15-780: Grad AI
Lecture 13: Duality; Planning

Geoff Gordon (this lecture)
Tuomas Sandholm
TAs Sam Ganzfried, Byron Boots
Review
Branch & bound (\& cut)

- Worked examples
- *Demonstrated how to simulate resolution*
 - and therefore DPLL+CL
MILP examples

- Path planning
 - not NP-complete; 0 integrality gap
- Planetary exploration planning
Duality w/ inequalities

- Take a linear combination of constraints to bound objective

 \((a + 2b)w + (a + 5b)d \leq 4a + 12b\)

- \(\text{profit} = 1w + 2d\)

- So, if \(1 \leq (a + 2b)\) and \(2 \leq (a + 5b)\), we know that profit \(\leq 4a + 12b\)
Duality picture

\[C_a: w + d \leq 4 \]

\[C_b: 2w + 5d \leq 12 \]

\[(1/3) C_a + (1/3) C_b \]
Use of duality

- Any feasible solution to dual yields upper bound (compared with only optimal solution to primal)
- Dual sometimes easier to work with
Dual dual

- Take the dual of an LP twice, get the original LP back (called **primal**)
- Many LP solvers will give you both primal and dual solutions at the same time for no extra cost
Duality w/ equality
Equality example

- minimize y subject to
 - $x + y = 1$
 - $2y - z = 1$
 - $x, y, z \geq 0$
Equality example

○ Want to prove bound \(y \geq \ldots \)

○ Look at 2nd constraint:

\[
2y - z = 1 \quad \Rightarrow \\
y - z/2 = 1/2
\]

○ Since \(z \geq 0 \), dropping \(-z/2\) can only increase LHS \(\Rightarrow \)

○ \(y \geq 1/2 \)
Duality w/ equalities

- In general, could start from any linear combination of equality constraints
 - no need to restrict to +ve combination
- \(a (x + y - 1) + b (2y - z - 1) = 0 \)
- \(a x + (a + 2b) y - b z = a + b \)
Duality w/ equalities

- \[a \, x + (a + 2b) \, y - b \, z = a + b \]
- As long as coefficients on LHS \(\leq (0, 1, 0) \),
 - \textit{objective} = \[0 \, x + 1 \, y + 0 \, z \geq a + b \]
- So, maximize \(a + b \) subject to
 - \(a \leq 0 \)
 - \(a + 2b \leq 1 \)
 - \(-b \leq 0 \)
Duality recipes
Recipe for inequalities

- If we have an LP in matrix form,
 maximize $c'x$ subject to
 $Ax \leq b$
 $x \geq 0$

- Its dual is a similar-looking LP:
 minimize $b'y$ subject to
 $A'y \geq c$
 $y \geq 0$

$Ax \leq b$ means every component of Ax is \leq corresponding component of b
Recipe with \leq and $=$

- If we have an LP with equalities,

 maximize $c'x$ s.t.

 $Ax \leq b$

 $Ex = f$

 $x \geq 0$

- Its dual has some unrestricted variables:

 minimize $b'y + f'z$ s.t.

 $A'y + E'z \geq c$

 $y \geq 0$

 z unrestricted
Duality example
Path planning LP

- Find the min-cost path: variables

\[P_{sx}, P_{sy}, P_{xg}, P_{yg} \geq 0 \]
Optimal solution

\[p_{sy} = p_{yg} = 1, \quad p_{sx} = p_{xg} = 0, \quad \text{cost 3} \]
Path planning LP

\[
\begin{align*}
\text{Min} & \quad (1321) p \\
\text{st} & \quad \begin{pmatrix}
1 & 0 & 1 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & -1 & 1 \\
0 & -1 & 0 & -1
\end{pmatrix} p = \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix} \\
& \quad p \geq 0
\end{align*}
\]
Path planning LP

\[\text{Min } (1321) \mathbf{p} \]

\[\begin{align*}
\text{St} & \\
\lambda_s & \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 \end{pmatrix} \mathbf{p} = 1 \\
\lambda_x & \begin{pmatrix} 0 & 0 & -1 & 1 \\ 0 & -1 & 0 & -1 \end{pmatrix} \mathbf{p} = 0 \\
\lambda_y & \begin{pmatrix} 0 & 0 & -1 & 1 \\ 0 & -1 & 0 & -1 \end{pmatrix} \mathbf{p} = 0 \\
\lambda_g & \begin{pmatrix} 0 & 0 & -1 & 1 \\ 0 & -1 & 0 & -1 \end{pmatrix} \mathbf{p} = 0
\end{align*} \]
Deriving dual

