Admin
Alexandra Marilyn Gordon
Project proposals

- Due today
HW3

- Questions?
LPs, MILPs, and their ilk
Recall

- **Linear program:**

 \[
 \text{min } 3x + 2y \quad s.t. \\
 x + 2y \leq 3 \\
 x \leq 2 \\
 x, y \geq 0
 \]

- **Integer linear program:** add \(x, y \in \mathbb{Z} \)

- **Mixed ILP:** \(x \in \mathbb{Z}, y \in \mathbb{R} \)
Example LP

- Factory makes widgets and doodads
- Each widget takes 1 unit of wood and 2 units of steel to make
- Each doodad uses 1 unit wood, 5 of steel
- Have 4M units wood and 12M units steel
- Maximize profit: each widget nets $1, each doodad nets $2
Factory LP

\[w + d \leq 4 \]

\[2w + 5d \leq 12 \]

Profit = \[w + 2d \]

Feasible
Factory LP

\[w + d \leq 4 \]

\[2w + 5d \leq 12 \]

profit = \[w + 2d \]

2w + 5d \leq 12
Factory LP

\[w + d \leq 4 \]

\[2w + 5d \leq 12 \]

\[\text{profit} = w + 2d \]

\[\text{OPT} = \frac{16}{3} \]

\[(\frac{8}{3}, \frac{4}{3}) \]

Feasible
Example ILP

- *Instead of 4M units of wood, 12M units of steel, have 4 units wood and 12 units steel*
Factory example

$w + d \leq 4$

$2w + 5d \leq 12$

Profit = $w + 2d$

11
Factory example

\[w + d \leq 4 \]

\[2w + 5d \leq 12 \]

\[\text{profit} = w + 2d \]

\[OPT = 5 \]

\[2w + 5d \leq 12 \]
LP relaxations

- Above LP and ILP are the same, except for constraint $w, d \in \mathbb{Z}$ (in ILP)
- LP is a relaxation of ILP
- Adding any constraint makes optimal value same or worse
- So, $OPT(LP) \geq OPT(ILP)$
 (in a maximization problem)
Factory relaxation is pretty close

\[w + d \leq 4 \]

\[2w + 5d \leq 12 \]

\[\text{profit} = w + 2d \]
Unfortunately…

\[\text{profit} = w + 2d \]
Unfortunately…

profit = \(w + 2d \)

This is called an integrality gap
Bad gap

- *In this example, gap is 3 vs 8.5, or about a ratio of 0.35*
- *Ratio can be arbitrarily bad*
 - *but, can sometimes bound it for classes of ILPs*
3D LP example

\[\text{max } 3z + x - 2y \text{ s.t. } \\
|x| + |y| + |z| \leq 1 \]
3D LP example

\[\text{max } 3z + x - 2y \text{ s.t. } \]
\[|x| + |y| + |z| \leq 1 \]

… not an LP! But …
Absolute value function

- $|x|$ is always equal to either x or $-x$
3D LP example

\[\text{max } 3z + x - 2y \ \text{s.t.} \]
\[|x| + |y| + |z| \leq 1 \]

\[\iff \]
\[\text{max } 3z + x - 2y \ \text{s.t.} \]
\[x + y + z \leq 1 \quad -x + y + z \leq 1 \]
\[x + y - z \leq 1 \quad -x + y - z \leq 1 \]
\[x - y + z \leq 1 \quad -x - y + z \leq 1 \]
\[x - y - z \leq 1 \quad -x - y - z \leq 1 \]
3D LP example
Notation: vector inequalities

- For a vector of variables x and a constant matrix A and vector b,

 $$Ax \leq b$$

 is interpreted componentwise
Vector inequalities

- E.g., $Av \leq b$ if we define

If we define

$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \\ 1 & -1 & -1 \\ -1 & 1 & 1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \\ -1 & -1 & -1 \end{pmatrix}$, $b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, and $v = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, then

$x + y + z \leq 1$

$x + y - z \leq 1$

$x - y + z \leq 1$

...
Complexity

- There exist poly-time algorithms for LPs
 - e.g., ellipsoid, logarithmic barrier
 - rough estimate: n vars, m constraints $\Rightarrow \sim 50\text{--}200 \times \text{cost of } n \times m \text{ regression}$
- No strongly polynomial LP algorithms known—interesting open question
 - simplex is “almost always” polynomial
Complexity

