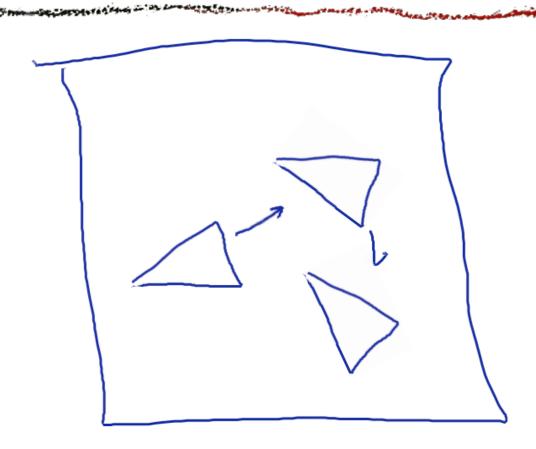
 Dimension of q = "degrees of freedom"

Mobile robots



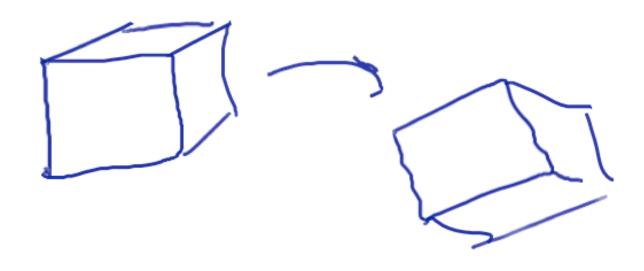
• Translating in space = 2 dof

More mobility

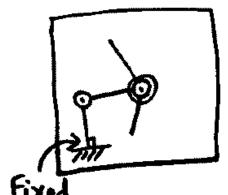


 \circ Translation + rotation = 3 dof

Q: How many dofs?

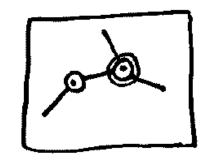


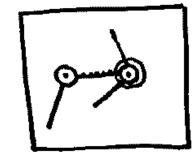
• 3d translation & rotation



How many dofs?

Free flying How many dofs?

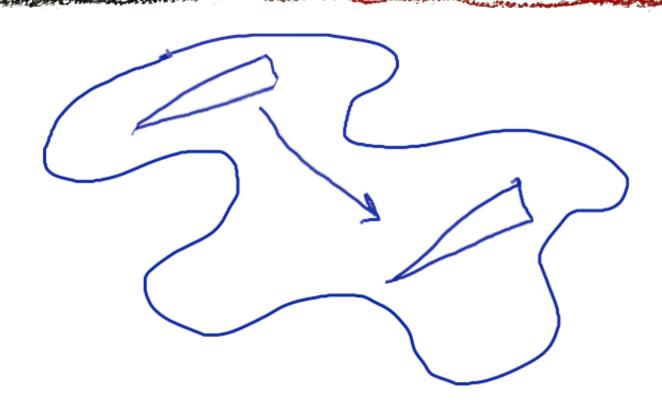




Midline be horizontal. How many DOFS?

The configuration of has one real valued entry per DOF.

Robot kinematic motion planning



Now let's add obstacles

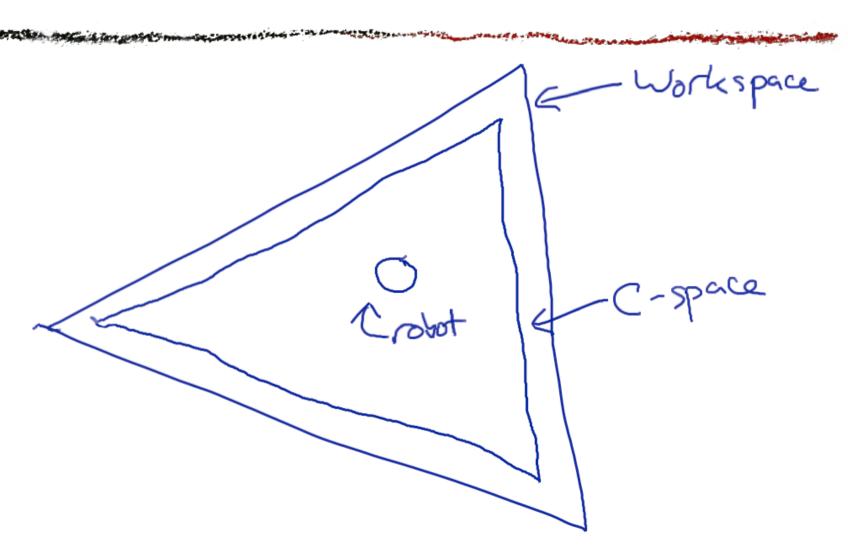
Configuration space

- For any configuration **q**, can test whether it intersects obstacles
- Set of legal configs is "configuration space" C (a subset of a dof-dimensional vector space)
- Path is a continuous function from [0,1]into C with $q(0) = \mathbf{q_s}$ and $q(1) = \mathbf{q_g}$

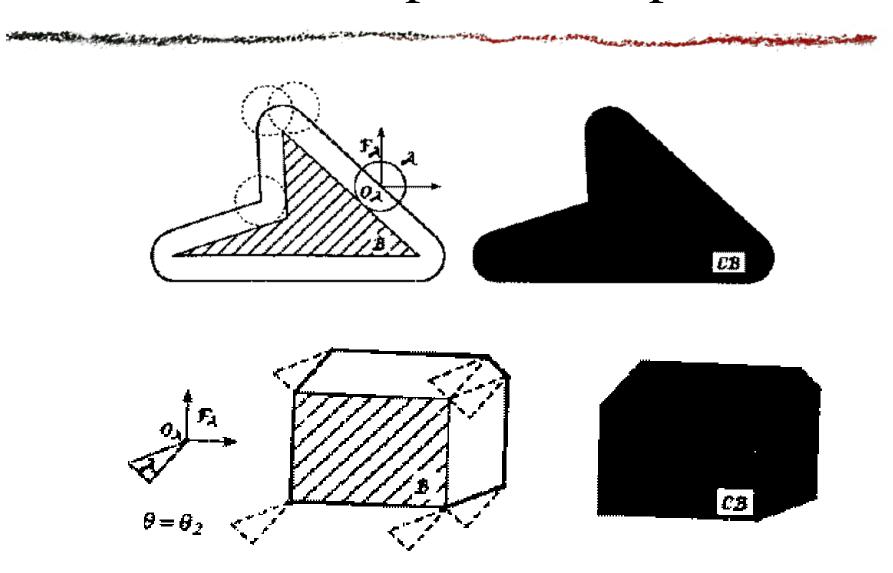
Note: dynamic planning

- Includes inertia as well as configuration
- \circ q, \mathring{q}
- Harder, since twice as many dofs
- More later...

C-space example



More C-space examples



Another C-space example

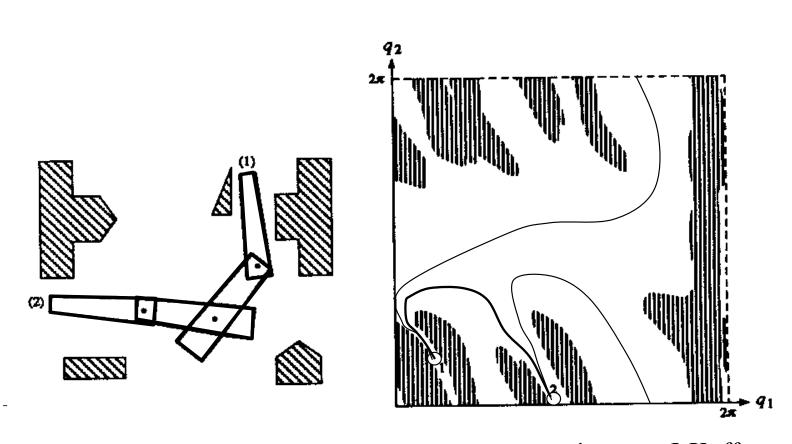
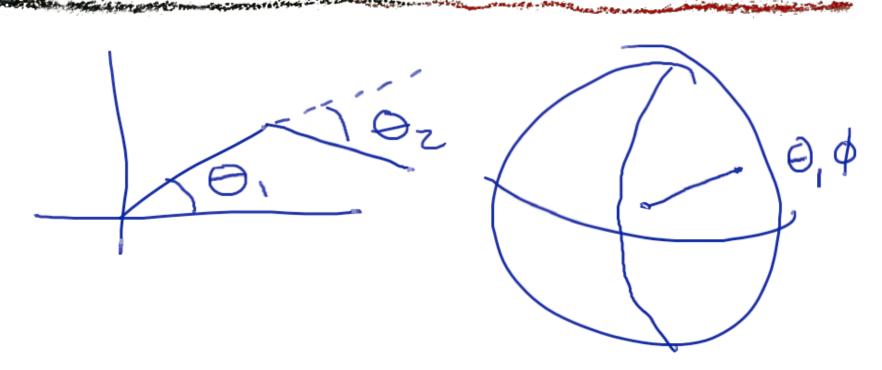


image: J Kuffner

Topology of C-space

- Topology of C-space can be something other than the familiar Euclidean world
- E.g. set of angles = unit circle = SO(2)
 not [0, 2π)!
- Ball & socket joint $(3d \text{ angle}) \subseteq \text{unit}$ sphere = SO(3)

