15-780: Grad AI Lecture 12: Optimization, Duality

Geoff Gordon (this lecture) Tuomas Sandholm TAs Sam Ganzfried, Byron Boots

Review

LPs, ILPs, and their ilk

- LPs, ILPs, MILPs, 0-1 ILPs
- Relaxations, integrality gap
- Complexity (LP=poly, ILP=NP)

Pseudo-boolean inequalities

- 0-1 ILPs w/o objective
- Useful generalization of SAT
- Parallels
 - LP relaxation vs. unit resolution
 - LP relaxation + Gomory vs. resolution
 - DPLL+CL vs. branch & cut

Resolution / Gomory example

$$\circ (x \lor \neg y \lor \neg z) \land (z \lor \neg y \lor a)$$

(xvgvz) 1 (zvavg) ×+grzz1 z+a+gz1 - x+2g+a+1>2 V43 x, x, y, y, z, z, a, a, s >0 x + x = 1 y = g = 1 ... a = 1 X 1 2 9 + a = 1+ S pazis: x a 12,215 マニハナ、 ないかしな、 そこり一名 g.[1+5-a-x]/2: 1/2+3/2- 9/2- 7/2 J=1-['2+5/2-a/2-x/2]

Branch & bound (& cut)

```
[schema, value] = bb(F, sch, bnd)
   [v_{rx}, sch_{rx}] = relax(F, sch)
   if integer(sch<sub>rx</sub>): return [sch<sub>rx</sub>, v_{rx}]
   if v_{rx} \ge bnd: return [sch, v_{rx}]
   Pick variable x<sub>i</sub>
   [sch^0, v^0] = bb(F, sch/(x_i: 0), bnd)
   [sch^1, v^1] = bb(F, sch/(x_i: 1), min(bnd, v^0))
  if (v^0 \le v^1): return [sch<sup>0</sup>, v^0]
   else: return [sch<sup>1</sup>, v<sup>1</sup>]
```

Branch & bound (& cut)

```
[schema, value] = bb(F, sch, bnd)
                                                        for branch & cut: add
   [v_{rx}, sch_{rx}] = relax(F, sch) \leftarrow
                                                          cuts as desired here,
                                                           re-solve relaxation
   if integer(sch<sub>rx</sub>): return [sch<sub>rx</sub>, v_{rx}]
   if v_{rx} \ge bnd: return [sch, v_{rx}]
   Pick variable x<sub>i</sub>
   [sch^0, v^0] = bb(F, sch/(x_i: 0), bnd)
   [sch^1, v^1] = bb(F, sch/(x_i: 1), min(bnd, v^0))
   if (v^0 \le v^1): return [sch<sup>0</sup>, v^0]
   else: return [sch<sup>1</sup>, v<sup>1</sup>]
```

A random 3CNF

$$(x_{2} \lor x_{5} \lor x_{4}) \land (\overline{x}_{2} \lor \overline{x}_{3} \lor \overline{x}_{5}) \land (\overline{x}_{2} \lor \overline{x}_{2} \lor x_{2}) \land (\overline{x}_{3} \lor x_{5} \lor \overline{x}_{3})$$

$$\land (\overline{x}_{2} \lor \overline{x}_{3} \lor x_{4}) \land (\overline{x}_{2} \lor \overline{x}_{2} \lor x_{3}) \land (\overline{x}_{1} \lor \overline{x}_{5} \lor x_{5}) \land (x_{3} \lor \overline{x}_{2} \lor x_{5})$$

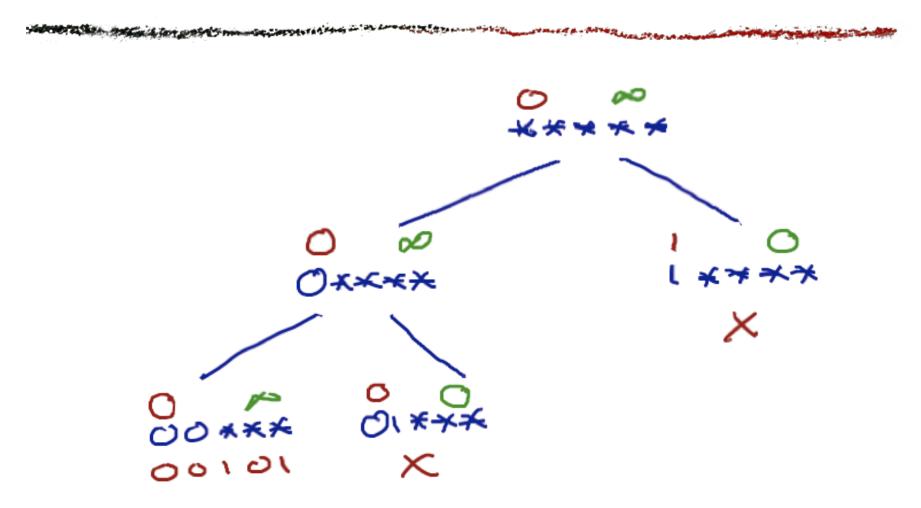
$$\land (\overline{x}_{3} \lor x_{3} \lor \overline{x}_{4}) \land (x_{2} \lor x_{1} \lor x_{5}) \land (\overline{x}_{1} \lor x_{2} \lor x_{1}) \land (x_{1} \lor x_{3} \lor x_{4})$$