\[
\begin{align*}
\min & \quad c^T p \\
\text{s.t.} & \quad A p = b \quad p \geq 0
\end{align*}
\]

\[
\begin{align*}
\lambda^T A p &= \lambda^T b \\
\lambda^T A &\leq c^T \implies \lambda^T A p &\leq c^T p \\
\implies &\lambda^T b &\leq c^T p \\
\max & \quad \lambda^T b \\
\lambda^T A &\leq c^T \iff A^T \lambda \leq c
\end{align*}
\]
Dual

\[\max y s - x g \]
\[s.t. \quad y s - x \leq 1 \]
\[x \leq 3 \]
\[x g \leq 2 \]
\[x y \leq 1 \]
Optimal dual solution

Any solution which adds a constant to all λs also works; $\lambda_x = 2$ also works
Interpreting the dual
Interpreting the dual variables

- The primal variable variables in the factory LP were how many widgets and doodads to produce
- We interpreted dual variables as multipliers for primal constraints
Dual variables as multipliers

\[C_a: \ w + d \leq 4 \]

\[C_b: \ 2w + 5d \leq 12 \]

\[(1/3) \ C_a + (1/3) \ C_b \]
Dual variables as prices

- “Multiplier” interpretation doesn’t give much intuition
- *It is often possible to interpret dual variables as prices for primal constraints*
Dual variables as prices

- Suppose someone offered us a quantity ε of wood, loosening constraint to
 $$w + d \leq 4 + \varepsilon$$
- How much should we be willing to pay for this wood?
Dual variables as prices

- RHS in primal is objective in dual
- So, dual constraints stay same, previous solution $a = b = 1/3$ still dual feasible
 - still optimal if ε small enough
- Bound changes to $(4 + \varepsilon) a + 12 b$, difference of $\varepsilon \times 1/3$
- So we should pay up to $1/3$ per unit of wood (in small quantities)
Price example: path planning

- **Dual variables are prices on nodes**: how much does it cost to start there?
- **Dual constraints are local price constraints**: edge xg (cost 3) means that node x can’t cost more than $3 +$ price of node g
Planning
Time

- **Recall fluents**
 - *For KBs that evolve, add extra argument to each predicate saying when it was true*
 - `at(Robot, Wean5409)`
 - `at(Robot, Wean5409, 17)`
Operators

- Given a representation like this, can define **operators** that change state
- *E.g.,* given
 - `at(Robot, Wean5409, 17)`
 - `moves(Robot, Wean5409, corridor, 17)`
- *results might be*
 - `at(Robot, corridor, 18)`
 - `¬at(Robot, Wean5409, 18)`
Goals

- **Want our robot to, e.g., get sandwich**
- **Search for proof of has(Geoff, Sandwich, t)**
- **Try to analyze proof tree to find sequence of operators that make goal true**
Complications

- This strategy yields lots of complications
 - need axioms describing natural numbers (for time)
 - frame or successor-state axioms (facts don’t change unless operator does it)
 - unique names, exactly one action per step, generalization of answer literal…
- Result can be slow inference
Planning

- Alternate solution: define a subset of FOL especially for planning
 - E.g., STRIPS language
 - no functions, limited quantification, …
 - STanford Research Institute Problem Solver
STRIPS

- State of world at each time = \{ propositions \}
- Each proposition is ground literal
- For brevity, list only true literals
- Time is implicit
STRIPS state example
STRIPS state example

- food(N)
- hungry(M)
- at(N, W)
- at(M, X)
- at(B1, Y)
- at(B2, Y)
- at(B3, Z)
- on(B2, B1)
- clear(B2)
- clear(B3)
- height(M, Low)
- height(N, High)
STRIPS operators

- Operator = \{ preconditions \}, \{ effects \}
- If preconditions are true at time \(t \),
 - can apply operator at time \(t \)
 - effects will be true at time \(t+1 \)
 - rest of state unaffected
- Basic STRIPS: one operator per step
Quantification in operators

- Preconditions of operator may contain variables (implicit \forall)
- Operator can apply if preconditions unify with state t (using binding X)
- state $t+1$ has e / X for each e in effects
Operator example

- $Eat(target, p, l)$

 - **pre:** $hungry(M), food(target), at(M, p), at(target, p), level(M, l), level(target, l)$

