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Project proposals

Due today
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HW3

Questions?
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LPs, MILPs, 
and their ilk
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Recall

Linear program:
min  3x + 2y  s.t.
x + 2y ≤ 3
x ≤ 2
x, y ≥ 0

Integer linear program: add x, y ∈ ℤ

Mixed ILP: x ∈ ℤ, y ∈ ℝ
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Example LP

Factory makes widgets and doodads
Each widget takes 1 unit of wood and 2 
units of steel to make
Each doodad uses 1 unit wood, 5 of steel
Have 4M units wood and 12M units steel
Maximize profit: each widget nets $1, each 
doodad nets $2
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Factory LP

M Widgets →

M
 D

oo
da

ds
 →

feasible

w + d ≤ 4

2w + 5d ≤ 12

profit = 
w + 2d
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Factory LP

M Widgets →

M
 D

oo
da

ds
 →

feasible

w + d ≤ 4

2w + 5d ≤ 12

profit = 
w + 2d

(8/3,4/3)
OPT = 16/3
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Example ILP

Instead of 4M units of wood, 12M units of 
steel, have 4 units wood and 12 units steel
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Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit = 
w + 2d
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Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit = 
w + 2d

OPT = 5
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LP relaxations

Above LP and ILP are the same, except for 
constraint w, d ∈ ℤ (in ILP)

LP is a relaxation of ILP
Adding any constraint makes optimal 
value same or worse
So, OPT(LP) ≥ OPT(ILP)

(in a maximization problem)
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Factory relaxation is pretty close

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit = 
w + 2d
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Widgets →

D
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da
ds

 →

15

Unfortunately…

profit = 
w + 2d
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Widgets →

D
oo

da
ds

 →

15

Unfortunately…

profit = 
w + 2d

This is called an 
integrality gap
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Bad gap

In this example, gap is 3 vs 8.5, or about a 
ratio of 0.35
Ratio can be arbitrarily bad

but, can sometimes bound it for classes 
of ILPs
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3D LP example

max 3z + x – 2y s.t.
|x| + |y| + |z| ≤ 1
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3D LP example

max 3z + x – 2y s.t.
|x| + |y| + |z| ≤ 1

… not an LP!  But …
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Absolute value function

|x| is always equal to either x or –x
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3D LP example

max 3z + x – 2y s.t.
|x| + |y| + |z| ≤ 1

max 3z + x – 2y s.t.
x + y + z ≤ 1
x + y – z ≤ 1
x – y + z ≤ 1
x – y – z ≤ 1

–x + y + z ≤ 1
–x + y – z ≤ 1
–x – y + z ≤ 1
–x – y – z ≤ 1

⇔
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3D LP example
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Notation: vector inequalities

For a vector of variables x and a constant 
matrix A and vector b,

Ax ≤ b
is interpreted componentwise
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Vector inequalities

E.g.,               Av ≤ b
if we define

x + y + z ≤ 1
x + y – z ≤ 1
x – y + z ≤ 1
…

⇔

1 1 1

1 1 –1

1 –1 1

1 –1 –1

–1 1 1

–1 1 –1

–1 –1 1

–1 –1 –1

A =

v =

b =

1

1

1

1

1

1

1

1

x

y

z
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Complexity

There exist poly-time algorithms for LPs
e.g., ellipsoid, logarithmic barrier
rough estimate: n vars, m constraints ⇒ 
~50–200 × cost of n × m regression

No strongly polynomial LP algorithms 
known—interesting open question

simplex is “almost always” polynomial
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Complexity

ILPs and MILPs are complete for NP-opt
so, no poly-time algos unless P=NP

Typically solved by search + smart 
techniques for ordering & pruning nodes
E.g., branch & cut
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Branch & bound (& cut)

[schema, value] = bb(F, sch, bnd)
[vrx, schrx] = relax(F, sch)
if integer(schrx): return [schrx, vrx]
if vrx ≥ bnd: return [sch, vrx]
Pick variable xi 
[sch0, v0] = bb(F, sch/(xi: 0), bnd)
[sch1, v1] = bb(F, sch/(xi: 1), min(bnd, v0))
if (v0 ≤ v1): return [sch0, v0]
else: return [sch1, v1]
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Branch & bound (& cut)

[schema, value] = bb(F, sch, bnd)
[vrx, schrx] = relax(F, sch)
if integer(schrx): return [schrx, vrx]
if vrx ≥ bnd: return [sch, vrx]
Pick variable xi 
[sch0, v0] = bb(F, sch/(xi: 0), bnd)
[sch1, v1] = bb(F, sch/(xi: 1), min(bnd, v0))
if (v0 ≤ v1): return [sch0, v0]
else: return [sch1, v1]

for branch & cut: add 
cuts as desired here, 
re-solve relaxation
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Gomory cut example

Widgets →

D
oo

da
ds

 →

constraint from 
relaxation

cutting plane
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Tension of cutting v. branching

After a branch it may become easier to 
generate more cuts

so easier as we go down the tree
Cuts at a node N are valid at N’s children

so it’s worth spending more effort 
higher in the search tree
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ILPs and 
SAT
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From ILP to SAT