- ILPs and MILPs are complete for NP-opt
 - so, no poly-time algos unless $P=NP$
- Typically solved by search + smart techniques for ordering & pruning nodes
- E.g., branch & cut
Branch & bound (& cut)

\[[\text{schema, value}] = \text{bb}(F, \text{sch}, \text{bnd}) \]
\[[v_{rx}, \text{sch}_{rx}] = \text{relax}(F, \text{sch}) \]
if integer(\text{sch}_{rx}): return \[\text{sch}_{rx}, v_{rx}\]
if \(v_{rx} \geq \text{bnd}\): return \[\text{sch}, v_{rx}\]
Pick variable \(x_i\)
\[[\text{sch}^0, v^0] = \text{bb}(F, \text{sch}/(x_i: 0), \text{bnd}) \]
\[[\text{sch}^1, v^1] = \text{bb}(F, \text{sch}/(x_i: 1), \text{min}(\text{bnd}, v^0)) \]
if \((v^0 \leq v^1)\): return \[\text{sch}^0, v^0\]
else: return \[\text{sch}^1, v^1\]
[schema, value] = bb(F, sch, bnd)
[v_{rx}, sch_{rx}] = relax(F, sch)
if integer(sch_{rx}): return [sch_{rx}, v_{rx}]
if v_{rx} ≥ bnd: return [sch, v_{rx}]
Pick variable x_i
[sch^0, v^0] = bb(F, sch/(x_i: 0), bnd)
[sch^1, v^1] = bb(F, sch/(x_i: 1), min(bnd, v^0))
if (v^0 ≤ v^1): return [sch^0, v^0]
else: return [sch^1, v^1]
Gomory cut example

Widgets → Doodads

Constraint from relaxation
Cutting plane
Tension of cutting v. branching

- *After a branch it may become easier to generate more cuts*
 - *so easier as we go down the tree*
- *Cuts at a node N are valid at N’s children*
 - *so it’s worth spending more effort higher in the search tree*
ILPs and SAT
From ILP to SAT

- **0-1 ILP**: all variables in \(\{0, 1\} \)
- **SAT**: 0-1 ILP, objective = constant, all constraints of form
 \[x + (1-y) + (1-z) \geq 1 \]
- **MAXSAT**: 0-1 ILP, constraints of form
 \[x + (1-y) + (1-z) \geq s_j \]
 maximize \(s_1 + s_2 + \ldots \)
DPLL+CL vs. branch & cut

- Both are DFS + propagation + learning
 - DFS nodes = partial assignments
 - DFS neighborhood = branch on a question (e.g., assign a variable)
 - propagation = unit resolution / LP
 - learning = clause learning / cut generation
Propagation
Propagation

- Unit clauses (e.g., \(\neg x, y \)) translate to
Propagation

- *Unit clauses* (e.g., \(\neg x, y\)) translate to

 - \((1-x) \geq 1 \iff x \leq 0\)
Propagation

- Unit clauses (e.g., $\neg x, y$) translate to
 - $(1-x) \geq 1 \iff x \leq 0$
 - $y \geq 1$
Propagation

- Unit clauses (e.g., \(\neg x, y \)) translate to
 - \((1 - x) \geq 1 \iff x \leq 0\)
 - \(y \geq 1\)

- Combined with \(0 \leq x \leq 1, 0 \leq y \leq 1\), unit clause constraints allow LP to completely determine \(x\) and \(y\)
Propagation

- Unit clauses (e.g., \(\neg x, y\)) translate to
 - \((1-x) \geq 1 \iff x \leq 0\)
 - \(y \geq 1\)

- Combined with \(0 \leq x \leq 1, 0 \leq y \leq 1\), unit clause constraints allow LP to completely determine \(x\) and \(y\)

- So, LP is strictly stronger than unit resolution
LP and resolution

○ What about more general resolutions?
 ○ \((x \lor \neg y \lor \neg z) \land (z \lor a)\)
 ○ \((x \lor \neg y \lor \neg z) \land (z \lor \neg y \lor a)\)
Cuts and clause learning

- So, LP + Gomory can duplicate any resolution
- In particular, some sequence of Gomory cuts can give us any learnable clause
 - DPLL+CL for SAT is just a special case of branch & cut
LP bounds in SAT

- What would be pros and cons of using LP relaxation to get bounds in DPLL for SAT?
Examples
Examples