 - **eff:** $\neg hungry(M), full(M), \neg at(target, p), \neg level(target, l)$
Operator example

- **Move**(from, to)
 - **pre**: at(M, from), level(M, Low)
 - **eff**: at(M, to), ¬at(M, from)

- **Push**(object, from, to)
 - **pre**: at(object, from), at(M, from), clear(object)
 - **eff**: at(M, to), at(object, to), ¬at(object, from), ¬at(M, from)
Operator example

- **Climb**(object, p)
 - **pre**: at(M, p), at(object, p), level(M, Low), clear(object)
 - **eff**: level(M, High), ¬level(M, Low)

- **ClimbDown**()
 - **pre**: level(M, High)
 - **eff**: ¬level(M, High), level(M, Low)
Plan search
Plan search

- Given a planning problem (start state, operator descriptions, goal)
- Run standard search algorithms to find plan
- Decisions: search state representation, neighborhood, search algorithm
Linear planner

- Simplest choice: *linear planner*
- Search state = sequence of operators
- Neighbor: add an operator to end of sequence
- Bind variables as necessary
 - both operator and binding are choice points
Linear planner

- Can search forward from start or backward from goal
- Or mix the two
- Goal is often incompletely specified
- Example heuristic: number of open literals
Goal: full(M)
STRIPS state example

- food(N)
- hungry(M)
- at(N, W)
- at(M, X)
- at(B1, Y)
- at(B2, Y)
- at(B3, Z)
- on(B2, B1)
- clear(B2)
- clear(B3)
- level(M, Low)
- level(N, High)
Linear planner example

- Start w/ empty plan [], initial world state
- Pick an operator, e.g.,
 - \texttt{Move(from, to)}
 - \texttt{at(M, from), level(M, Low)}
 - \texttt{at(M, to), \neg at(M, from)}
Linear planner example

- **Bind variables so that preconditions match world state**
 - e.g., *from: X, to: Y*
 - *pre: at(M, X), level(M, Low)*
 - *post: at(M, Y), ¬at(M, X)*
Apply operator

- food(N)
- hungry(M)
- at(N, W)
- at(M, X)
- at(B1, Y)
- at(B2, Y)
- at(B3, Z)
- on(B2, B1)
- clear(B2)
- clear(B3)
- level(M, Low)
- level(N, High)
Apply operator

- food(N)
- hungry(M)
- at(N, W)
- at(B1, Y)
- at(B2, Y)
- at(B3, Z)
- on(B2, B1)
- clear(B2)
- clear(B3)
- level(M, Low)
- level(N, High)
Apply operator

- food(N)
- hungry(M)
- at(N, W)
- at(M, Y)
- at(B1, Y)
- at(B2, Y)
- at(B3, Z)
- on(B2, B1)
- clear(B2)
- clear(B3)
- level(M, Low)
- level(N, High)
Repeat…

- Plan is now \([\text{move}(X, Y)]\)
- World state is as in previous slide
- Pick another operator and binding
 - \(\text{Climb}(\text{object}, p), p: Y\)
 - \(\text{at}(M, p), \text{at}(\text{object}, p), \text{level}(M, \text{Low}), \text{clear}(\text{object})\)
 - \(\text{level}(M, \text{High}), \neg\text{level}(M, \text{Low})\)
Apply operator

- food(N)
- hungry(M)
- at(N, W)
- at(M, Y)
- at(B1, Y)
- at(B2, Y)
- at(B3, Z)
- on(B2, B1)
- clear(B2)
- clear(B3)
- level(M, Low)
- level(N, High)
Apply operator

- food(N)
- hungry(M)
- at(N, W)
- at(M, Y)
- at(B1, Y)
- at(B2, Y)
- at(B3, Z)
- on(B2, B1)
- clear(B2)
- clear(B3)
- level(N, High)
Apply operator

- food(N)
- hungry(M)
- at(N, W)
- at(M, Y)
- at(B1, Y)
- at(B2, Y)
- at(B3, Z)
- on(B2, B1)
- clear(B2)
- clear(B3)
- level(M, High)
- level(N, High)
And so forth

- **Goal:** full(M)
- **A possible plan:**
 - `move(X, Y), move(Y, Z), push(B3, Z, Y), push(B3, Y, X), push(B3, X, W), climb(B3, W), eat(N, W, High)`
- **DFS will try moving XYX, climbing on boxes unnecessarily, etc.**
Partial-order planner