$$\land (\overline{x}_{5} \lor \overline{x}_{4} \lor x_{1}) \land (\overline{x}_{3} \lor x_{5} \lor x_{4}) \land (x_{5} \lor \overline{x}_{1} \lor \overline{x}_{5}) \land (\overline{x}_{3} \lor x_{5} \lor \overline{x}_{3})$$

$$\land (x_{1} \lor \overline{x}_{1} \lor \overline{x}_{3}) \land (x_{5} \lor \overline{x}_{4} \lor x_{4}) \land (x_{5} \lor \overline{x}_{5} \lor x_{3}) \land (\overline{x}_{1} \lor \overline{x}_{1} \lor x_{5})$$

$$\land (\overline{x}_{1} \lor \overline{x}_{3} \lor x_{4})$$

Branch & bound tree



A random 3CNF

$$(x_{2} \vee \overline{x}_{3} \vee x_{1}) \wedge (\overline{x}_{3} \vee x_{2} \vee x_{1}) \wedge (x_{2} \vee x_{2} \vee \overline{x}_{1})$$

$$\wedge (x_{1} \vee x_{4} \vee x_{3}) \wedge (x_{4} \vee x_{4} \vee x_{2}) \wedge (\overline{x}_{2} \vee \overline{x}_{4} \vee x_{3})$$

$$\wedge (\overline{x}_{4} \vee \overline{x}_{4} \vee x_{5}) \wedge (x_{2} \vee x_{3} \vee \overline{x}_{5}) \wedge (\overline{x}_{2} \vee x_{5} \vee x_{3})$$

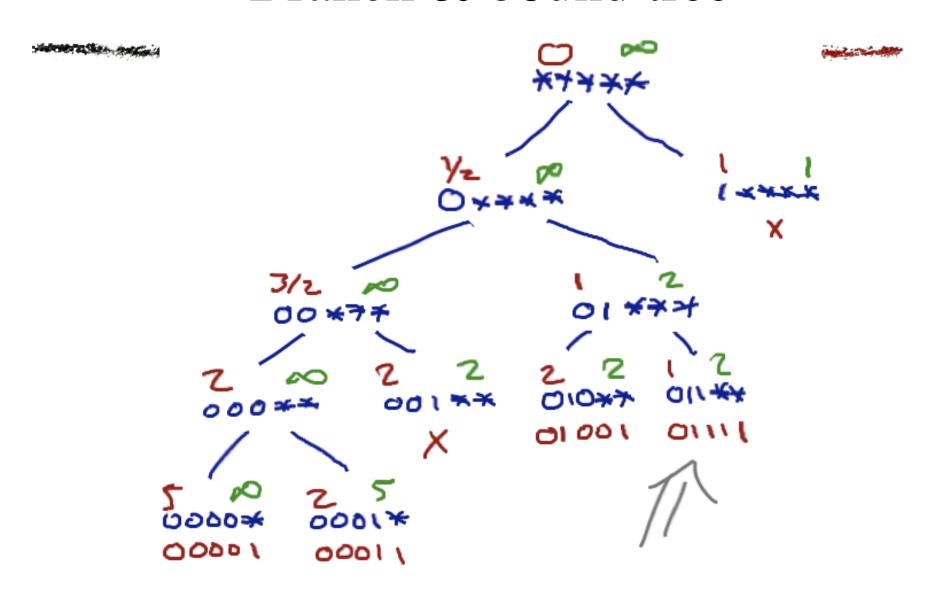
$$\wedge (x_{3} \vee x_{3} \vee x_{3}) \wedge (\overline{x}_{2} \vee \overline{x}_{1} \vee \overline{x}_{3}) \wedge (x_{2} \vee x_{4} \vee x_{5})$$

$$\wedge (\overline{x}_{1} \vee \overline{x}_{4} \vee x_{3}) \wedge (\overline{x}_{5} \vee x_{2} \vee x_{4}) \wedge (\overline{x}_{2} \vee \overline{x}_{3} \vee x_{1})$$

$$\wedge (\overline{x}_{2} \vee \overline{x}_{4} \vee \overline{x}_{4}) \wedge (x_{4} \vee \overline{x}_{3} \vee \overline{x}_{2}) \wedge (\overline{x}_{2} \vee \overline{x}_{5} \vee \overline{x}_{5})$$

$$\wedge (\overline{x}_{4} \vee x_{5} \vee \overline{x}_{2}) \wedge (x_{4} \vee x_{2} \vee x_{3}) \wedge (\overline{x}_{4} \vee x_{5} \vee x_{3})$$

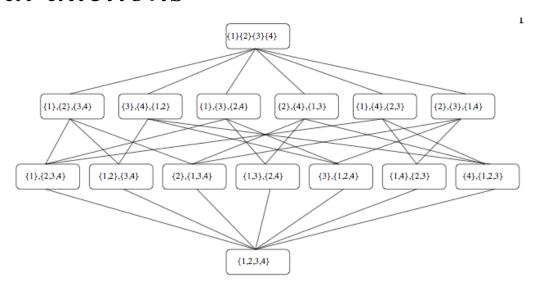
Branch & bound tree



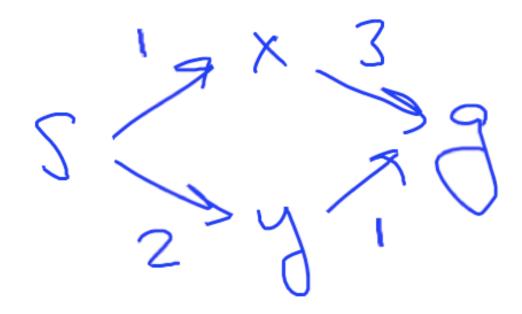
Examples

Examples

- Any problem in NP, since "does MILP have solution of value ≥ z?" NP-complete
- E.g., allocation problems like clearing combinatorial auctions