0-1 ILP: all variables in {0, 1}
SAT: 0-1 ILP, objective = constant, all 
constraints of form
x + (1–y) + (1–z) ≥ 1
MAXSAT: 0-1 ILP, constraints of form
x + (1–y) + (1–z) ≥ sj

maximize s1 + s2 + …
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DPLL+CL vs. branch & cut

Both are DFS + propagation + learning
DFS nodes = partial assignments
DFS neighborhood = branch on a 
question (e.g., assign a variable)
propagation = unit resolution / LP
learning = clause learning / cut 
generation
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Propagation
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Propagation

Unit clauses (e.g., ¬x, y) translate to
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Propagation

Unit clauses (e.g., ¬x, y) translate to
(1–x) ≥ 1  ⇔  x ≤ 0
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Propagation

Unit clauses (e.g., ¬x, y) translate to
(1–x) ≥ 1  ⇔  x ≤ 0

y ≥ 1
Combined with 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, unit 
clause constraints allow LP to completely 
determine x and y
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Propagation

Unit clauses (e.g., ¬x, y) translate to
(1–x) ≥ 1  ⇔  x ≤ 0

y ≥ 1
Combined with 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, unit 
clause constraints allow LP to completely 
determine x and y
So, LP is strictly stronger than unit 
resolution
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LP and resolution

What about more general resolutions?
(x ∨ ¬y ∨ ¬z) ∧ (z ∨ a)

(x ∨ ¬y ∨ ¬z) ∧ (z ∨ ¬y ∨ a)

36



Cuts and clause learning

So, LP + Gomory can duplicate any 
resolution
In particular, some sequence of Gomory 
cuts can give us any learnable clause

DPLL+CL for SAT is just a special case 
of branch & cut
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LP bounds in SAT

What would be pros and cons of using LP 
relaxation to get bounds in DPLL for SAT?
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Examples
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Examples

Any problem in NP, since “does MILP 
have solution of value z?” is NP-complete
E.g., allocation problems like clearing 
combinatorial auctions
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Path planning

Find the min-cost path: 0-1 variables
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Path planning
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Optimal solution

psy = pyg = 1,     psx = pxg = 0,     cost 3
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Matrix form
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Matrix form

?? p ∈ {0,1}4
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Example: robot exploration task 
assignment

Team of robots must explore unknown area
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Points of interest

Base
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Exploration plan
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ILP

Variables (all 0/1):
zri = robot r does task i
xrijt = robot r uses edge ij at step t

Minimize cost = [path cost – task bonus]
∑ xrijt crijt - ∑ zri bri
rijt ri

r indexes robots, i&j index tasks, t indexes steps
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Constraints

Assigned tasks: ∀r, j, ∑it xrijt ≥ zrj

One edge per step: ∀r, t, ∑ij xrijt = 1

self-loops @ base to allow idling
For each i, path forms a tour from base:
∀r, i, t, ∑j xrjit = ∑j xrij(t+1)

edges used into node = edges used out
except at times 0 and T

r indexes robots, i&j index tasks, t indexes steps
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Duality
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Branch & bound summary

Branch & bound idea 1: if we have a 
solution with profit 3, add a constraint 
“profit ≥ 3”

If we then find a solution with profit 4, 
replace constraint with “profit ≥ 4”

B&B idea 2: use LP relaxations to get 
constraints like “profit ≤ 5 1/3”
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Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit = 
w + 2d
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Early stopping

So, we have a solution of profit $4
And we know the best solution has profit 
no more than $5 1/3
If we’re lazy, we can stop now
Can we get smarter?  Or lazier?
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What if we’re really lazy?

To get our bound: had to solve the LP 
and find its exact optimum
Can we do less work?
Idea: find a suboptimal solution to LP?

Sadly, a non-optimal feasible point in 
the LP relaxation gives us no useful 
bound
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A simple bound

Recall: 
constraint w + d ≤ 4 (limit on wood)
profit w + 2d

Since w, d ≥ 0, 
profit = w + 2d ≤ 2w + 2d

And, doubling both sides of constraint,
2w + 2d ≤ 8   ⇒   profit ≤ 8
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The same trick works twice

Try other constraint (steel use)
2w + 5d ≤ 12

2*profit = 2w + 4d ≤ 2w + 5d ≤ 12
So profit ≤ 6
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In fact it works infinitely often

Could take any positive-weight linear 
combination of our constraints

negative weights would flip sign

a (w + d – 4) + b (2w + 5d – 12) ≤ 0
(a + 2b) w + (a + 5b) d ≤ 4a + 12b
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Geometrically

Widgets →

D
oo
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ds
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2w + 5d ≤ 12

profit = 
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Bound

(a + 2b) w + (a + 5b) d ≤ 4a + 12b
profit = 1w + 2d
So, if 1 ≤ (a + 2b) and 2 ≤ (a + 5b), we 
know that profit ≤ 4a + 12b
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Bound
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Bound
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The best bound