Topology example

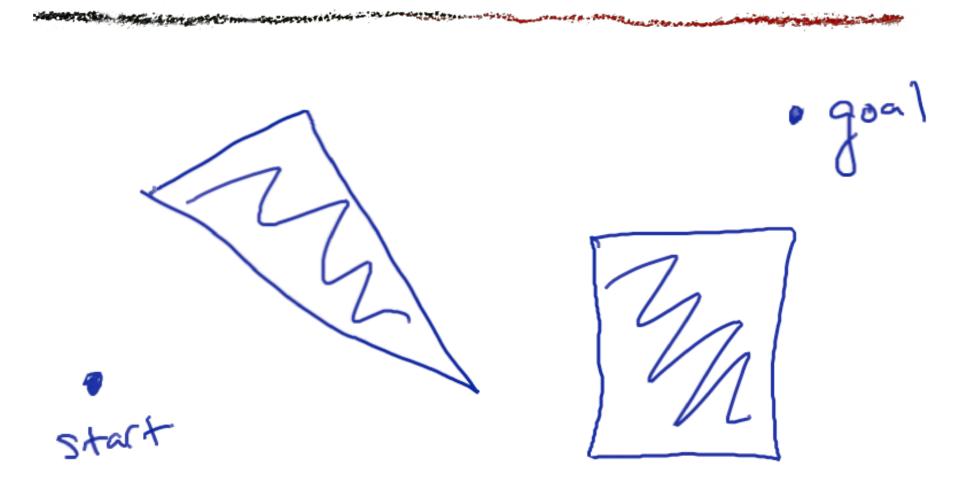


 Compare L to R: 2 planar angles v. one solid angle — both 2 dof (and neither the same as Euclidean 2-space)

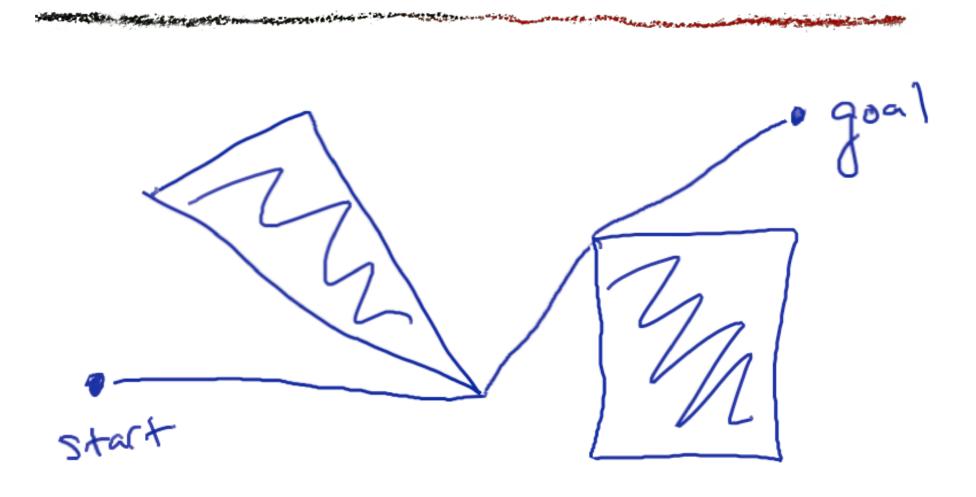
Back to planning

- Complaint with A* was that it didn't break up space intelligently
- How might we do better?
- Lots of roboticists have given lots of answers!

Shortest path in C-space



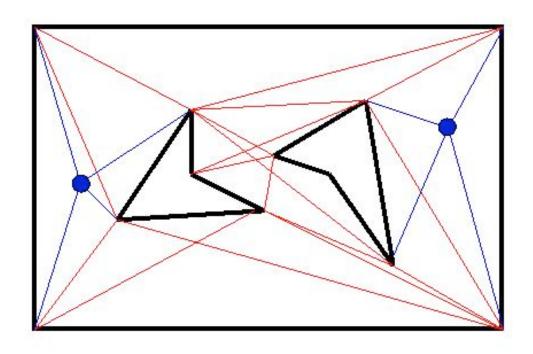
Shortest path in C-space



Shortest path

- Suppose a planar polygonal C-space
- Shortest path in C-space is a sequence of line segments
- Each segment's ends are either start or goal or one of the vertices in C-space
- In 3-d or higher, might lie on edge, face, hyperface, ...

Visibility graph



http://www.cse.psu.edu/~rsharma/robotics/notes/notes2.html

Naive algorithm

```
For i = 1 \dots points

For j = 1 \dots points

included = t

For k = 1 \dots edges

if segment ij intersects edge k

included = f
```

Complexity

- Naive algorithm is O(n³) in planar Cspace
- For algorithms that run faster, $O(n^2)$ and $O(k + n \log n)$, see [Latombe, pg 157]
 - k = number of edges that wind up in visibility graph
- Once we have graph, search it!

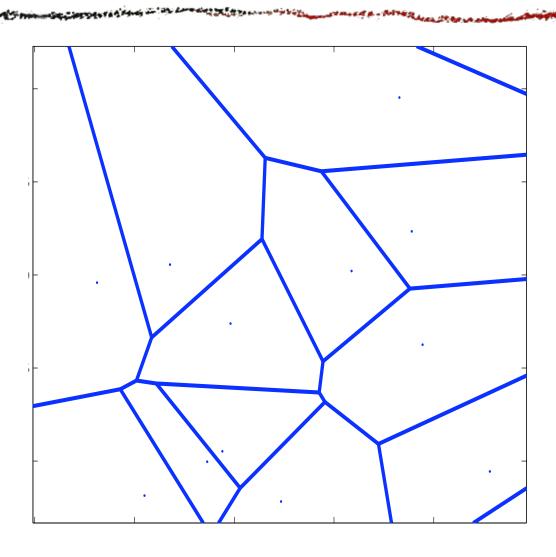
Discussion of visibility graph

- Good: finds shortest path
- Bad: complex C-space yields long runtime, even if problem is easy
 - get my 23-dof manipulator to move
 1mm when nearest obstacle is 1m
- Bad: no margin for error

Getting bigger margins

- Could just pad obstacles
 - but how much is enough? might make infeasible...
- What if we try to stay as far away from obstacles as possible?

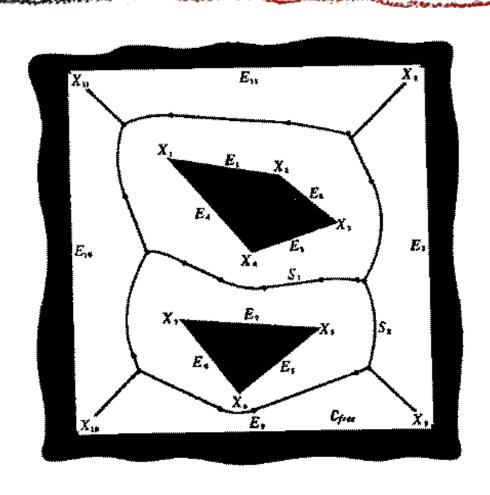
Voronoi graph



Voronoi graph

- Given a set of point obstacles
- Find all places that are equidistant from two or more of them
- Result: network of line segments
- Called Voronoi graph
- Each line stays as far away as possible from two obstacles while still going between them

Voronoi from polygonal C-space



Voronoi from polygonal C-space

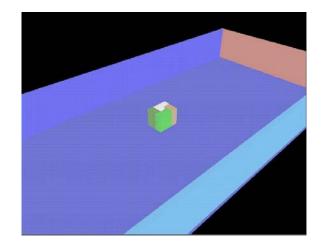
- Set of points which are equidistant from 2
 or more closest points on border of C space
- Polygonal C-space in 2d yields lines & parabolas intersecting at points
 - lines from 2 points
 - parabolas from line & point