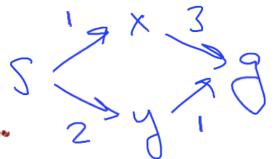


Path planning



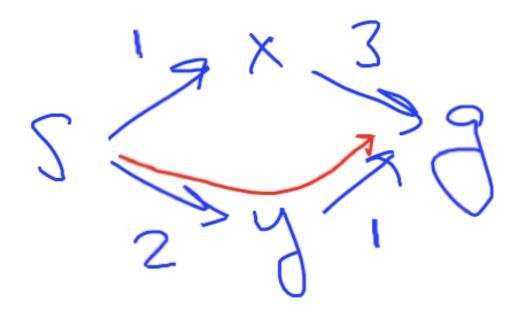
• Find the min-cost path: 0-1 variables

Path planning

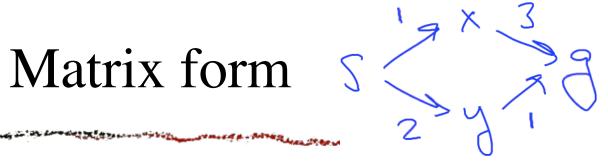


Psx + 3 pxg + 2 psy +

Optimal solution



$$p_{sy} = p_{yg} = 1$$
, $p_{sx} = p_{xg} = 0$, $cost 3$

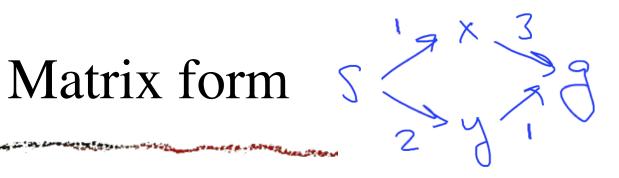


Min
$$(1321)P$$

St
$$\begin{pmatrix}
1 & 0 & 1 & 0 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0
\end{pmatrix}$$

$$P = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}$$

$$P > 0$$



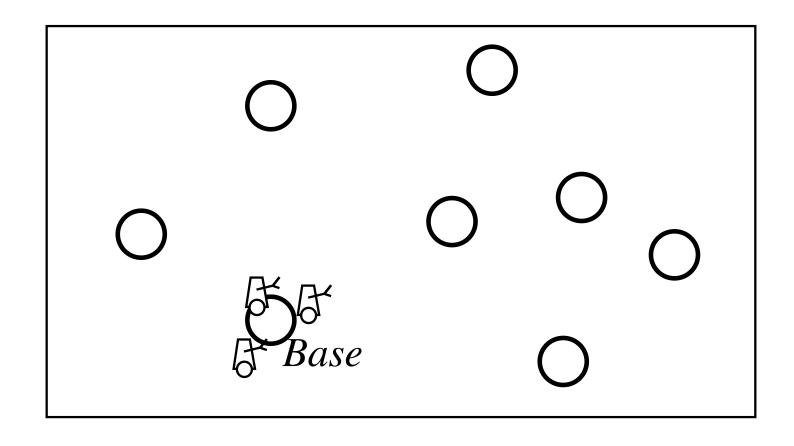
??
$$p \in \{0,1\}^4$$

$$\geqslant \bigcirc$$

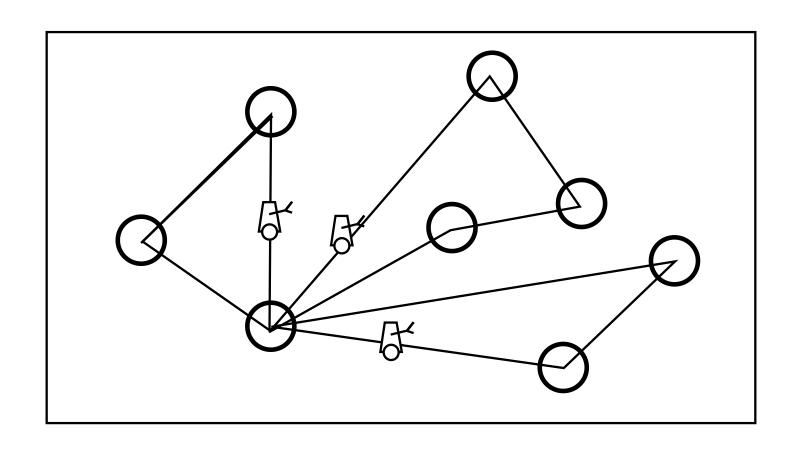
Example: robot exploration task assignment

• Team of robots must explore unknown area

Points of interest



Exploration plan



ILP

• Variables (all 0/1):

 $z_{ri} = robot \ r \ does \ task \ i$

 $x_{rijt} = robot \ r \ uses \ edge \ ij \ at \ step \ t$

Minimize cost = [path cost - task bonus]

$$\sum_{rijt} x_{rijt} c_{rijt} - \sum_{ri} z_{ri} b_{ri}$$

r indexes robots, i&j index tasks, t indexes steps

Constraints

- Assigned tasks: $\forall r, j, \sum_{it} x_{rijt} \geq z_{rj}$
- One edge per step: $\forall r, t, \sum_{ij} x_{rijt} = 1$
 - self-loops @ base to allow idling
- For each i, path forms a tour from base:
 - $\circ \quad \forall r, i, t, \sum_{j} x_{rjit} = \sum_{j} x_{rij(t+1)}$
 - edges used into node = edges used out
 - except at times 0 and T