If we search for the tightest bound, we 
have an LP:

minimize 4a + 12b such that
a + 2b ≥ 1
a + 5b ≥ 2
a, b ≥ 0

Called the dual
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The dual LP

a →

b 
→

a + 2b ≥ 1

a + 5b ≥ 2

0.5

0.5

1 1.5

feasible
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The dual LP

a →

b 
→

a + 2b ≥ 1

a + 5b ≥ 2

0.5

0.5

1 1.5

bound = 
4a + 12b

feasible
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The dual LP

a →

b 
→ a = b = 1/3

a + 2b ≥ 1

a + 5b ≥ 2

0.5

0.5

1 1.5

bound = 
4a + 12b

feasible
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Best bound, as primal constraint

Widgets →

D
oo

da
ds

 →
Ca: w + d ≤ 4

Cb: 2w + 5d ≤ 12
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Cb: 2w + 5d ≤ 12

(1/3) Ca + (1/3) Cb
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Best bound, as primal constraint
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(1/3) Ca + (1/3) Cb
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Bound from dual

a = b = 1/3 yields bound of 
4a + 12b = 16/3 = 5 1/3

Same as bound from original relaxation!
No accident: dual of an LP always* has 
same objective value
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So why bother?

Reason 1: any feasible solution to dual 
yields upper bound (compared with only 
optimal solution to primal)
Reason 2: dual might be easier to work 
with
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Recap

Each feasible point of dual is an upper 
bound on objective
Each feasible point of primal is a lower 
bound on objective

for ILP, each integral feasible point
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Recap

If search in primal finds a feasible point w/ 
objective 4
And approximate solution to dual has 
value 6

approximate = feasible but not optimal
Then we know we’re ≥ 66% of best
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Duality w/ 
equality
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Recall duality w/ inequality

Take a linear combination of constraints 
to bound objective
(a + 2b) w + (a + 5b) d ≤ 4a + 12b
profit = 1w + 2d
So, if 1 ≤ (a + 2b) and 2 ≤ (a + 5b), we 
know that profit ≤ 4a + 12b
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Equality example

minimize y subject to
x + y = 1
2y – z = 1
x, y, z ≥ 0
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Equality example

Want to prove bound y ≥ …
Look at 2nd constraint:

2y – z = 1    ⇒  

y – z/2 = 1/2
Since z ≥ 0, dropping –z/2 can only 
increase LHS  ⇒

y ≥ 1/2
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Duality w/ equalities

In general, could start from any linear 
combination of equality constraints

no need to restrict to +ve combination
a (x + y – 1) + b (2y – z – 1) = 0
a x + (a + 2b) y – b z = a + b
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Duality w/ equalities

a x + (a + 2b) y – b z = a + b
As long as coefficients on LHS ≤ (0, 1, 0),

objective = 0 x + 1 y + 0 z ≥ a + b
So, maximize a + b subject to

a ≤ 0
a + 2b ≤ 1
–b ≤ 0
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Duality 
example
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Path planning LP

Find the min-cost path: variables
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Path planning LP
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Optimal solution

psy = pyg = 1,     psx = pxg = 0,     cost 3
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Matrix form
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Matrix form

λs

λx

λy

λg
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Dual
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Optimal dual solution

0

1

3

3

Any solution which adds a constant to 
all λs also works; λx = 2 also works
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Interpretation

Dual variables are prices on nodes: how 
much does it cost to start there?
Dual constraints are local price 
constraints: edge xg (cost 3) means that 
node x can’t cost more than 3 + price of 
node g
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More about 
the dual
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Dual dual

Take the dual of an LP twice, get the 
original LP back (called primal)
Many LP solvers will give you both primal 
and dual solutions at the same time for no 
extra cost
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Recipe

If we have an LP in 
matrix form,
maximize c’x subject to

Ax ≤ b
x ≥ 0

Its dual is a similar-
looking LP:
minimize b’y subject to

A’y ≥ c

y ≥ 0

Ax ≤ b means every component of Ax is ≤ 
corresponding component of b
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Recipe with equalities

If we have an LP with 
equalities,
maximize c’x s.t.

Ax ≤ b
Ex = f
x ≥ 0

Its dual has some 
unrestricted variables:

minimize b’y + f’z s.t.

A’y + E’z ≥ c

y ≥ 0

z unrestricted

87



Interpreting the dual variables

The primal variable variables in the 
factory LP were how many widgets and 
doodads to produce
We interpreted dual variables as 
multipliers for primal constraints
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Dual variables as multipliers

Widgets →

D
oo

da
ds

 →
Ca: w + d ≤ 4

Cb: 2w + 5d ≤ 12

(1/3) Ca + (1/3) Cb
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Dual variables as prices

“Multiplier” interpretation doesn’t give 
much intuition
It is often possible to interpret dual 
variables as prices for primal constraints
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Dual variables as prices

Suppose someone offered us a quantity ε 
of wood, loosening constraint to 

w + d ≤ 4 + ε

How much should we be willing to pay for 
this wood?
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Dual variables as prices

RHS in primal is objective in dual
So, dual constraints stay same, previous 
solution a = b = 1/3 still dual feasible

still optimal if ε small enough

Bound changes to (4 + ε) a + 12 b, 
difference of ε * 1/3
So we should pay up to $1/3 per unit of 
wood (in small quantities)
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