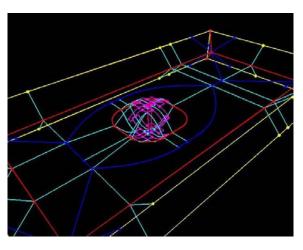
Voronoi method for planning

- Compute Voronoi diagram of C-space
- Go straight from start to nearest point on diagram
- Plan within diagram to get near goal (e.g., with A*)
- Go straight to goal

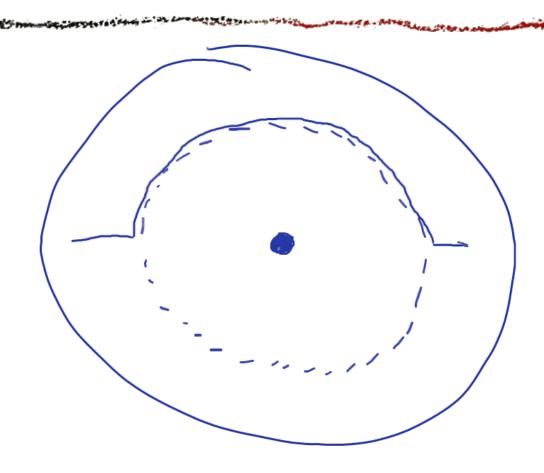
Discussion of Voronoi

- Good: stays far away from obstacles
- Bad: assumes polygons
- Bad: gets kind of hard in higher dimensions (but see Howie Choset's web page and book)



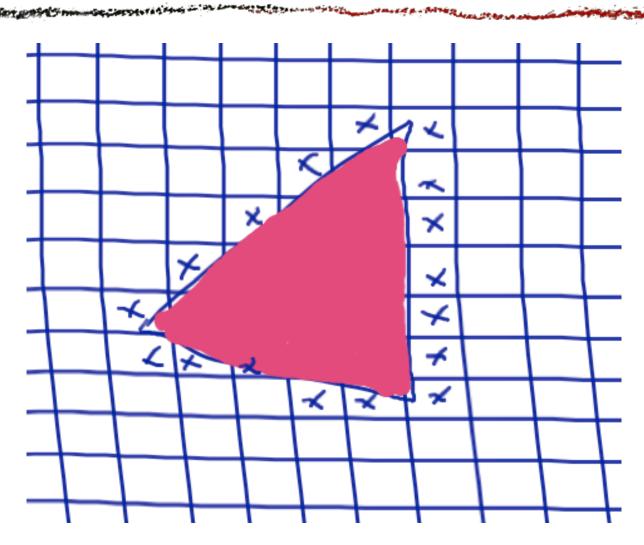


Voronoi discussion



Bad: kind of gun-shy about obstacles

(Approximate) cell decompositions



Planning algorithm

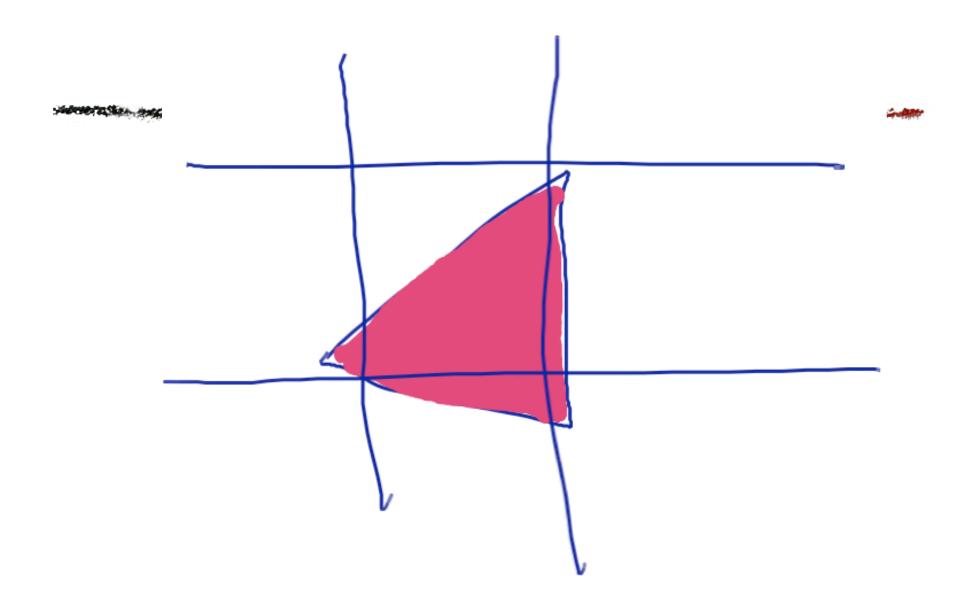
- Lay down a grid in C-space
- Delete cells that intersect obstacles
- Connect neighbors
- $\circ A^*$
- If no path, double resolution and try again
 - never know when we're done

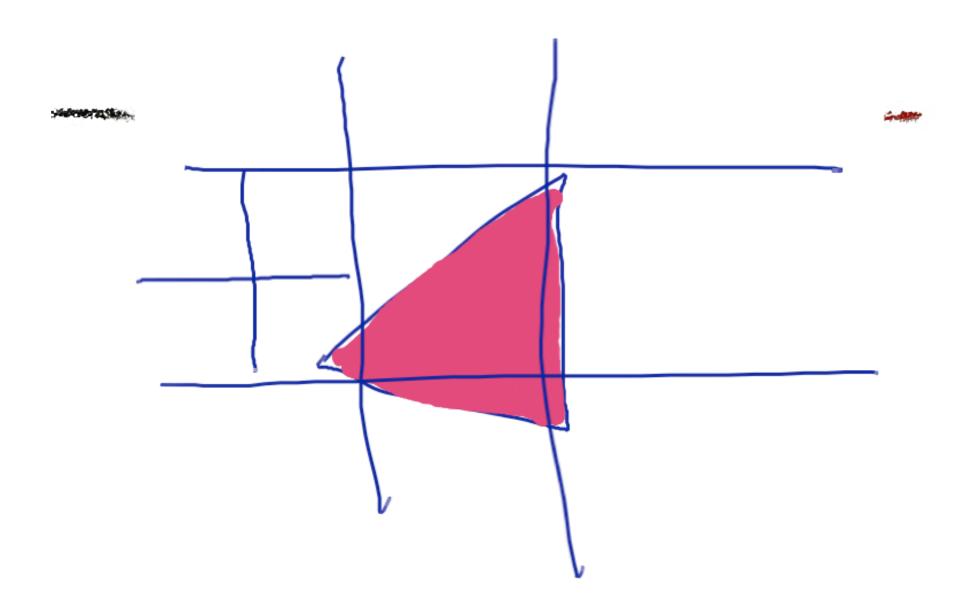
Approximate cell decomposition

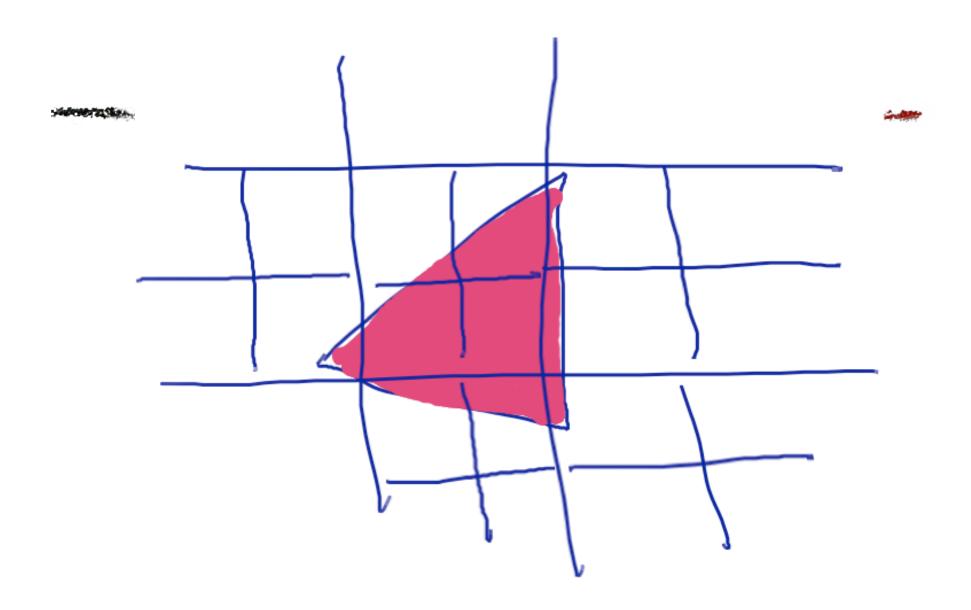
- This decomposition is what we were using for A* in examples from above
- Works pretty well except:
 - need high resolution near obstacles
 - want low res away from obstacles