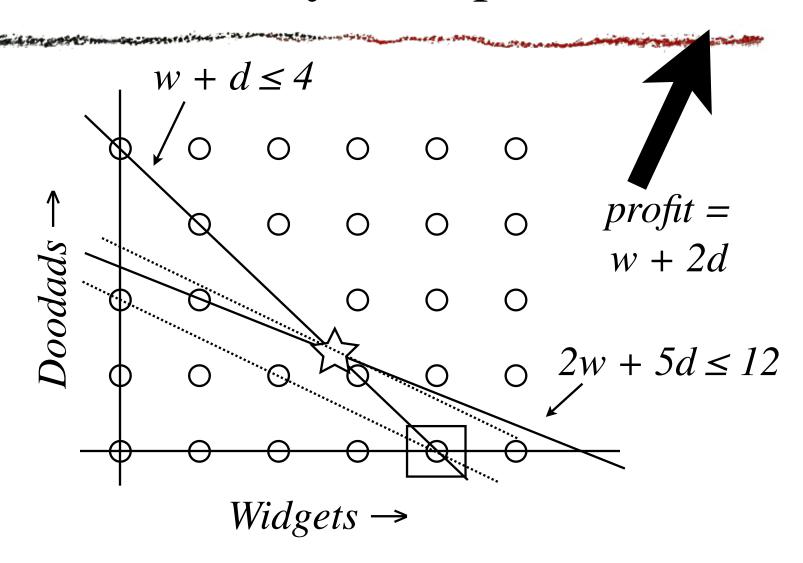
 r indexes robots, i&j index tasks, t indexes steps

Duality

Branch & bound summary

- B&B idea 1: if we have a solution with profit 3, add global constraint "profit ≥ 3"
 - If we then find a solution with profit 4,
 replace constraint with "profit ≥ 4"
- B&B idea 2: LP relaxations to get constraints like "profit ≤ 5 1/3" (valid at node and children)
 - LP may become infeasible ⇒ prune!

Factory example



Early stopping

- So, we have a solution of profit \$4
- And we know the best solution has profit no more than \$5 1/3
- If we're lazy, we can stop now
- Can we get smarter? Or lazier?

What if we're really lazy?

- To get our bound: had to solve the LP and find its exact optimum
- Can we do less work?
- Idea: find a suboptimal solution to LP?
 - Sadly, a non-optimal feasible point in the LP relaxation gives us no useful bound

A simple bound

- Recall:
 - \circ constraint $w + d \le 4$ (limit on wood)
 - $\circ profit w + 2d$
- Since $w, d \ge 0$,
 - $\circ profit = w + 2d \le 2w + 2d$
- And, doubling both sides of constraint,
 - $\circ 2w + 2d \le 8 \implies profit \le 8$

The same trick works twice

- Try other constraint (steel use)
 - $\circ 2w + 5d \le 12$
- $\circ 2*profit = 2w + 4d \le 2w + 5d \le 12$
- ∘ So profit \leq 6

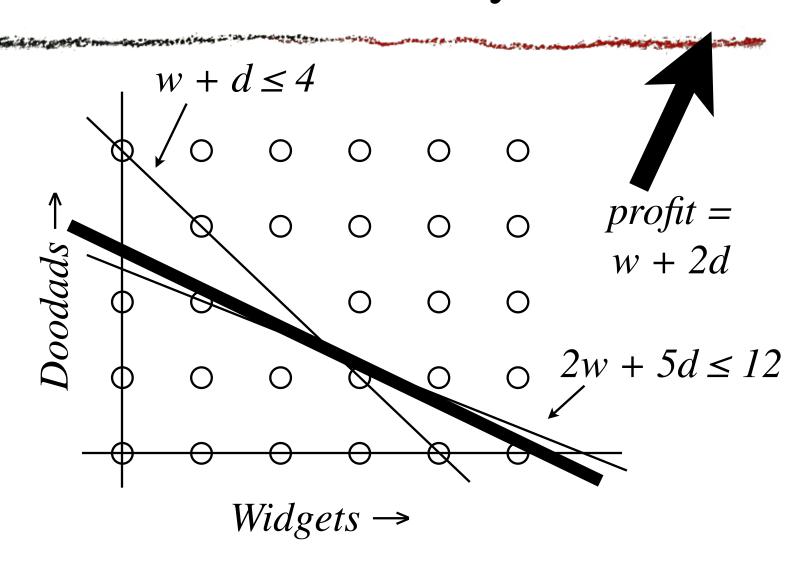
In fact it works infinitely often

- Could take any positive-weight linear combination of our constraints
 - negative weights would flip sign