- Any problem in NP, since “does MILP have solution of value z?” is NP-complete
- E.g., allocation problems like clearing combinatorial auctions
Path planning

- Find the min-cost path: 0-1 variables

\[P_{sx}, P_{sy}, P_{xg}, P_{yg} \geq 0 \]
Path planning

\[\begin{align*}
\text{min} & \quad Psx + 3pxg + 2psy + p\gamma g \\
\text{st} & \quad Psx + psy = 1 \\
& \quad -Psx + pxg = 0 \\
& \quad -psy + pg g = 0 \\
& \quad -pxg - pyg = -1
\end{align*} \]
Optimal solution

\[p_{sy} = p_{yg} = 1, \quad p_{sx} = p_{xg} = 0, \quad \text{cost } 3 \]
Matrix form

\[
\begin{align*}
\text{Min} & \quad (1321)p \\
\text{st} & \quad \begin{pmatrix} 1 & 0 & 1 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & -1 & 0 & -1 \end{pmatrix} p = \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix} \\
p & \geq 0
\end{align*}
\]
Matrix form

\[
\begin{align*}
&\text{Min } (1321)p \\
&\text{St } \\
&\begin{pmatrix}
1 & 0 & 1 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & -1 & 1 \\
0 & -1 & 0 & -1
\end{pmatrix}p = \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix} \\
&\begin{align*}
p &\in \{0,1\}^4 \\
p &\geq 0
\end{align*}
\]
Example: robot exploration task assignment

- Team of robots must explore unknown area
Points of interest
Exploration plan
ILP

- **Variables (all 0/1):**

 \(z_{ri} = \text{robot } r \text{ does task } i \)

 \(x_{rijt} = \text{robot } r \text{ uses edge } ij \text{ at step } t \)

- **Minimize cost = [path cost – task bonus]**

 \[\sum_{rijt} x_{rijt} c_{rijt} - \sum_{ri} z_{ri} b_{ri} \]

 r indexes robots, i&j index tasks, t indexes steps
Constraints

- **Assigned tasks:** $\forall r, j, \sum_{it} x_{rijt} \geq z_{rj}$
- **One edge per step:** $\forall r, t, \sum_{ij} x_{rijt} = 1$
 - self-loops @ base to allow idling
- **For each i, path forms a tour from base:**
 - $\forall r, i, t, \sum_{j} x_{rjit} = \sum_{j} x_{rij(t+1)}$
 - edges used into node = edges used out
 - except at times 0 and T

r indexes robots, i&j index tasks, t indexes steps
Duality
Branch & bound summary

- **Branch & bound idea 1**: if we have a solution with profit 3, add a constraint “profit ≥ 3”
 - If we then find a solution with profit 4, replace constraint with “profit ≥ 4”
- **B&B idea 2**: use LP relaxations to get constraints like “profit ≤ 5 1/3”
Factory example

\[w + d \leq 4 \]

\[2w + 5d \leq 12 \]

Profit =

\[w + 2d \]
Early stopping

- So, we have a solution of profit $4
- And we know the best solution has profit no more than $5 1/3
- If we’re lazy, we can stop now
- Can we get smarter? Or lazier?
What if we’re really lazy?

- To get our bound: had to solve the LP and find its exact optimum
- Can we do less work?
- Idea: find a suboptimal solution to LP?
 - Sadly, a non-optimal feasible point in the LP relaxation gives us no useful bound
A simple bound

- **Recall:**
 - *constraint* $w + d \leq 4$ (*limit on wood*)
 - *profit* $w + 2d$

- *Since* $w, d \geq 0$,
 - *profit* $= w + 2d \leq 2w + 2d$

- And, *doubling both sides of constraint*,
 - $2w + 2d \leq 8 \implies profit \leq 8$
The same trick works twice

- *Try other constraint (steel use)*
 - \(2w + 5d \leq 12\)
 - \(2 \times \text{profit} = 2w + 4d \leq 2w + 5d \leq 12\)
 - *So profit \(\leq 6\)*
In fact it works infinitely often