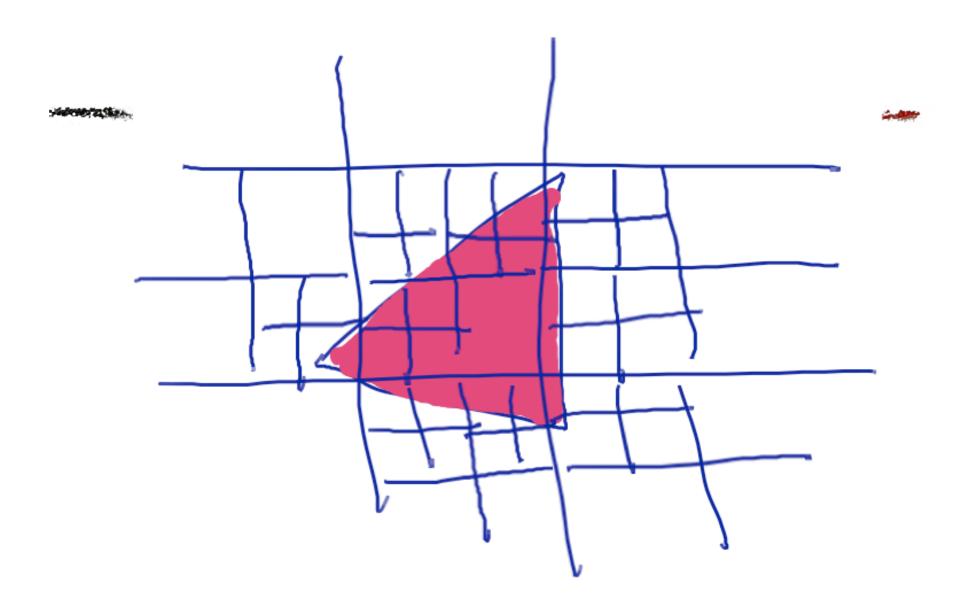
Fix: variable resolution

- Lay down a coarse grid
- Split cells that intersect obstacle borders
 - empty cells good
 - full cells also don't need splitting
- Stop at fine resolution
- Data structure: quadtree









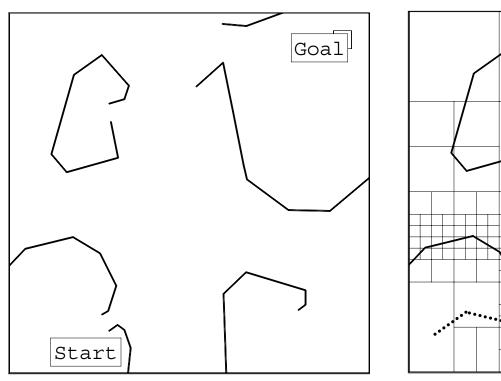
Discussion

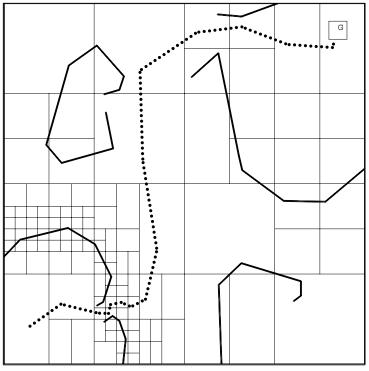
- Works pretty well, except:
 - Still don't know when to stop
 - Won't find shortest path
 - Still doesn't really scale to high-d

Better yet

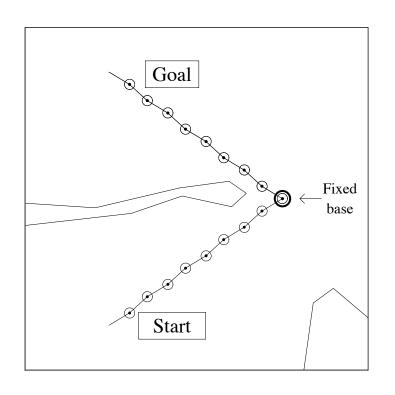
- Adaptive decomposition
- Split only cells that actually make a difference
 - are on path from start
 - make a difference to our policy

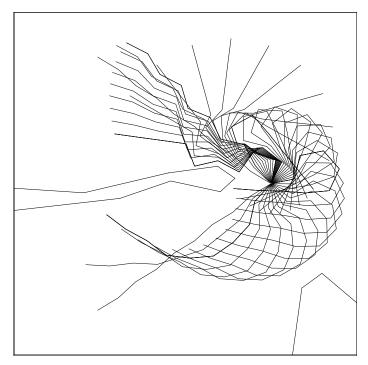
An adaptive splitter: parti-game





9dof planar arm





85 partitions total

Parti-game paper

- Andrew Moore and Chris Atkeson. The Parti-game Algorithm for Variable Resolution Reinforcement Learning in Multidimensional State-spaces
- http://www.autonlab.org/autonweb/14699.html

Randomness in search

Rapidly-exploring Random Trees

- Put landmarks into C-space
- Break up C-space into Voronoi regions around landmarks
- Put landmarks densely only if high resolution is needed to find a path
- Will not guarantee optimal path (*)

RRT assumptions

- RANDOM_CONFIG
 - samples from C-space
- \circ EXTEND(\mathbf{q}, \mathbf{q}')
 - local controller, heads toward q'from q
 - stops before hitting obstacle
- \circ FIND_NEAREST(\mathbf{q} , Q)
 - searches current tree Q for point near q

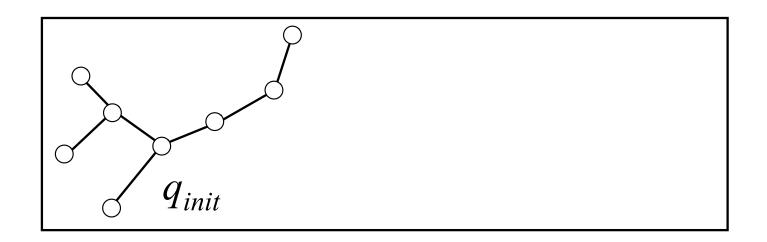
RRT = Rapidly-Exploring Random Tree

```
BUILT_RRT(q<sub>init</sub>) {
    T = q<sub>init</sub>
    for k = 1 to K {
        q<sub>rand</sub> = RANDOM_CONFIG()
        EXTEND(T, q<sub>rand</sub>);
    }
}
```

```
EXTEND(T, q) {
   q<sub>near</sub> = FIND_NEAREST(q, T)
   q<sub>new</sub> = EXTEND(q<sub>near</sub>, q)
   T = T + (q<sub>near</sub>, q<sub>new</sub>)
}
```

[Kuffner & LaValle, ICRA'00]

RRT = Rapidly-Exploring Random Tree

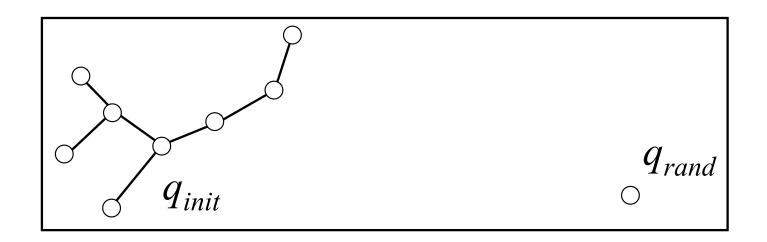


```
BUILT_RRT(q<sub>init</sub>) {
    T = q<sub>init</sub>
    for k = 1 to K {
        q<sub>rand</sub> = RANDOM_CONFIG()
        EXTEND(T, q<sub>rand</sub>);
    }
}
```

```
EXTEND(T, q) {
   q<sub>near</sub> = FIND_NEAREST(q, T)
   q<sub>new</sub> = EXTEND(q<sub>near</sub>, q)
   T = T + (q<sub>near</sub>, q<sub>new</sub>)
}
```

[Kuffner & LaValle, ICRA'00]