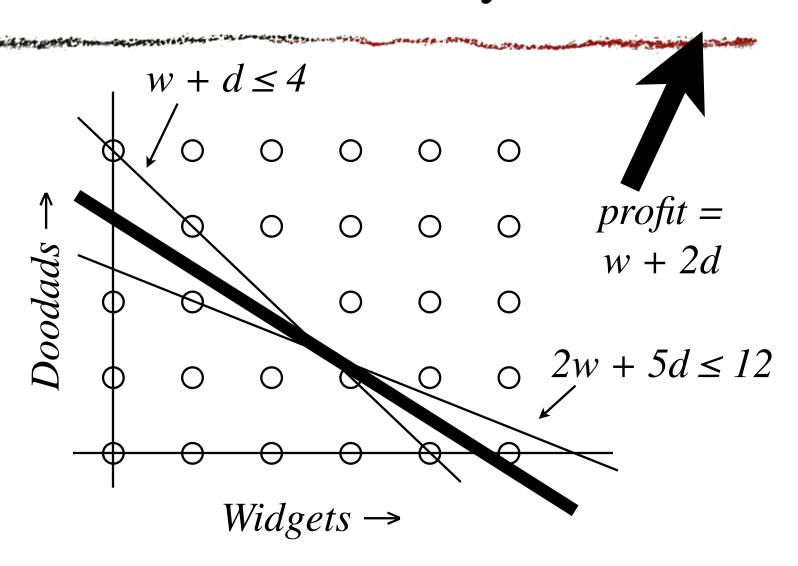
$$a(w+d-4) + b(2w+5d-12) \le 0$$

 $(a+2b) w + (a+5b) d \le 4a + 12b$

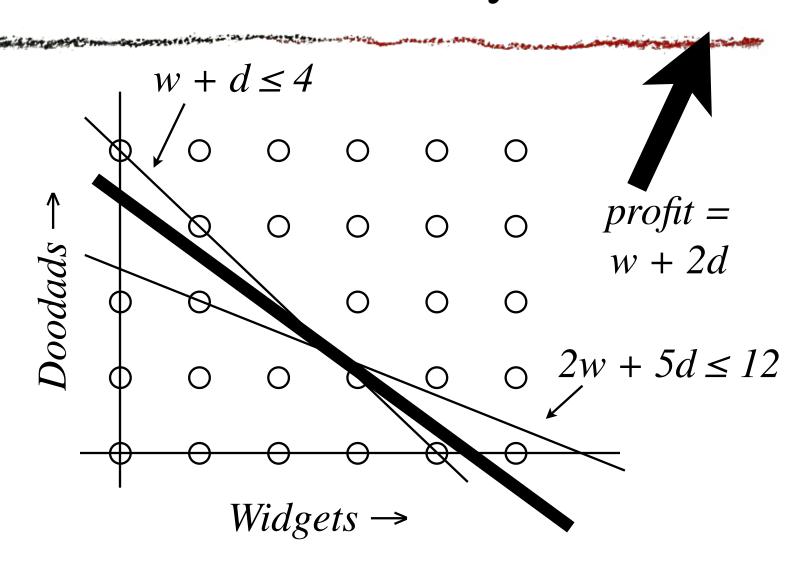
Geometrically



Geometrically



Geometrically



Bound

$$\circ$$
 $(a + 2b) w + (a + 5b) d \le 4a + 12b$

- $\circ profit = 1w + 2d$
- So, if $1 \le (a + 2b)$ and $2 \le (a + 5b)$, we know that profit $\le 4a + 12b$

Bound

•
$$(a + 2b) w + (a + 5b) d \le 4a + 12b$$

• $profit = 1w + 2d$

• So, if $1 \le (a + 2b)$ and $2 \le (a + 5b)$, we know that profit $\le 4a + 12b$

Bound

•
$$(a + 2b)w + (a + 5b)d \le 4a + 12b$$

• $profit = 1w + 2d$

• So, if $1 \le (a + 2b)$ and $2 \le (a + 5b)$, we know that profit $\le 4a + 12b$

The best bound

• If we search for the tightest bound, we have an LP:

minimize 4a + 12b such that

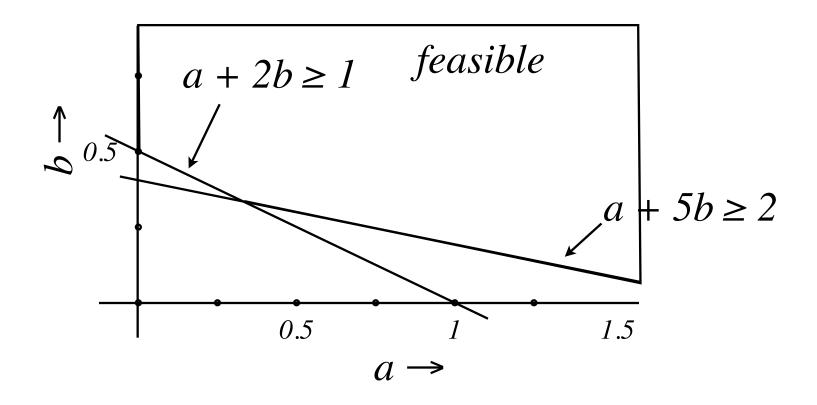
$$a + 2b \ge 1$$

$$a + 5b \ge 2$$

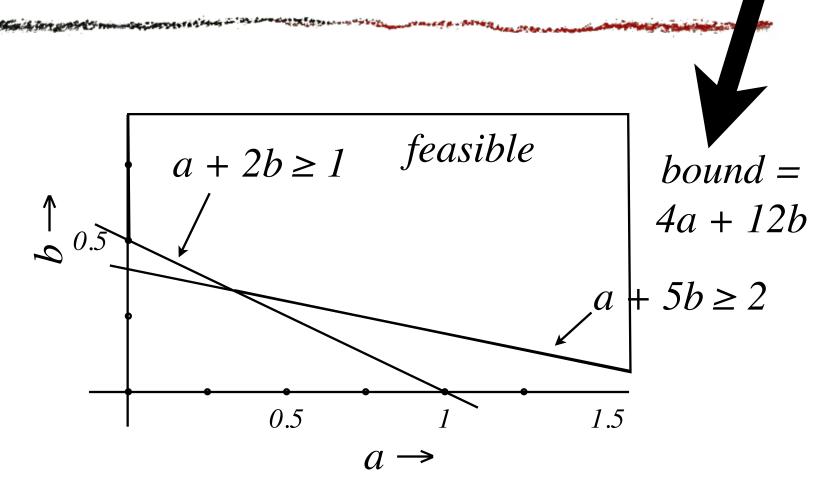
$$a, b \ge 0$$

• Called the **dual**

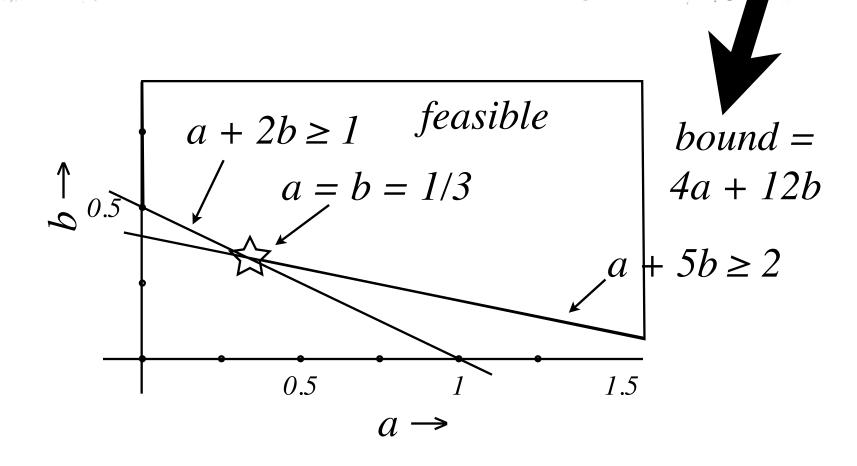
The dual LP



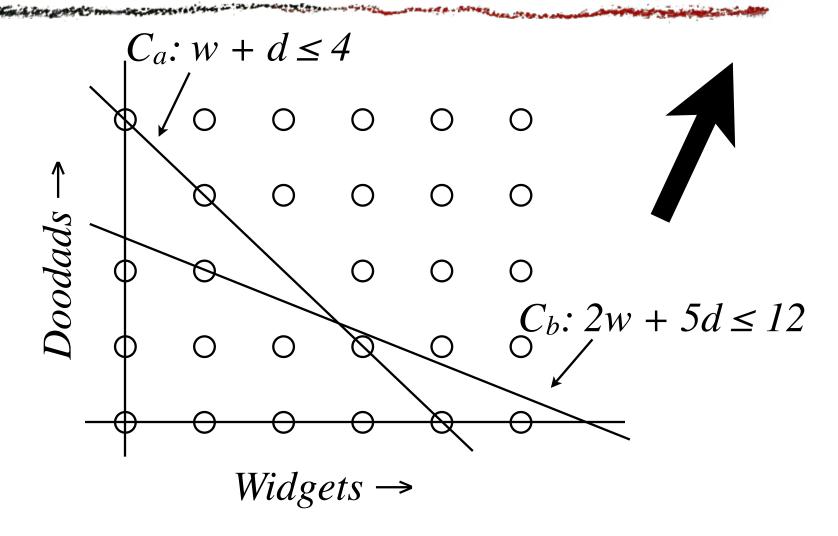
The dual LP



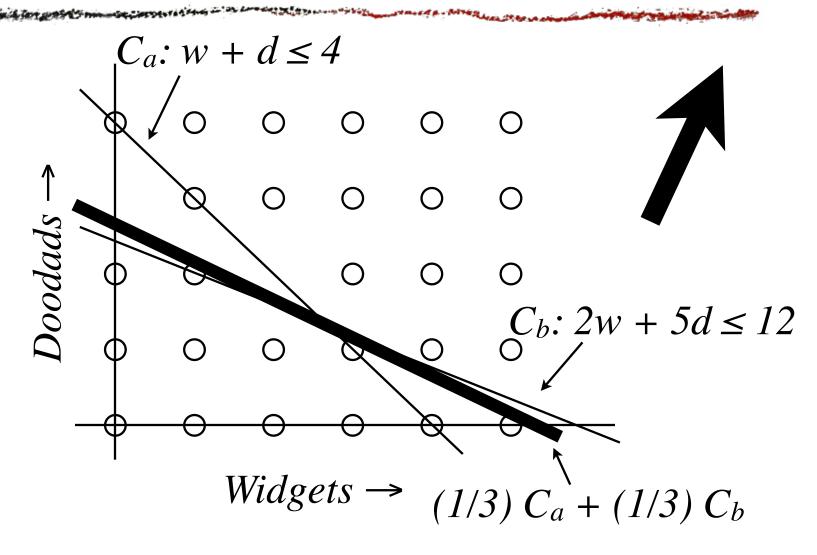
The dual LP



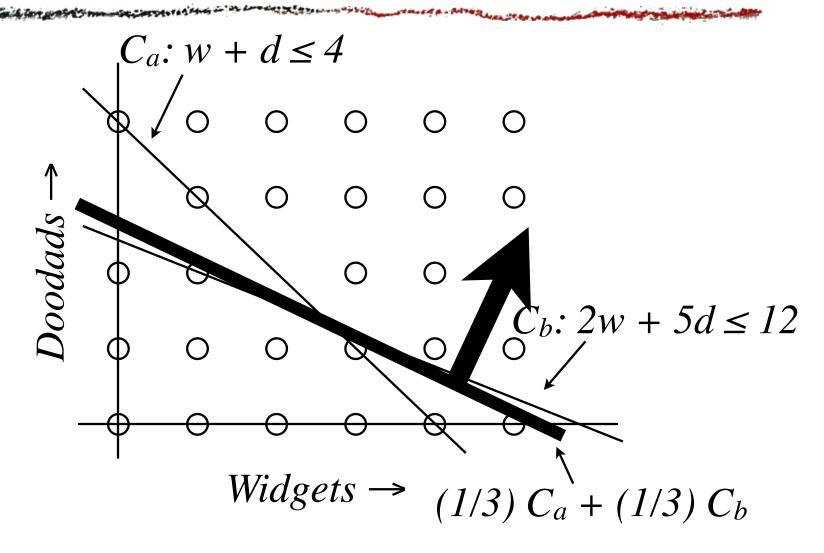
Best bound, as primal constraint



Best bound, as primal constraint



Best bound, as primal constraint



Bound from dual

- a = b = 1/3 yields bound of 4a + 12b = 16/3 = 51/3
- Same as bound from original relaxation!
- No accident: dual of an LP always* has same objective value

So why bother?

- Reason 1: any feasible solution to dual yields upper bound (compared with only optimal solution to primal)
- Reason 2: dual might be easier to work with

Recap

- Each feasible point of dual is an upper bound on objective
- Each feasible point of primal is a lower bound on objective
 - for ILP, each integral feasible point

Recap

- If search in primal finds a feasible point w/ objective 4
- And approximate solution to dual has value 6
 - approximate = feasible but not optimal
- Then we know we're $\geq 66\%$ of best

Duality w/ equality

Recall duality w/ inequality

 Take a linear combination of constraints to bound objective

•
$$(a + 2b)w + (a + 5b)d \le 4a + 12b$$

• $profit = 1w + 2d$

• So, if $1 \le (a + 2b)$ and $2 \le (a + 5b)$, we know that profit $\le 4a + 12b$

Equality example

• minimize y subject to

$$\circ \ x + y = 1$$

$$\circ 2y - z = 1$$

$$\circ x, y, z \ge 0$$

Equality example