- *Could take any positive-weight linear combination of our constraints*
 - *negative weights would flip sign*

\[
\begin{align*}
 a (w + d - 4) + b (2w + 5d - 12) & \leq 0 \\
 (a + 2b) w + (a + 5b) d & \leq 4a + 12b
\end{align*}
\]
Geometrically

\[
w + d \leq 4
\]

\[
2w + 5d \leq 12
\]

profit =
\[
w + 2d
\]
Geometrically

\[w + d \leq 4 \]

\[2w + 5d \leq 12 \]

profit = \[w + 2d \]

\[2w + 5d \leq 12 \]
Geometrically

$w + d \leq 4$

$2w + 5d \leq 12$

profit = $w + 2d$

$2w + 5d \leq 12$
Bound

- $(a + 2b)w + (a + 5b)d \leq 4a + 12b$
- $profit = 1w + 2d$
- *So, if $1 \leq (a + 2b)$ and $2 \leq (a + 5b)$, we know that profit $\leq 4a + 12b$*
Bound

- \((a + 2b)w + (a + 5b)d \leq 4a + 12b\)
- \(\text{profit} = lw + 2d\)
- So, if \(1 \leq (a + 2b)\) and \(2 \leq (a + 5b)\), we know that \(\text{profit} \leq 4a + 12b\)
(a + 2b) w + (a + 5b) d \leq 4a + 12b

\textit{profit} = 1w + 2d

So, if 1 \leq (a + 2b) and 2 \leq (a + 5b), we know that \textit{profit} \leq 4a + 12b
If we search for the tightest bound, we have an LP:

\[
\text{minimize } 4a + 12b \text{ such that } \\
a + 2b \geq 1 \\
a + 5b \geq 2 \\
a, b \geq 0
\]

Called the dual
The dual LP

\[a + 2b \geq 1 \quad \text{feasible} \]

\[a + 5b \geq 2 \]
The dual LP

\[a + 2b \geq 1 \quad \text{feasible} \]

\[a + 5b \geq 2 \]

\[\text{bound} = 4a + 12b \]
The dual LP

\[a + 2b \geq 1 \]
\[a + 5b \geq 2 \]

\[a = b = \frac{1}{3} \]

\[\text{feasible} \]

bound =
\[4a + 12b \]
Best bound, as primal constraint

\[C_a: \quad w + d \leq 4 \]

\[C_b: \quad 2w + 5d \leq 12 \]
Best bound, as primal constraint

\[C_a: w + d \leq 4 \]

\[C_b: 2w + 5d \leq 12 \]

\[(1/3) C_a + (1/3) C_b \]
Best bound, as primal constraint

\[C_a: w + d \leq 4 \]

\[C_b: 2w + 5d \leq 12 \]

\[(1/3) C_a + (1/3) C_b \]
Bound from dual

- $a = b = 1/3$ yields bound of $4a + 12b = 16/3 = 5\ 1/3$
- Same as bound from original relaxation!
- No accident: dual of an LP always* has same objective value
So why bother?

- **Reason 1**: any feasible solution to dual yields upper bound (compared with only optimal solution to primal)

- **Reason 2**: dual might be easier to work with
Recap

- Each feasible point of dual is an upper bound on objective
- Each feasible point of primal is a lower bound on objective
 - for ILP, each integral feasible point
Recap

- If search in primal finds a feasible point with objective 4
- And approximate solution to dual has value 6
 - approximate = feasible but not optimal
- Then we know we’re ≥ 66% of best
Duality w/ equality
Recall duality w/ inequality

- Take a linear combination of constraints to bound objective
 - \((a + 2b)w + (a + 5b)d \leq 4a + 12b\)
 - \(\text{profit} = 1w + 2d\)
- So, if \(1 \leq (a + 2b)\) and \(2 \leq (a + 5b)\), we know that \(\text{profit} \leq 4a + 12b\)
Equality example

- minimize y subject to
 - $x + y = 1$
 - $2y - z = 1$
 - $x, y, z \geq 0$
Equality example

- Want to prove bound $y \geq \ldots$
- Look at 2nd constraint:

$$2y - z = 1 \implies y - \frac{z}{2} = \frac{1}{2}$$

- Since $z \geq 0$, dropping $-\frac{z}{2}$ can only increase LHS \implies

- $y \geq 1/2$
Duality w/ equalities

- In general, could start from any linear combination of equality constraints
 - no need to restrict to +ve combination
- \(a (x + y - 1) + b (2y - z - 1) = 0 \)
- \(a x + (a + 2b) y - bz = a + b \)
Duality w/ equalities