RRT = Rapidly-Exploring Random Tree

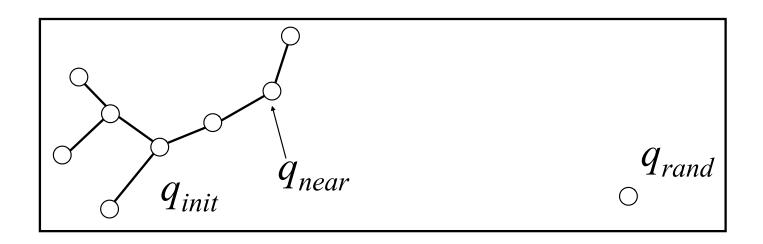


```
BUILT_RRT(q<sub>init</sub>) {
    T = q<sub>init</sub>
    for k = 1 to K {
        q<sub>rand</sub> = RANDOM_CONFIG()
        EXTEND(T, q<sub>rand</sub>);
    }
}
```

```
EXTEND(T, q) {
   q<sub>near</sub> = FIND_NEAREST(q, T)
   q<sub>new</sub> = EXTEND(q<sub>near</sub>, q)
   T = T + (q<sub>near</sub>, q<sub>new</sub>)
}
```

[Kuffner & LaValle, ICRA'00]

RRT = Rapidly-Exploring Random Tree

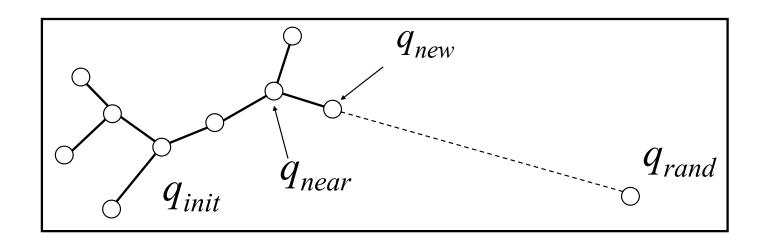


```
BUILT_RRT(q<sub>init</sub>) {
    T = q<sub>init</sub>
    for k = 1 to K {
        q<sub>rand</sub> = RANDOM_CONFIG()
        EXTEND(T, q<sub>rand</sub>);
    }
}
```

```
EXTEND(T, q) {
   q<sub>near</sub> = FIND_NEAREST(q, T)
   q<sub>new</sub> = EXTEND(q<sub>near</sub>, q)
   T = T + (q<sub>near</sub>, q<sub>new</sub>)
}
```

[Kuffner & LaValle, ICRA'00]

RRT = Rapidly-Exploring Random Tree

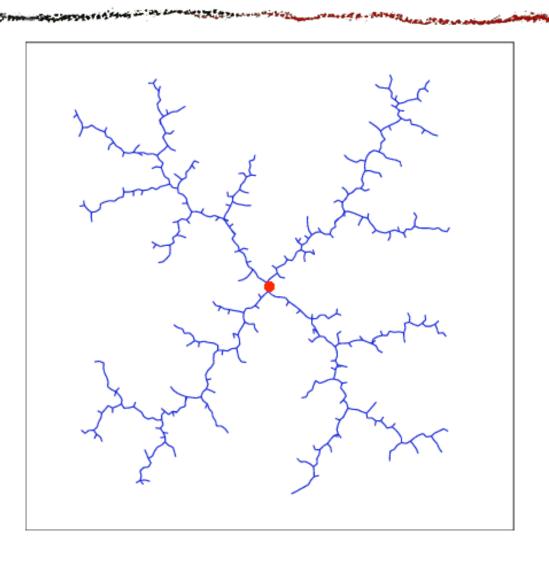


```
BUILT_RRT(q<sub>init</sub>) {
    T = q<sub>init</sub>
    for k = 1 to K {
        q<sub>rand</sub> = RANDOM_CONFIG()
        EXTEND(T, q<sub>rand</sub>);
    }
}
```

```
EXTEND(T, q) {
    qnear = FIND_NEAREST(q, T)
    qnew = EXTEND(qnear, q)
    T = T + (qnear, qnew)
}
```

[Kuffner & LaValle, ICRA'00]