- Want to prove bound $y \ge ...$
- Look at 2nd constraint:

$$2y - z = 1 \implies$$

$$y - z/2 = 1/2$$

∘ Since $z \ge 0$, dropping -z/2 can only increase LHS ⇒

$$\circ$$
 $y \ge 1/2$

Duality w/ equalities

- In general, could start from any linear combination of equality constraints
 - no need to restrict to +ve combination

$$a(x + y - 1) + b(2y - z - 1) = 0$$

$$ax + (a + 2b)y - bz = a + b$$

Duality w/ equalities

$$ax + (a + 2b)y - bz = a + b$$

- As long as coefficients on LHS \leq (0, 1, 0),
 - \circ objective = $0x + 1y + 0z \ge a + b$
- So, maximize a + b subject to
 - $\circ a \leq 0$
 - $\circ a + 2b \le 1$
 - $\circ -b \leq 0$

Duality recipes

Recipe for inequalities

- If we have an LP in matrix form,
 - maximize c'x subject to

$$Ax \leq b$$

$$x \ge 0$$

- Its dual is a similarlooking LP:
 - minimize b'y subject to

$$A'y \ge c$$

$$y \ge 0$$

 $Ax \le b$ means every component of Ax is \le corresponding component of b

Recipe with ≤ and =

- If we have an LP with equalities,
 - maximize c'x s.t.

$$Ax \leq b$$

$$Ex = f$$

$$x \ge 0$$

 Its dual has some unrestricted variables:

$$minimize\ b'y + f'z\ s.t.$$

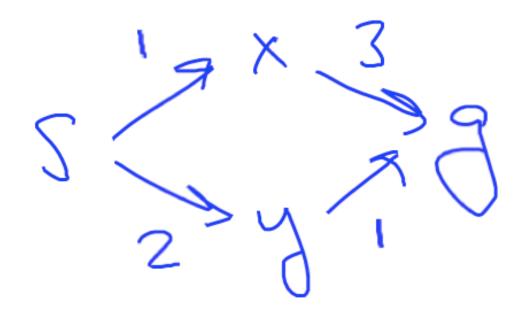
$$A'y + E'z \ge c$$

$$y \ge 0$$

z unrestricted

Duality example

Path planning LP



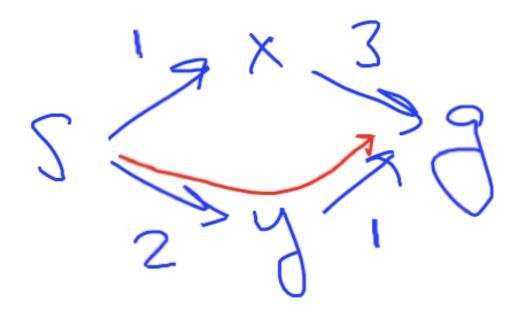
• Find the min-cost path: variables

Psx, Psy, Pxg, Pyg >0

Path planning LP

Psx + 3 pxg + 2 psy +

Optimal solution



$$p_{sy} = p_{yg} = 1$$
, $p_{sx} = p_{xg} = 0$, $cost 3$

Matrix form

Min
$$(1321)P$$

St
$$\begin{pmatrix}
1 & 0 & 1 & 0 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0
\end{pmatrix}$$