- *Linear planner can be wasteful: backtrack undoes most recent action, rather than one that might have caused failure*

- *Partial order planner* tries to fix this

- *Avoids committing to details of plan until it has to* (*principle of least commitment*)
Partial-order planner

- **Search state:**
 - set of operators *(partially bound)*
 - ordering constraints
 - causal links *(also called guards)*
 - open preconditions
Set of operators

- Might include move\((X, p)\) “I will move somewhere from \(X\)”, eat\(\text{target}\) “I will eat something”

- Also includes extra operators START, FINISH
 - effects of START are initial state
 - preconditions of FINISH are goals
Partial ordering

START → move(X, p) → eat(N) → push(B3, r, q) → FINISH
Guards

- Describe where preconditions are satisfied

- \textit{at}(M, X)
- \textit{full}(M)
- \textit{eat}(N)
- \textit{push}(B3, r, q)
- \textit{move}(X, p)
- \textit{START} → \textit{FINISH}
Open preconditions

- All unsatisfied preconditions of any action
- Unsatisfied = doesn’t have a guard
Partial-order planner

- Neighborhood: plan refinement
- Add an operator, guard, or ordering constraint
Adding an ordering constraint

\[
\begin{align*}
\text{at}(M, X) & \quad \text{at}(N, p) \quad \cdots \\
\text{at}(M, p) & \quad \text{eat}(N) \quad \text{full}(M) \\
\text{START} & \quad \text{move}(X, p) \\
\text{level}(M, \text{Low}) & \quad \text{push}(B3, r, q) \\
\text{at}(B3, r) & \quad \text{clear}(B3) \\
\text{at}(M, r) & \\
\end{align*}
\]
Adding an ordering constraint

\[\text{at}(M, X) \]
\[\text{at}(M, p) \]
\[\text{full}(M) \]
\[\text{level}(M, \text{Low}) \]
\[\text{at}(B3, r) \]
\[\text{clear}(B3) \]
\[\text{at}(N, p) \]
\[\text{eat}(N) \]
\[\text{push}(B3, r, q) \]
\[\text{move}(X, p) \]
\[\text{START} \]
\[\text{FINISH} \]
Adding an ordering constraint

Wouldn’t ever add ordering on its own—but may need to when adding operator or guard
Adding a guard

\begin{align*}
at(M, X) & \quad at(N, p) \quad \cdots \quad full(M) \\
\text{START} & \rightarrow move(X, p) \quad \text{eat}(N) \\
level(M, \text{Low}) & \\
\text{at}(B3, r) & \quad \text{push}(B3, r, q) \\
\text{at}(M, r) & \quad clear(B3) \\
\text{at}(M, p) & \\
\end{align*}
Adding a guard

- $at(M, X)$
- $at(M, p)$
- $at(B3, r)$
- $at(M, r)$
- $level(M, \text{Low})$
- $move(X, p)$
- $push(B3, r, q)$
- $clear(B3)$
- $eat(N)$
- $full(M)$
- $at(N, p)$
- $at(M, p)$

START \rightarrow move(X, p) \rightarrow FINISH

67

67
Adding a guard

- Must go forward (may need to add ordering)
- Can’t cross operator that affects condition
Adding a guard

- Might involve binding a variable (may be more than one way to do so)
Adding an operator

START \rightarrow move(X, p)

$at(M, X)$ $at(M, p)$ $eat(N)$ $full(M)$

$at(N, W)$...

level(M, Low) $at(B3, r)$ $push(B3, r, q)$

$at(B3, r)$ $clear(B3)$

$at(M, r)$ $at(M, r)$
Adding an operator

START → move(X, p)

level(M, Low)
at(M, s)

at(M, X) → at(M, p)

at(B3, r)

push(B3, r, q)

clear(B3)

level(M, Low)
at(M, r)

at(N, W)

eat(N)

full(M)

…

at(N, W)

at(M, X)

at(M, p)

move(s, r)

finishing
Adding an operator

START → move(X, p) → at(M, X) → at(M, p) → eat(N) → ... → full(M) → FINISH

level(M, Low) → at(M, s) → at(M, r) → push(B3, r, q) → clear(B3)
Resolving conflict

START \rightarrow move(X, p)

level(M, Low) \rightarrow at($B3, r$) \rightarrow push($B3, r, q$) \rightarrow clear($B3$)

at(M, s) \rightarrow move(s, r)

at(M, X) \rightarrow at(M, p) \rightarrow eat(N) \rightarrow full(M)

