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Review
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LPs, ILPs, and their ilk

LPs, ILPs, MILPs, 0-1 ILPs
Relaxations, integrality gap
Complexity (LP=poly, ILP=NP)
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Pseudo-boolean inequalities

0-1 ILPs w/o objective
Useful generalization of SAT
Parallels

LP relaxation vs. unit resolution
LP relaxation + Gomory vs. resolution
DPLL+CL vs. branch & cut
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Resolution / Gomory example

(x ∨ ¬y ∨ ¬z) ∧ (z ∨ ¬y ∨ a)
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Branch & bound (& cut)

[schema, value] = bb(F, sch, bnd)
[vrx, schrx] = relax(F, sch)
if integer(schrx): return [schrx, vrx]
if vrx ≥ bnd: return [sch, vrx]
Pick variable xi 
[sch0, v0] = bb(F, sch/(xi: 0), bnd)
[sch1, v1] = bb(F, sch/(xi: 1), min(bnd, v0))
if (v0 ≤ v1): return [sch0, v0]
else: return [sch1, v1]

8



Branch & bound (& cut)

[schema, value] = bb(F, sch, bnd)
[vrx, schrx] = relax(F, sch)
if integer(schrx): return [schrx, vrx]
if vrx ≥ bnd: return [sch, vrx]
Pick variable xi 
[sch0, v0] = bb(F, sch/(xi: 0), bnd)
[sch1, v1] = bb(F, sch/(xi: 1), min(bnd, v0))
if (v0 ≤ v1): return [sch0, v0]
else: return [sch1, v1]

for branch & cut: add 
cuts as desired here, 
re-solve relaxation
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A random 3CNF

(x2 ∨ x5 ∨ x4) ∧ (x2 ∨ x3 ∨ x5) ∧ (x2 ∨ x2 ∨ x2) ∧ (x3 ∨ x5 ∨ x3)
∧ (x2 ∨ x3 ∨ x4) ∧ (x2 ∨ x2 ∨ x3) ∧ (x1 ∨ x5 ∨ x5) ∧ (x3 ∨ x2 ∨ x5)
∧ (x3 ∨ x3 ∨ x4) ∧ (x2 ∨ x1 ∨ x5) ∧ (x1 ∨ x2 ∨ x1) ∧ (x1 ∨ x3 ∨ x4)
∧ (x5 ∨ x4 ∨ x1) ∧ (x3 ∨ x5 ∨ x4) ∧ (x5 ∨ x1 ∨ x5) ∧ (x3 ∨ x5 ∨ x3)
∧ (x1 ∨ x1 ∨ x3) ∧ (x5 ∨ x4 ∨ x4) ∧ (x5 ∨ x5 ∨ x3) ∧ (x1 ∨ x1 ∨ x5)

∧ (x1 ∨ x3 ∨ x4)
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Branch & bound tree
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A random 3CNF

(x2 ∨ x3 ∨ x1) ∧ (x3 ∨ x2 ∨ x1) ∧ (x2 ∨ x2 ∨ x1)
∧ (x1 ∨ x4 ∨ x3) ∧ (x4 ∨ x4 ∨ x2) ∧ (x2 ∨ x4 ∨ x3)
∧ (x4 ∨ x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x5) ∧ (x2 ∨ x5 ∨ x3)
∧ (x3 ∨ x3 ∨ x3) ∧ (x2 ∨ x1 ∨ x3) ∧ (x2 ∨ x4 ∨ x5)
∧ (x1 ∨ x4 ∨ x3) ∧ (x5 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x1)
∧ (x2 ∨ x4 ∨ x4) ∧ (x4 ∨ x3 ∨ x2) ∧ (x2 ∨ x5 ∨ x5)
∧ (x4 ∨ x5 ∨ x2) ∧ (x4 ∨ x2 ∨ x3) ∧ (x4 ∨ x5 ∨ x3)
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Branch & bound tree
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Examples
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Examples

Any problem in NP, since “does MILP 
have solution of value ≥ z?” NP-complete
E.g., allocation problems like clearing 
combinatorial auctions
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Path planning

Find the min-cost path: 0-1 variables
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Path planning

16



Optimal solution

psy = pyg = 1,     psx = pxg = 0,     cost 3
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Matrix form
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Matrix form

?? p ∈ {0,1}4
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Example: robot exploration task 
assignment

Team of robots must explore unknown area
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Points of interest