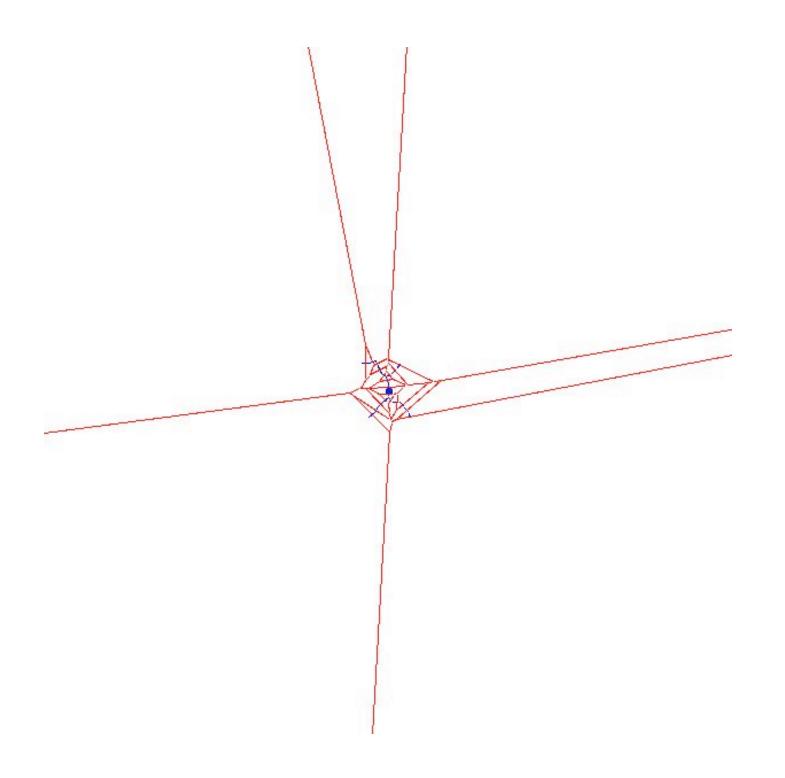
RRT example

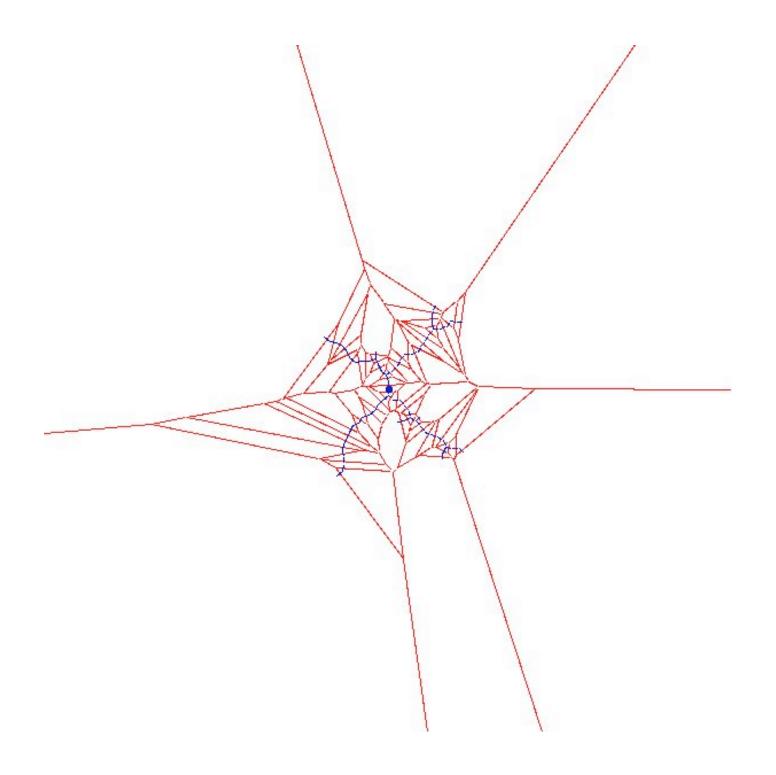


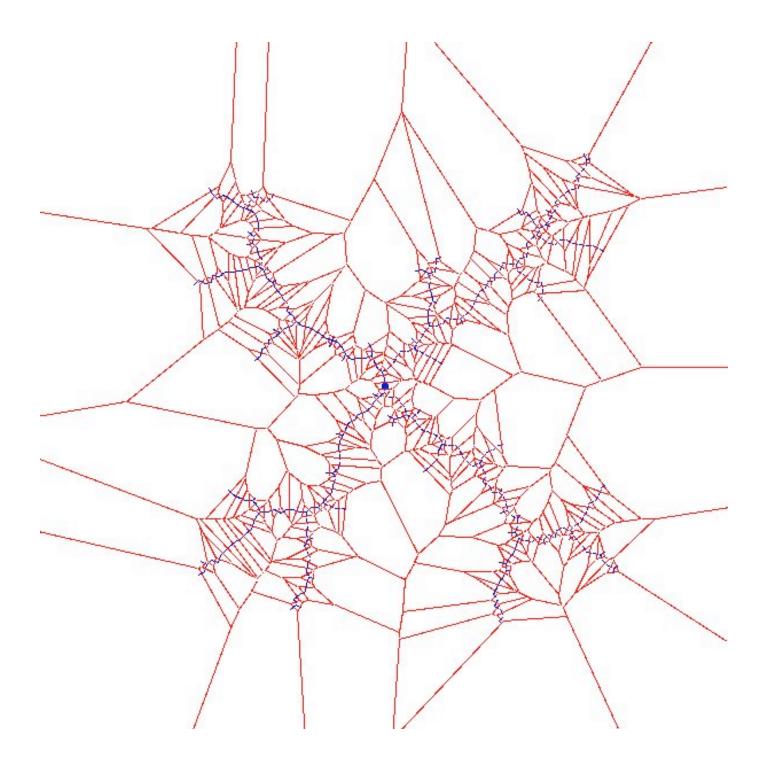
Planar holonomic robot

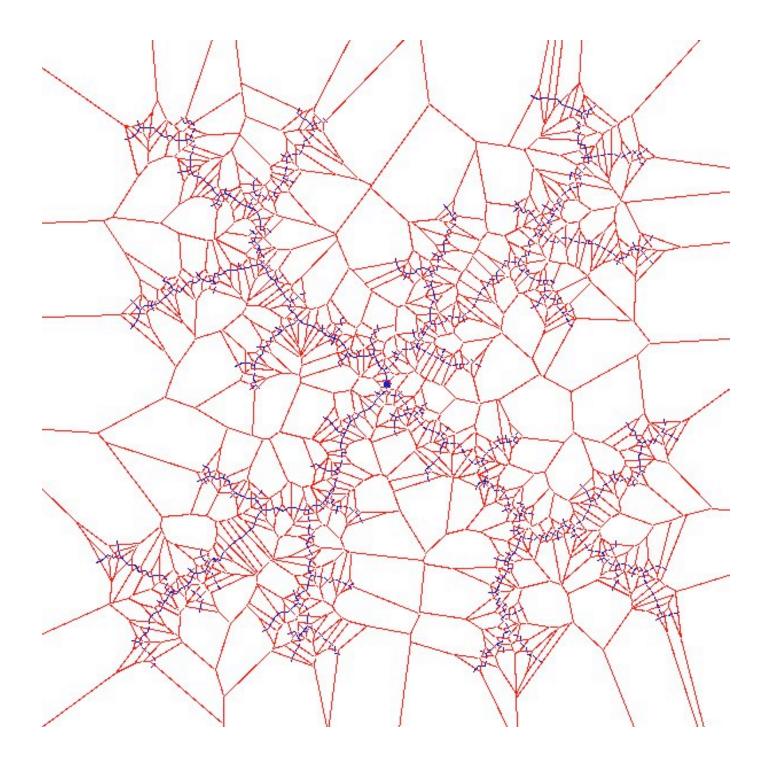
RRTs explore coarse to fine

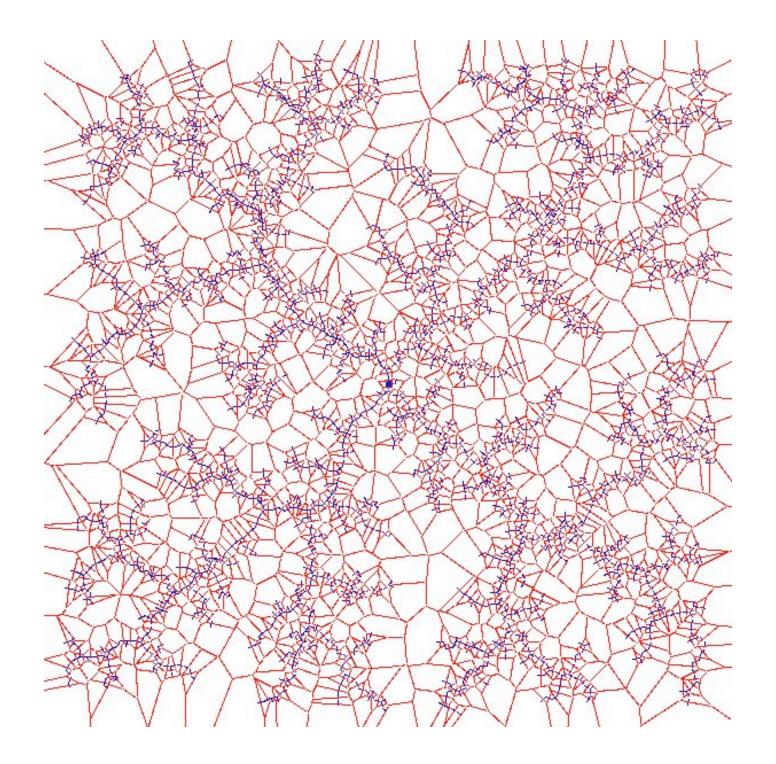
- Tend to break up large Voronoi regions
 - higher probability of q_{rand} being in them
- Limiting distribution of vertices given by RANDOM_CONFIG
 - as RRT grows, probability that q_{rand} is reachable with local controller (and so immediately becomes a new vertex) approaches 1



