
15-780: Grad AI
Lecture 12: Optimization, Duality

Geoff Gordon (this lecture)
Tuomas Sandholm

TAs Sam Ganzfried, Byron Boots

1

Review

2

LPs, ILPs, and their ilk

LPs, ILPs, MILPs, 0-1 ILPs
Relaxations, integrality gap
Complexity (LP=poly, ILP=NP)

3

Pseudo-boolean inequalities

0-1 ILPs w/o objective
Useful generalization of SAT
Parallels

LP relaxation vs. unit resolution
LP relaxation + Gomory vs. resolution
DPLL+CL vs. branch & cut

4

Resolution / Gomory example

(x ∨ ¬y ∨ ¬z) ∧ (z ∨ ¬y ∨ a)

5

6

7

Branch & bound (& cut)

[schema, value] = bb(F, sch, bnd)
[vrx, schrx] = relax(F, sch)
if integer(schrx): return [schrx, vrx]
if vrx ≥ bnd: return [sch, vrx]
Pick variable xi
[sch0, v0] = bb(F, sch/(xi: 0), bnd)
[sch1, v1] = bb(F, sch/(xi: 1), min(bnd, v0))
if (v0 ≤ v1): return [sch0, v0]
else: return [sch1, v1]

8

Branch & bound (& cut)

[schema, value] = bb(F, sch, bnd)
[vrx, schrx] = relax(F, sch)
if integer(schrx): return [schrx, vrx]
if vrx ≥ bnd: return [sch, vrx]
Pick variable xi
[sch0, v0] = bb(F, sch/(xi: 0), bnd)
[sch1, v1] = bb(F, sch/(xi: 1), min(bnd, v0))
if (v0 ≤ v1): return [sch0, v0]
else: return [sch1, v1]

for branch & cut: add
cuts as desired here,
re-solve relaxation

8

A random 3CNF

(x2 ∨ x5 ∨ x4) ∧ (x2 ∨ x3 ∨ x5) ∧ (x2 ∨ x2 ∨ x2) ∧ (x3 ∨ x5 ∨ x3)
∧ (x2 ∨ x3 ∨ x4) ∧ (x2 ∨ x2 ∨ x3) ∧ (x1 ∨ x5 ∨ x5) ∧ (x3 ∨ x2 ∨ x5)
∧ (x3 ∨ x3 ∨ x4) ∧ (x2 ∨ x1 ∨ x5) ∧ (x1 ∨ x2 ∨ x1) ∧ (x1 ∨ x3 ∨ x4)
∧ (x5 ∨ x4 ∨ x1) ∧ (x3 ∨ x5 ∨ x4) ∧ (x5 ∨ x1 ∨ x5) ∧ (x3 ∨ x5 ∨ x3)
∧ (x1 ∨ x1 ∨ x3) ∧ (x5 ∨ x4 ∨ x4) ∧ (x5 ∨ x5 ∨ x3) ∧ (x1 ∨ x1 ∨ x5)

∧ (x1 ∨ x3 ∨ x4)

9

Branch & bound tree

10

A random 3CNF

(x2 ∨ x3 ∨ x1) ∧ (x3 ∨ x2 ∨ x1) ∧ (x2 ∨ x2 ∨ x1)
∧ (x1 ∨ x4 ∨ x3) ∧ (x4 ∨ x4 ∨ x2) ∧ (x2 ∨ x4 ∨ x3)
∧ (x4 ∨ x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x5) ∧ (x2 ∨ x5 ∨ x3)
∧ (x3 ∨ x3 ∨ x3) ∧ (x2 ∨ x1 ∨ x3) ∧ (x2 ∨ x4 ∨ x5)
∧ (x1 ∨ x4 ∨ x3) ∧ (x5 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x1)
∧ (x2 ∨ x4 ∨ x4) ∧ (x4 ∨ x3 ∨ x2) ∧ (x2 ∨ x5 ∨ x5)
∧ (x4 ∨ x5 ∨ x2) ∧ (x4 ∨ x2 ∨ x3) ∧ (x4 ∨ x5 ∨ x3)

11

Branch & bound tree

12

Examples

13

Examples

Any problem in NP, since “does MILP
have solution of value ≥ z?” NP-complete
E.g., allocation problems like clearing
combinatorial auctions