Resolving conflict
Recap of neighborhood

- *Pick an open precondition*
- *Pick an operator and binding that can satisfy it*
 - *may need to add a new op*
 - *or can use existing op*
- *Add an ordering constraint and guard*
- *Resolve conflicts by adding more ordering constraints or bindings*
Consistency & completeness

- **Consistency:** no cycles in ordering, preconditions guaranteed true throughout guard intervals
- **Completeness:** no open preconditions
- **Search maintains consistency, terminates when complete**
Execution

- A consistent, complete plan can be executed by linearizing it
- Execute actions in any order that matches the ordering constraints
- Fill in unbound variables in any consistent way
Plan Graphs
Planning & model search

- For a long time, it was thought that SAT-style model search was a non-starter as a planning algorithm

- More recently, people have written fast planners that
 - propositionalize the domain
 - turn it into a CSP or SAT problem
 - search for a model
Plan graph

- Tool for making good CSPs: plan graph
- Encodes a subset of the constraints that plans must satisfy
- Remaining constraints are handled during search (by rejecting solutions that violate them)
Example

- **Start state:** have(Cake)
- **Goal:** have(Cake) ∧ eaten(Cake)
- **Operators:** bake, eat
Operators

○ **Bake**
 ○ *pre:* ¬have(Cake)
 ○ *post:* have(Cake)

○ **Eat**
 ○ *pre:* have(Cake)
 ○ *post:* ¬have(Cake), eaten(Cake)
Propositionalizing

- Note: this domain is fully propositional
- If we had a general STRIPS domain, would have to pick a universe and propositionalize
- E.g., eat(x) would become eat(Banana), eat(Cake), eat(Fred), …
Plan graph

have

¬eaten

- Alternating levels: states and actions
- First level: initial state
Plan graph

- \neg eaten

- First action level: all applicable actions
- Linked to their preconditions
Plan graph

- Second state level: add effects of actions to get literals that could hold at step 2
Plan graph

- Also add *maintenance actions* to represent effect of doing nothing
Extend another pair of levels: now bake is a possible action
Plan graph

- Can extend as far right as we want
- Plan = subset of the actions at each action level
- Ordering unspecified within a level
Plan graph

- In addition to the above links, add **mutex** links to indicate mutually exclusive actions or literals
Actions which assert contradictory literals are mutex
Literals are mutex if they are contradictory
Or if there is no non-mutex set of actions that could achieve both
Plan graph

- Actions are also mutex if one deletes a precondition of the other, or if their preconditions are mutex
Getting a plan

- Build the plan graph out to some length k
- Translate to a SAT formula or CSP
- Search for a satisfying assignment
- If found, read off the plan
- If not, increment k and try again
- There is a test to see if k is big enough
Translation to SAT

- One variable for each pair of literals in state levels
- One variable per action in action levels
- Constraints implement STRIPS semantics
- Solution tells us which actions are performed at each action level, which literals are true at each state level
Action constraints

- Each action can only be executed if all of its preconditions are present:
 \[
 act_{t+1} \Rightarrow \text{pre}1_t \land \text{pre}2_t \land \ldots
 \]

- If executed, action asserts its postconditions:
 \[
 act_{t+1} \Rightarrow \text{post}1_{t+2} \land \text{post}2_{t+2} \land \ldots
 \]
Literal constraints

- In order to achieve a literal, we must execute an action that achieves it
 - \(\text{post}_{t+2} \Rightarrow \text{act}_{t+1} \lor \text{act}_{2t+1} \lor \ldots \)
- Might be a maintenance action
Initial & goal constraints

- Goals must be satisfied at end:
 \[\text{goal}_1 \land \text{goal}_2 \land \ldots \]

- And initial state holds at beginning:
 \[\text{init}_1 \land \text{init}_2 \land \ldots \]
Mutex constraints

- **Mutex constraints between actions or literals:** add clause \((x \oplus y)\)

- **Note:** some mutexes are redundant, but help anyway
Plan search

- Hand problem to SAT solver

- Or, simple DFS: start from last level, fill in last action set, compute necessary preconditions, fill in 2nd-to-last action set, etc.

- If at some level there is no way to do any actions, or no way to fill in consistent preconditions, backtrack
Plan search
Plan search
Plan search
Plan search
Plan search

have

eat

eaten

have

eaten

have

have

eaten

bake
Plan search
Plan search