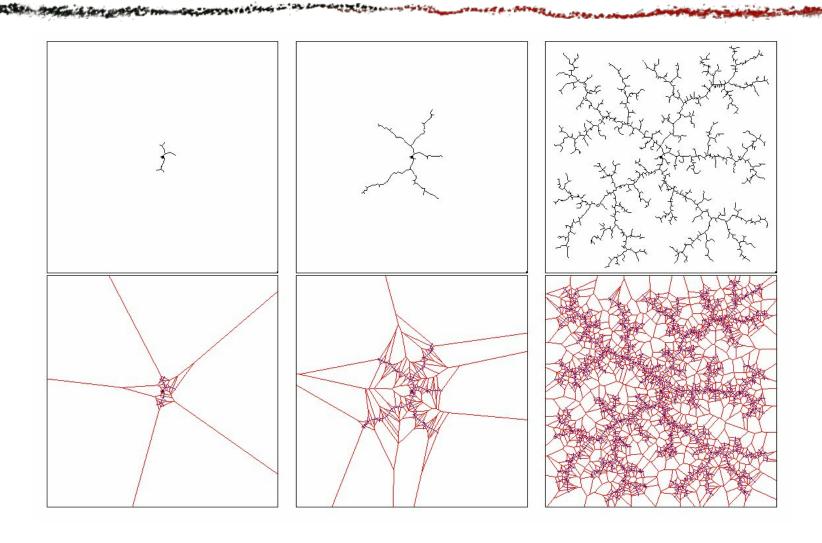




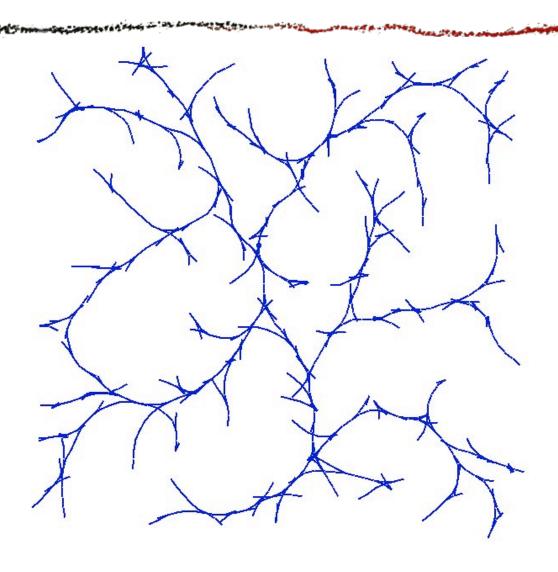




RRT example

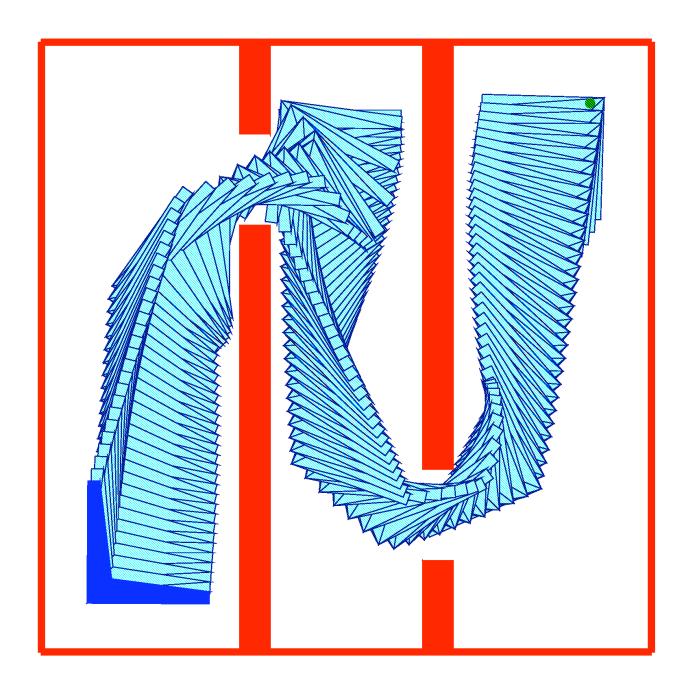


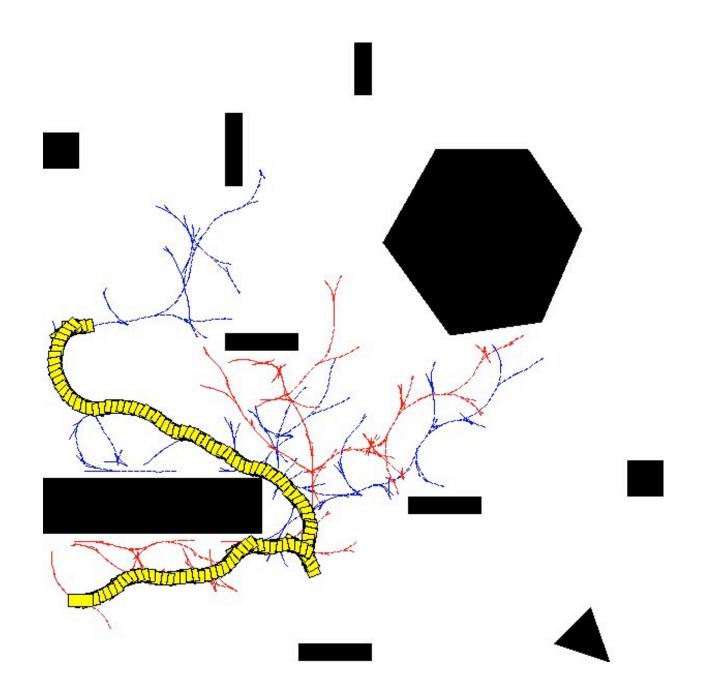
RRT for a car (3 dof)

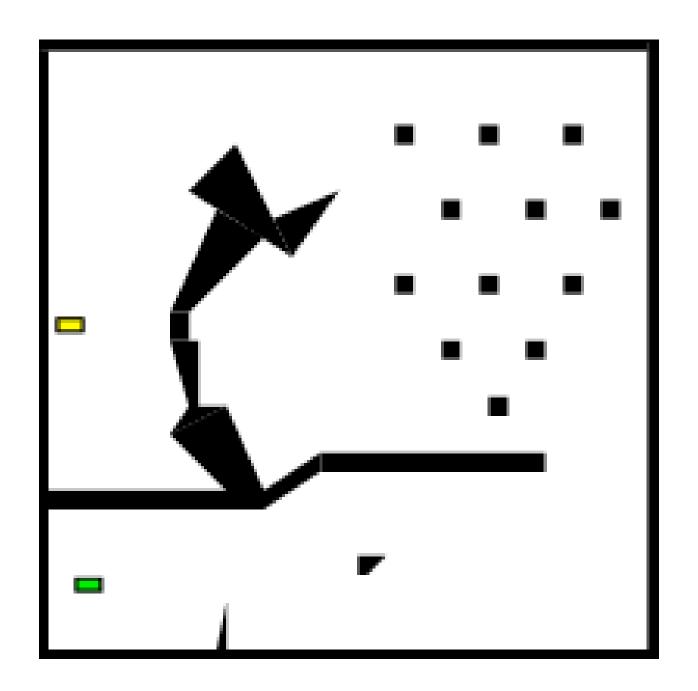


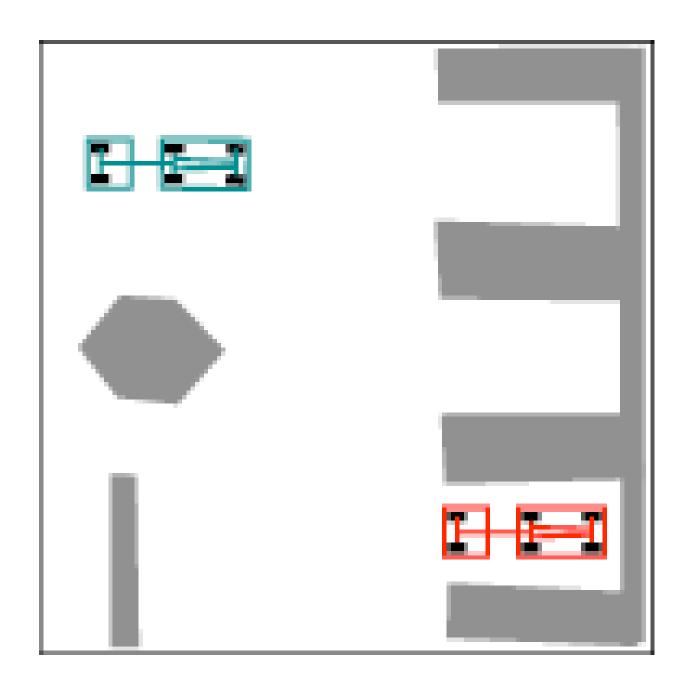
Planning with RRTs

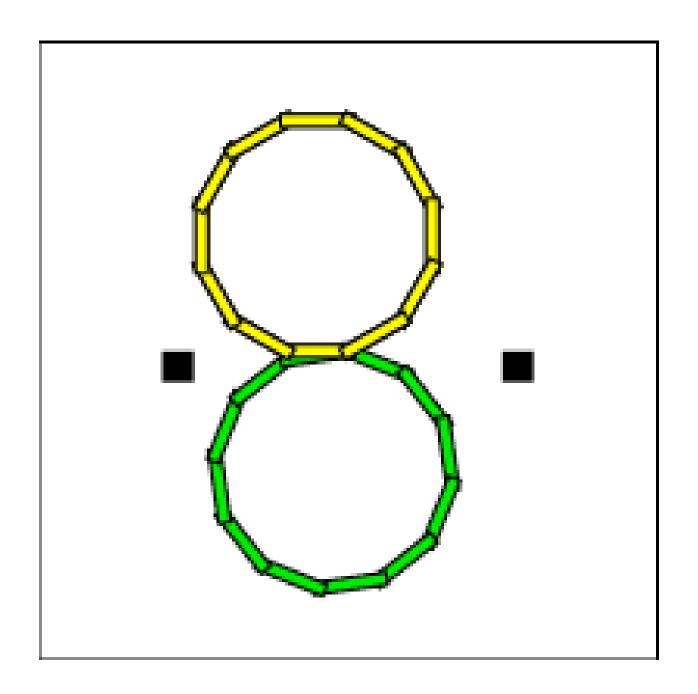
- Build RRT from start until we add a node that can reach goal using local controller
- \circ (Unique) path: root \rightarrow last node \rightarrow goal
- Optional: cross-link tree by testing local controller, search within tree using A*
- Optional: grow forward and backward











What you should know

- C-space
- Ways of splitting up C-space
 - Visibility graph
 - Voronoi
 - Cell decomposition
 - Variable resolution or adaptive cells (quadtree, parti-game)
- \circ RRTs

AI +

Uncertainty

Uncertainty is ubiquitous

- Random outcomes (coin flip, who's behind the door, ...)
- Incomplete observations (occlusion, sensor noise)
- Behavior of other agents (intentions, observations, goals, beliefs)

Propositional v. lifted

- We've talked about both propositional and lifted logical representations
 - SAT v. FOL
- Can add uncertainty to both
- We'll do just propositional; uncertainty in lifted representations is a topic of current research

Review: probability

Random variables

- Uncertain analog of propositions in SAT or variables in MILP
- Tomorrow's weather, change in AAPL stock price, grade on HW4
- **Observations** convert random variables into fixed realizations

Notation

- \circ X=x means r.v. X is realized as x
- \circ P(X=x) means probability of X=x
 - if clear from context, may omit "X="
 - instead of P(Weather=rain), just P(rain)
- \circ P(X) means a function: $x \to P(X=x)$
- \circ P(X=x, Y=y) means probability that both realizations happen simultaneously