14

Path planning

Find the min-cost path: 0-1 variables

15

Path planning

16

Optimal solution

psy = pyg = 1, psx = pxg = 0, cost 3

17

Matrix form

18

Matrix form

?? p ∈ {0,1}4

18

Example: robot exploration task
assignment

Team of robots must explore unknown area
19

Points of interest

Base

20

Exploration plan

21

ILP

Variables (all 0/1):
zri = robot r does task i
xrijt = robot r uses edge ij at step t

Minimize cost = [path cost – task bonus]
∑ xrijt crijt - ∑ zri bri
rijt ri

r indexes robots, i&j index tasks, t indexes steps
22

Constraints

Assigned tasks: ∀r, j, ∑it xrijt ≥ zrj

One edge per step: ∀r, t, ∑ij xrijt = 1

self-loops @ base to allow idling
For each i, path forms a tour from base:
∀r, i, t, ∑j xrjit = ∑j xrij(t+1)

edges used into node = edges used out
except at times 0 and T

r indexes robots, i&j index tasks, t indexes steps
23

Duality

24

Branch & bound summary

B&B idea 1: if we have a solution with
profit 3, add global constraint “profit ≥ 3”

If we then find a solution with profit 4,
replace constraint with “profit ≥ 4”

B&B idea 2: LP relaxations to get
constraints like “profit ≤ 5 1/3” (valid at
node and children)

LP may become infeasible ⇒ prune!
25

Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit =
w + 2d

26

Early stopping

So, we have a solution of profit $4
And we know the best solution has profit
no more than $5 1/3
If we’re lazy, we can stop now
Can we get smarter? Or lazier?

27

What if we’re really lazy?

To get our bound: had to solve the LP
and find its exact optimum
Can we do less work?
Idea: find a suboptimal solution to LP?

Sadly, a non-optimal feasible point in
the LP relaxation gives us no useful
bound

28

A simple bound

Recall:
constraint w + d ≤ 4 (limit on wood)
profit w + 2d

Since w, d ≥ 0,
profit = w + 2d ≤ 2w + 2d

And, doubling both sides of constraint,
2w + 2d ≤ 8 ⇒ profit ≤ 8

29

The same trick works twice

Try other constraint (steel use)
2w + 5d ≤ 12

2*profit = 2w + 4d ≤ 2w + 5d ≤ 12
So profit ≤ 6

30

In fact it works infinitely often

Could take any positive-weight linear
combination of our constraints

negative weights would flip sign

a (w + d – 4) + b (2w + 5d – 12) ≤ 0
(a + 2b) w + (a + 5b) d ≤ 4a + 12b

31

Geometrically

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit =
w + 2d

32

Geometrically

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit =
w + 2d

33

Geometrically

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit =
w + 2d

34

Bound

(a + 2b) w + (a + 5b) d ≤ 4a + 12b
profit = 1w + 2d
So, if 1 ≤ (a + 2b) and 2 ≤ (a + 5b), we
know that profit ≤ 4a + 12b

35

Bound

(a + 2b) w + (a + 5b) d ≤ 4a + 12b
profit = 1w + 2d
So, if 1 ≤ (a + 2b) and 2 ≤ (a + 5b), we
know that profit ≤ 4a + 12b

35

Bound

(a + 2b) w + (a + 5b) d ≤ 4a + 12b
profit = 1w + 2d
So, if 1 ≤ (a + 2b) and 2 ≤ (a + 5b), we
know that profit ≤ 4a + 12b

35

The best bound

If we search for the tightest bound, we
have an LP:

minimize 4a + 12b such that
a + 2b ≥ 1
a + 5b ≥ 2
a, b ≥ 0

Called the dual

36

The dual LP

a →

b
→

a + 2b ≥ 1

a + 5b ≥ 2

0.5

0.5

1 1.5

feasible

37

The dual LP

a →

b
→

a + 2b ≥ 1

a + 5b ≥ 2

0.5

0.5

1 1.5

bound =
4a + 12b

feasible

37

The dual LP

a →

b
→ a = b = 1/3

a + 2b ≥ 1

a + 5b ≥ 2

0.5

0.5

1 1.5

bound =
4a + 12b

feasible

37

Best bound, as primal constraint

Widgets →

D
oo

da
ds

 →
Ca: w + d ≤ 4

Cb: 2w + 5d ≤ 12

38

Best bound, as primal constraint

Widgets →

D
oo

da
ds

 →
Ca: w + d ≤ 4

Cb: 2w + 5d ≤ 12

(1/3) Ca + (1/3) Cb

38

Best bound, as primal constraint

Widgets →

D
oo

da
ds

 →
Ca: w + d ≤ 4

Cb: 2w + 5d ≤ 12

(1/3) Ca + (1/3) Cb

38

Bound from dual

a = b = 1/3 yields bound of
4a + 12b = 16/3 = 5 1/3

Same as bound from original relaxation!
No accident: dual of an LP always* has
same objective value

39

So why bother?