Base
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Exploration plan
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ILP

Variables (all 0/1):
zri = robot r does task i
xrijt = robot r uses edge ij at step t

Minimize cost = [path cost – task bonus]
∑ xrijt crijt - ∑ zri bri
rijt ri

r indexes robots, i&j index tasks, t indexes steps
22



Constraints

Assigned tasks: ∀r, j, ∑it xrijt ≥ zrj

One edge per step: ∀r, t, ∑ij xrijt = 1

self-loops @ base to allow idling
For each i, path forms a tour from base:
∀r, i, t, ∑j xrjit = ∑j xrij(t+1)

edges used into node = edges used out
except at times 0 and T

r indexes robots, i&j index tasks, t indexes steps
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Duality
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Branch & bound summary

B&B idea 1: if we have a solution with 
profit 3, add global constraint “profit ≥ 3”

If we then find a solution with profit 4, 
replace constraint with “profit ≥ 4”

B&B idea 2: LP relaxations to get 
constraints like “profit ≤ 5 1/3” (valid at 
node and children)

LP may become infeasible ⇒ prune!
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Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit = 
w + 2d
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Early stopping

So, we have a solution of profit $4
And we know the best solution has profit 
no more than $5 1/3
If we’re lazy, we can stop now
Can we get smarter?  Or lazier?
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What if we’re really lazy?

To get our bound: had to solve the LP 
and find its exact optimum
Can we do less work?
Idea: find a suboptimal solution to LP?

Sadly, a non-optimal feasible point in 
the LP relaxation gives us no useful 
bound
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A simple bound

Recall: 
constraint w + d ≤ 4 (limit on wood)
profit w + 2d

Since w, d ≥ 0, 
profit = w + 2d ≤ 2w + 2d

And, doubling both sides of constraint,
2w + 2d ≤ 8   ⇒   profit ≤ 8
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The same trick works twice

Try other constraint (steel use)
2w + 5d ≤ 12

2*profit = 2w + 4d ≤ 2w + 5d ≤ 12
So profit ≤ 6
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In fact it works infinitely often

Could take any positive-weight linear 
combination of our constraints

negative weights would flip sign

a (w + d – 4) + b (2w + 5d – 12) ≤ 0
(a + 2b) w + (a + 5b) d ≤ 4a + 12b
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Geometrically

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit = 
w + 2d
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Geometrically

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit = 
w + 2d
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Geometrically

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit = 
w + 2d
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Bound

(a + 2b) w + (a + 5b) d ≤ 4a + 12b
profit = 1w + 2d
So, if 1 ≤ (a + 2b) and 2 ≤ (a + 5b), we 
know that profit ≤ 4a + 12b
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Bound

(a + 2b) w + (a + 5b) d ≤ 4a + 12b
profit = 1w + 2d
So, if 1 ≤ (a + 2b) and 2 ≤ (a + 5b), we 
know that profit ≤ 4a + 12b
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Bound

(a + 2b) w + (a + 5b) d ≤ 4a + 12b
profit = 1w + 2d
So, if 1 ≤ (a + 2b) and 2 ≤ (a + 5b), we 
know that profit ≤ 4a + 12b

35



The best bound

If we search for the tightest bound, we 
have an LP:

minimize 4a + 12b such that
a + 2b ≥ 1
a + 5b ≥ 2
a, b ≥ 0

Called the dual
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The dual LP

a →

b 
→

a + 2b ≥ 1

a + 5b ≥ 2

0.5

0.5

1 1.5

feasible
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The dual LP

a →

b 
→

a + 2b ≥ 1

a + 5b ≥ 2

0.5

0.5

1 1.5

bound = 
4a + 12b

feasible
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The dual LP

a →

b 
→ a = b = 1/3

a + 2b ≥ 1

a + 5b ≥ 2

0.5

0.5

1 1.5

bound = 
4a + 12b

feasible
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Best bound, as primal constraint

Widgets →

D
oo

da
ds

 →
Ca: w + d ≤ 4

Cb: 2w + 5d ≤ 12
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Best bound, as primal constraint

Widgets →

D
oo

da
ds

 →
Ca: w + d ≤ 4

Cb: 2w + 5d ≤ 12

(1/3) Ca + (1/3) Cb
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Best bound, as primal constraint

Widgets →

D
oo

da
ds

 →
Ca: w + d ≤ 4

Cb: 2w + 5d ≤ 12

(1/3) Ca + (1/3) Cb
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Bound from dual

a = b = 1/3 yields bound of 
4a + 12b = 16/3 = 5 1/3

Same as bound from original relaxation!
No accident: dual of an LP always* has 
same objective value
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So why bother?