Discrete distributions

DI	•
PL	price
	PL

1		ир	same	down
eairie	sun	.09	.15	.06
/	rain	.21	.35	.14

15-780

	\boldsymbol{A}	<i>A</i> -	B+
A	.21	.17	.07
 A-	.17	.15	.06
B+	.07	.06	.04

Joint distribution

- Atomic event: a joint realization of all random variables of interest
- Joint distribution: assigns a probability to each atomic event

AAPL

	ир	same	down
sun	.09	.15	.06
rain	.21	.35	.14

$$e = sun, same$$

 $P(e) = 0.15$

Events

AAPL

wege S	- Parking Amer Street	ир	same	down
Weather	sun	.09	.15	.06
	rain	.21	.35	.14

- An event is a set of atomic events
 - \circ $E = \{ (sun, same), (rain, same) \}$

$$P(E) = \sum_{e \in E} P(e) = .15 + .35 = .5$$

• This one is written "AAPL = same"

AND, OR, NOT

- For events E, F:
 - \circ E AND F means $E \cap F$
 - \circ E OR F means $E \cup F$
 - \circ NOT E means U-E
- U is set of all possible joint realizations

Marginal: eliminating unneeded r.v.s

AAPL price

J.		ир	same	down
Weather	sun	.09	.15	.06
Ν	rain	.21	.35	.14

ather	sun	0.3
Wea	rain	0.7

$$.09 + .15 + .06 = .3$$

 $.21 + .35 + .14 = .7$

Law of Total Probability

 \circ For any X, Y

$$P(X) = P(X, Y=y_1) + P(X, Y=y_2) + \dots$$

Conditional: incorporating observations

15-780

		\boldsymbol{A}	A-	B+
HW4	A	.21	.17	.07
H	<i>A-</i>	.17	.15	.06
	B+	.07	.06	.04

0	$oxed{A}$.41
5-780	A-	.35
I	B+	.24

$$P(15-780=A \mid HW4=B+) = .04 / (.07+.06+.04)$$

Conditioning

- In general, divide a row or column by sum
 - P(X | Y=y) = P(X, Y=y) / P(Y=y)
- P(Y=y) is a marginal probability, gotten by row or column sum
- \circ $P(X \mid Y=y)$ is a row or column of table
- Thought experiment: what happens if we condition on an event of zero probability?

Notation

- \circ $P(X \mid Y)$ is a function: $x, y \to P(X=x \mid Y=y)$
- Expressions are evaluated separately for each realization:
 - $P(X \mid Y) P(Y)$ means the function $x, y \rightarrow P(X=x \mid Y=y) P(Y=y)$

Independence

- X and Y are **independent** if, for all possible values of y, $P(X) = P(X \mid Y=y)$
 - equivalently, for all possible values of x, P(Y) = P(Y | X=x)
 - \circ equivalently, P(X, Y) = P(X) P(Y)
- Knowing X or Y gives us no information about the other

Bayes Rule

- *For any X, Y, C*
 - $\circ P(X \mid Y, C) P(Y \mid C) = P(Y \mid X, C) P(X \mid C)$
- Simple version (without context)
 - $\circ P(X \mid Y) P(Y) = P(Y \mid X) P(X)$
- \circ Proof: both sides are just P(X, Y)
 - P(X | Y) = P(X, Y) / P(Y) (by def'n of conditioning)

Continuous distributions

- What if X is real-valued?
 - Atomic event: $(X \le x)$, $(X \ge x)$
 - any* other subset via AND, OR, NOT
 - *X=x has zero probability**
- \circ P(X=x, Y=y) means
 - \circ *lim* $P(x \le X \le x + \varepsilon, Y = y) / \varepsilon$
 - $\circ as \varepsilon \rightarrow 0+$

Factor Graphs

Factor graphs

- Strict generalization of SAT to include uncertainty
- Factor graph = (variables, constraints)
 - variables: set of discrete r.v.s
 - constraints: set of (possibly) soft or probabilistic constraints called factors or potentials

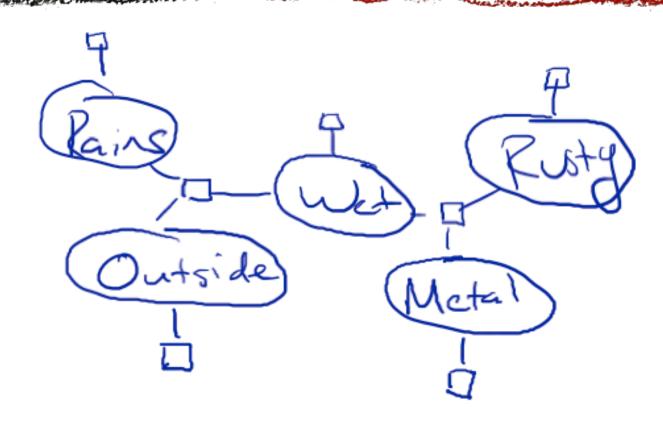
Factors

- *Hard constraint:* $X + Y \ge 3$
- ∘ Soft constraint: $X + Y \ge 3$ is more probable than X + Y < 3, all else equal
- Domain: set of relevant variables
 - \circ {X, Y} in this case

Factors

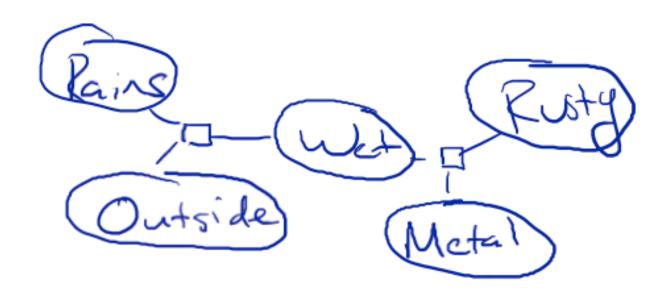
		H	ard				Se	oft	
			X					X	
		0	1	2			0	1	2
	0	0	0	0		0	1	1	1
Y	1	0	0	1	Y	1	1	1	3
	2	0	1	1		2	1	3	3

Factor graphs



 Variables and factors connected according to domains

Factor graphs



 Omit single-argument factors from graph to reduce clutter

Factor graphs: probability model

$$P(R_{a}, W, O, M, R_{b}) =$$

$$\phi(R_{a}, W, O, M, R_{b}) / Z$$

$$\phi(R_{a}, W, O, M, R_{b}) =$$

$$\phi(R_{a}, W, O) \phi_{2}(O, M, R_{b}) =$$

$$\phi_{3}(R_{a}) \phi_{4}(W) \phi_{5}(O)$$

$$\phi_{6}(M) \phi_{6}(R_{b})$$

Normalizing constant

Also called partition function

Factors

Ra	0	W	$ \Phi_1 $
T	T	T	3
T	T	$oxed{F}$	1
T	$oxed{F}$	T	3
$\mid T \mid$	$oxed{F}$	F	3
$oxed{F}$	T	T	3
$oxed{F}$	T	F	3
$oxed{F}$	$oxed{F}$	T	3
$oxed{F}$	F	F	3

$\mid W \mid$	M	Ru	$ \Phi_2 $
T	T	T	3
T	T	$oxed{F}$	1
T	$oxed{F}$	T	3
T	$oxed{F}$	F	3
$oxed{F}$	T	T	3
$oxed{F}$	T	$oxed{F}$	3
$oxedsymbol{F}$	$oxed{F}$	T	3
$oxedsymbol{F}$	$oxed{F}$	$oxed{F}$	3

Unary factors

Ra	Φ_3
T	1
$oxed{F}$	2

W	$oxedsymbol{\Phi}_4$
T	1
$oldsymbol{F}$	1

O	$oldsymbol{\Phi}_5$
T	5
$oldsymbol{F}$	2

M	$ \Phi_6 $
T	10
$oxed{F}$	1

Ru	$ \Phi_7 $
T	1
$oxed{F}$	3

Inference Qs

- Is Z > 0?
- \circ What is P(E)?
- What is $P(E_1 \mid E_2)$?
- Sample a random configuration according to P(.) or P(. | E)
- \circ Hard part: taking sums of Φ (such as Z)

Example

 \circ What is P(T, T, T, T, T)?

Example

- What is $P(Rusty=T \mid Rains=T)$?
- \circ This is P(Rusty=T, Rains=T) / P(Rains=T)
- \circ P(Rains) is a marginal of P(...)
- So is P(Rusty, Rains)
- Note: Z cancels, but still have to sum lots of entries to get each marginal

Relationship to SAT, ILP

- Easy to write a clause or a linear constraint as a factor: 1 if satisfied, 0 o/w
- Feasibility problem: is Z > 0?
 - more generally, count satisfying assignments (determine Z)
 - NP or #P complete (respectively)
- Sampling problem: return a satisfying assignment uniformly at random