$$P = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}$$

$$P \Rightarrow 0$$

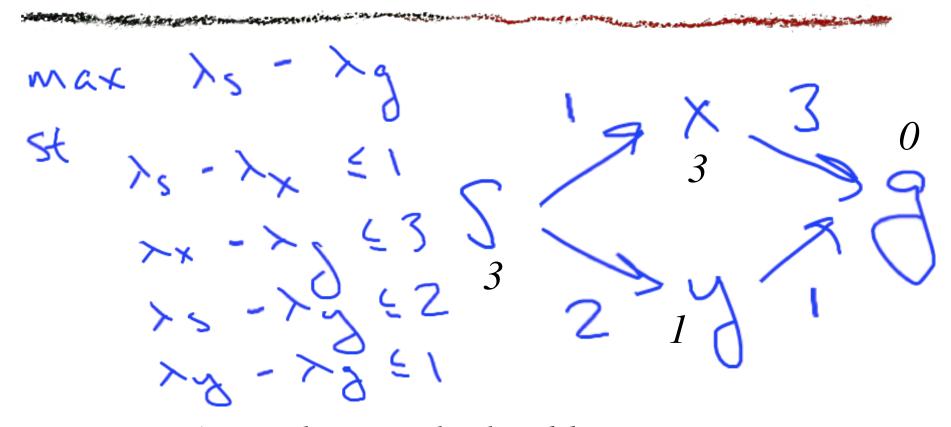
Matrix form

Min (1371)
$$P$$

St
$$\lambda_{x} \begin{pmatrix}
1 & 0 & 1 & 0 \\
-1 & 1 & 0 & 0 \\
\lambda_{y} & 0 & 0 & -1 & 1 \\
\lambda_{g} & 0 & -1 & 0 & -1
\end{pmatrix}$$
 $P = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}$

Dual

Optimal dual solution



Any solution which adds a constant to all λs also works; $\lambda_x = 2$ also works

More about the dual

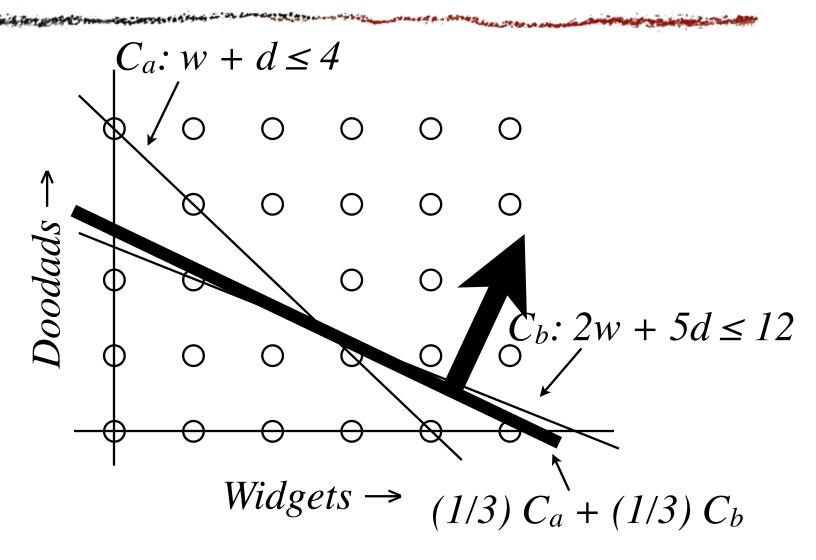
Dual dual

- Take the dual of an LP twice, get the original LP back (called **primal**)
- Many LP solvers will give you both primal and dual solutions at the same time for no extra cost

Interpreting the dual variables

- The primal variable variables in the factory LP were how many widgets and doodads to produce
- We interpreted dual variables as multipliers for primal constraints

Dual variables as multipliers



Dual variables as prices

- "Multiplier" interpretation doesn't give much intuition
- It is often possible to interpret dual variables as prices for primal constraints

Dual variables as prices

Suppose someone offered us a quantity ε
 of wood, loosening constraint to

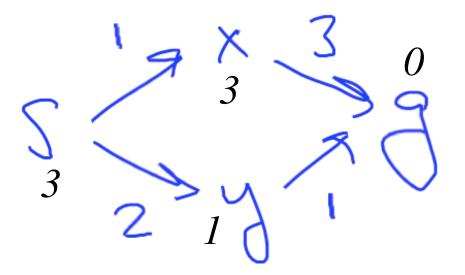
$$w + d \leq 4 + \varepsilon$$

 How much should we be willing to pay for this wood?

Dual variables as prices

- RHS in primal is objective in dual
- So, dual constraints stay same, previous solution a = b = 1/3 still dual feasible
 - still optimal if ε small enough
- Bound changes to $(4 + \varepsilon) a + 12 b$, difference of $\varepsilon * 1/3$
- So we should pay up to \$1/3 per unit of wood (in small quantities)

Price example: path planning



- Dual variables are prices on nodes: how much does it cost to start there?
- Dual constraints are local price constraints: edge xg (cost 3) means that node x can't cost more than 3 + price of node g