- \(a x + (a + 2b) y - b z = a + b \)
- As long as coefficients on LHS \(\leq (0, 1, 0) \),
 - objective = \(0 x + 1 y + 0 z \geq a + b \)
- So, maximize \(a + b \) subject to
 - \(a \leq 0 \)
 - \(a + 2b \leq 1 \)
 - \(-b \leq 0 \)
Duality example
Path planning LP

- *Find the min-cost path: variables*

\[P_{sx}, P_{sy}, P_{xg}, P_{yg} \geq 0 \]
Path planning LP

\[
\begin{align*}
\min & \quad p_{sx} + 3p_{xg} + 2p_{sy} + p_{yg} \\
\text{s.t.} & \quad p_{sx} + p_{sy} = 1 \\
& \quad -p_{sx} + p_{xg} = 0 \\
& \quad -p_{sy} + p_{yg} = 0 \\
& \quad -p_{xg} - p_{yg} = -1
\end{align*}
\]
Optimal solution

\[p_{sy} = p_{yg} = 1, \quad p_{sx} = p_{xg} = 0, \quad \text{cost 3} \]
Matrix form

\[
\begin{align*}
\text{Min } (1321) & \quad p \\
\text{st } & \\
\begin{pmatrix}
1 & 0 & 1 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & -1 & 1 \\
0 & -1 & 0 & 1
\end{pmatrix} & \quad p = \begin{pmatrix}
1 \\
0 \\
0 \\
-1
\end{pmatrix} \\
p & \geq 0
\end{align*}
\]
Matrix form

$$\begin{align*}
\text{Min} & \quad (1321) p \\
\text{st} & \quad \begin{cases}
\lambda_s \\
\lambda_x \\
\lambda_y \\
\lambda_g
\end{cases}
\begin{pmatrix}
1 & 0 & 1 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & -1 & 1 \\
0 & -1 & 0 & -1
\end{pmatrix} p =
\begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix} \\
p & \geq 0
\end{align*}$$
Dual

\[\max \ y_s - x_g \]

subject to:

\[y_s - x_1 \leq 1 \]
\[x_1 - x_3 \leq 3 \]
\[x_2 - y_2 \leq 2 \]
\[x_5 - x_6 \leq 1 \]
Any solution which adds a constant to all λs also works; $\lambda_x = 2$ also works
Interpretation

- *Dual variables are prices on nodes: how much does it cost to start there?*

- *Dual constraints are local price constraints: edge xg (cost 3) means that node x can’t cost more than 3 + price of node g*
More about the dual
Dual dual

- *Take the dual of an LP twice, get the original LP back (called *primal*)*

- *Many LP solvers will give you both primal and dual solutions at the same time for no extra cost*
Recipe

- If we have an LP in matrix form,

\[
\text{maximize } c'x \text{ subject to } Ax \leq b \\
x \geq 0
\]

- Its dual is a similar-looking LP:

\[
\text{minimize } b'y \text{ subject to } A'y \geq c \\
y \geq 0
\]

\(Ax \leq b\) means every component of \(Ax\) is \(\leq\) corresponding component of \(b\)
Recipe with equalities

- If we have an LP with equalities,
 maximize $c'x$ s.t.
 $Ax \leq b$
 $Ex = f$
 $x \geq 0$

- Its dual has some unrestricted variables:
 minimize $b'y + f'z$ s.t.
 $A'y + E'z \geq c$
 $y \geq 0$
 z unrestricted
Interpreting the dual variables

- The primal variable variables in the factory LP were how many widgets and doodads to produce
- We interpreted dual variables as multipliers for primal constraints
Dual variables as multipliers

$C_a: w + d \leq 4$

$C_b: 2w + 5d \leq 12$

$\frac{1}{3} C_a + \frac{1}{3} C_b$
Dual variables as prices

- “Multiplier” interpretation doesn’t give much intuition
- *It is often possible to interpret dual variables as prices for primal constraints*
Dual variables as prices

- Suppose someone offered us a quantity ε of wood, loosening constraint to

$$w + d \leq 4 + \varepsilon$$

- How much should we be willing to pay for this wood?
Dual variables as prices

- RHS in primal is objective in dual
- So, dual constraints stay same, previous solution $a = b = 1/3$ still dual feasible
 - still optimal if ε small enough
- Bound changes to $(4 + \varepsilon) a + 12 b$, difference of $\varepsilon \times 1/3$
- So we should pay up to $1/3$ per unit of wood (in small quantities)