Reason 1: any feasible solution to dual
yields upper bound (compared with only
optimal solution to primal)
Reason 2: dual might be easier to work
with

40

Recap

Each feasible point of dual is an upper
bound on objective
Each feasible point of primal is a lower
bound on objective

for ILP, each integral feasible point

41

Recap

If search in primal finds a feasible point w/
objective 4
And approximate solution to dual has
value 6

approximate = feasible but not optimal
Then we know we’re ≥ 66% of best

42

Duality w/
equality

43

Recall duality w/ inequality

Take a linear combination of constraints
to bound objective
(a + 2b) w + (a + 5b) d ≤ 4a + 12b
profit = 1w + 2d
So, if 1 ≤ (a + 2b) and 2 ≤ (a + 5b), we
know that profit ≤ 4a + 12b

44

Equality example

minimize y subject to
x + y = 1
2y – z = 1
x, y, z ≥ 0

45

Equality example

Want to prove bound y ≥ …
Look at 2nd constraint:

2y – z = 1 ⇒

y – z/2 = 1/2
Since z ≥ 0, dropping –z/2 can only
increase LHS ⇒

y ≥ 1/2

46

Duality w/ equalities

In general, could start from any linear
combination of equality constraints

no need to restrict to +ve combination
a (x + y – 1) + b (2y – z – 1) = 0
a x + (a + 2b) y – b z = a + b

47

Duality w/ equalities

a x + (a + 2b) y – b z = a + b
As long as coefficients on LHS ≤ (0, 1, 0),

objective = 0 x + 1 y + 0 z ≥ a + b
So, maximize a + b subject to

a ≤ 0
a + 2b ≤ 1
–b ≤ 0

48

Duality
recipes

49

Recipe for inequalities

If we have an LP in
matrix form,
maximize c’x subject to

Ax ≤ b
x ≥ 0

Its dual is a similar-
looking LP:
minimize b’y subject to

A’y ≥ c

y ≥ 0

Ax ≤ b means every component of Ax is ≤
corresponding component of b

50

Recipe with ≤ and =

If we have an LP with
equalities,
maximize c’x s.t.

Ax ≤ b
Ex = f
x ≥ 0

Its dual has some
unrestricted variables:

minimize b’y + f’z s.t.

A’y + E’z ≥ c

y ≥ 0

z unrestricted

51

Duality
example

52

Path planning LP

Find the min-cost path: variables

53

Path planning LP

54

Optimal solution

psy = pyg = 1, psx = pxg = 0, cost 3

55

Matrix form

56

Matrix form

λs

λx

λy

λg

56

Dual

57

Optimal dual solution

0

1

3

3

Any solution which adds a constant to
all λs also works; λx = 2 also works

58

More about
the dual

59

Dual dual

Take the dual of an LP twice, get the
original LP back (called primal)
Many LP solvers will give you both primal
and dual solutions at the same time for no
extra cost

60

Interpreting the dual variables

The primal variable variables in the
factory LP were how many widgets and
doodads to produce
We interpreted dual variables as
multipliers for primal constraints

61

Dual variables as multipliers

Widgets →

D
oo

da
ds

 →
Ca: w + d ≤ 4

Cb: 2w + 5d ≤ 12

(1/3) Ca + (1/3) Cb

62

Dual variables as prices

“Multiplier” interpretation doesn’t give
much intuition
It is often possible to interpret dual
variables as prices for primal constraints

63

Dual variables as prices

Suppose someone offered us a quantity ε
of wood, loosening constraint to

w + d ≤ 4 + ε

How much should we be willing to pay for
this wood?

64

Dual variables as prices

RHS in primal is objective in dual
So, dual constraints stay same, previous
solution a = b = 1/3 still dual feasible

still optimal if ε small enough

Bound changes to (4 + ε) a + 12 b,
difference of ε * 1/3
So we should pay up to $1/3 per unit of
wood (in small quantities)

65

0

1

3

3

Price example:
path planning

Dual variables are prices on nodes: how
much does it cost to start there?
Dual constraints are local price
constraints: edge xg (cost 3) means that
node x can’t cost more than 3 + price of
node g

66