Reason 1: any feasible solution to dual 
yields upper bound (compared with only 
optimal solution to primal)
Reason 2: dual might be easier to work 
with
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Recap

Each feasible point of dual is an upper 
bound on objective
Each feasible point of primal is a lower 
bound on objective

for ILP, each integral feasible point
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Recap

If search in primal finds a feasible point w/ 
objective 4
And approximate solution to dual has 
value 6

approximate = feasible but not optimal
Then we know we’re ≥ 66% of best
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Duality w/ 
equality
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Recall duality w/ inequality

Take a linear combination of constraints 
to bound objective
(a + 2b) w + (a + 5b) d ≤ 4a + 12b
profit = 1w + 2d
So, if 1 ≤ (a + 2b) and 2 ≤ (a + 5b), we 
know that profit ≤ 4a + 12b
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Equality example

minimize y subject to
x + y = 1
2y – z = 1
x, y, z ≥ 0
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Equality example

Want to prove bound y ≥ …
Look at 2nd constraint:

2y – z = 1    ⇒  

y – z/2 = 1/2
Since z ≥ 0, dropping –z/2 can only 
increase LHS  ⇒

y ≥ 1/2
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Duality w/ equalities

In general, could start from any linear 
combination of equality constraints

no need to restrict to +ve combination
a (x + y – 1) + b (2y – z – 1) = 0
a x + (a + 2b) y – b z = a + b
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Duality w/ equalities

a x + (a + 2b) y – b z = a + b
As long as coefficients on LHS ≤ (0, 1, 0),

objective = 0 x + 1 y + 0 z ≥ a + b
So, maximize a + b subject to

a ≤ 0
a + 2b ≤ 1
–b ≤ 0
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Duality 
recipes
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Recipe for inequalities

If we have an LP in 
matrix form,
maximize c’x subject to

Ax ≤ b
x ≥ 0

Its dual is a similar-
looking LP:
minimize b’y subject to

A’y ≥ c

y ≥ 0

Ax ≤ b means every component of Ax is ≤ 
corresponding component of b
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Recipe with ≤ and =

If we have an LP with 
equalities,
maximize c’x s.t.

Ax ≤ b
Ex = f
x ≥ 0

Its dual has some 
unrestricted variables:

minimize b’y + f’z s.t.

A’y + E’z ≥ c

y ≥ 0

z unrestricted
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Duality 
example
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Path planning LP

Find the min-cost path: variables
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Path planning LP

54



Optimal solution

psy = pyg = 1,     psx = pxg = 0,     cost 3
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Matrix form
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Matrix form

λs

λx

λy

λg
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Dual
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Optimal dual solution

0

1

3

3

Any solution which adds a constant to 
all λs also works; λx = 2 also works
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More about 
the dual
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Dual dual

Take the dual of an LP twice, get the 
original LP back (called primal)
Many LP solvers will give you both primal 
and dual solutions at the same time for no 
extra cost
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Interpreting the dual variables

The primal variable variables in the 
factory LP were how many widgets and 
doodads to produce
We interpreted dual variables as 
multipliers for primal constraints
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Dual variables as multipliers

Widgets →

D
oo

da
ds

 →
Ca: w + d ≤ 4

Cb: 2w + 5d ≤ 12

(1/3) Ca + (1/3) Cb
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Dual variables as prices

“Multiplier” interpretation doesn’t give 
much intuition
It is often possible to interpret dual 
variables as prices for primal constraints
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Dual variables as prices

Suppose someone offered us a quantity ε 
of wood, loosening constraint to 

w + d ≤ 4 + ε

How much should we be willing to pay for 
this wood?
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Dual variables as prices

RHS in primal is objective in dual
So, dual constraints stay same, previous 
solution a = b = 1/3 still dual feasible

still optimal if ε small enough

Bound changes to (4 + ε) a + 12 b, 
difference of ε * 1/3
So we should pay up to $1/3 per unit of 
wood (in small quantities)
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0

1

3

3

Price example: 
path planning

Dual variables are prices on nodes: how 
much does it cost to start there?
Dual constraints are local price 
constraints: edge xg (cost 3) means that 
node x can’t cost more than 3 + price of 
node g
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