15-780: Grad AI Lecture 11: Optimization, Duality

Geoff Gordon (this lecture) Tuomas Sandholm TAs Sam Ganzfried, Byron Boots

Admin

Alexandra Marilyn Gordon

Project proposals

• Due today

HW3

• Questions?

LPs, MILPs, and their ilk

Recall

• Linear program:

$$min 3x + 2y s.t.$$

$$x + 2y \le 3$$

$$x \leq 2$$

$$x, y \ge 0$$

- *Integer linear program:* $add x, y \in \mathbb{Z}$
- *Mixed ILP*: $x \in \mathbb{Z}$, $y \in \mathbb{R}$

Example LP

- Factory makes widgets and doodads
- Each widget takes 1 unit of wood and 2 units of steel to make
- Each doodad uses 1 unit wood, 5 of steel
- Have 4M units wood and 12M units steel
- Maximize profit: each widget nets \$1, each doodad nets \$2

Factory LP

Factory LP

Factory LP

Example ILP

• Instead of 4M units of wood, 12M units of steel, have 4 units wood and 12 units steel

Factory example

Factory example

LP relaxations

- Above LP and ILP are the same, except for constraint $w, d \in \mathbb{Z}$ (in ILP)
- LP is a relaxation of ILP
- Adding any constraint makes optimal value same or worse
- \circ So, $OPT(LP) \ge OPT(ILP)$

(in a maximization problem)

Factory relaxation is pretty close

Unfortunately...

Unfortunately...

Bad gap

- In this example, gap is 3 vs 8.5, or about a ratio of 0.35
- Ratio can be arbitrarily bad
 - but, can sometimes bound it for classes of ILPs

3D LP example

$$max 3z + x - 2y s.t.$$

$$|x| + |y| + |z| \le 1$$

3D LP example

$$max 3z + x - 2y s.t.$$

$$|x| + |y| + |z| \le 1$$

... not an LP! But ...

Absolute value function

∘ |x| is always equal to either x or −x

3D LP example

$$\max 3z + x - 2y \ s.t.$$

$$|x| + |y| + |z| \le 1$$

$$\max 3z + x - 2y \ s.t.$$

$$x + y + z \le 1 \qquad -x + y + z \le 1$$

$$\Leftrightarrow \qquad x + y - z \le 1 \qquad -x + y - z \le 1$$

$$x - y + z \le 1 \qquad -x - y + z \le 1$$

 $x - y - z \le 1$ $-x - y - z \le I$

3D LP example

Notation: vector inequalities

• For a vector of variables x and a constant matrix A and vector b,

$$Ax \leq b$$

is interpreted componentwise

Vector inequalities

Complexity

- There exist poly-time algorithms for LPs
 - e.g., ellipsoid, logarithmic barrier
 - rough estimate: n vars, m constraints ⇒
 ~50–200 × cost of n × m regression
- No strongly polynomial LP algorithms known—interesting open question
 - simplex is "almost always" polynomial

Complexity

- ILPs and MILPs are complete for NP-opt
 - ∘ so, no poly-time algos unless P=NP
- Typically solved by search + smart techniques for ordering & pruning nodes
- E.g., branch & cut

Branch & bound (& cut)

```
[schema, value] = bb(F, sch, bnd)
   [v_{rx}, sch_{rx}] = relax(F, sch)
   if integer(sch<sub>rx</sub>): return [sch<sub>rx</sub>, v_{rx}]
   if v_{rx} \ge bnd: return [sch, v_{rx}]
   Pick variable x<sub>i</sub>
   [sch^0, v^0] = bb(F, sch/(x_i: 0), bnd)
   [sch^1, v^1] = bb(F, sch/(x_i: 1), min(bnd, v^0))
  if (v^0 \le v^1): return [sch<sup>0</sup>, v^0]
   else: return [sch<sup>1</sup>, v<sup>1</sup>]
```

Branch & bound (& cut)

```
[schema, value] = bb(F, sch, bnd)
                                                        for branch & cut: add
   [v_{rx}, sch_{rx}] = relax(F, sch) \leftarrow
                                                          cuts as desired here,
                                                           re-solve relaxation
   if integer(sch<sub>rx</sub>): return [sch<sub>rx</sub>, v_{rx}]
   if v_{rx} \ge bnd: return [sch, v_{rx}]
   Pick variable x<sub>i</sub>
   [sch^0, v^0] = bb(F, sch/(x_i: 0), bnd)
   [sch^1, v^1] = bb(F, sch/(x_i: 1), min(bnd, v^0))
   if (v^0 \le v^1): return [sch<sup>0</sup>, v^0]
   else: return [sch<sup>1</sup>, v<sup>1</sup>]
```

Gomory cut example

Tension of cutting v. branching

- After a branch it may become easier to generate more cuts
 - so easier as we go down the tree
- Cuts at a node N are valid at N's children
 - so it's worth spending more effort higher in the search tree

ILPs and SAT

From ILP to SAT

- *0-1 ILP: all variables in* {0, 1}
- SAT: 0-1 ILP, objective = constant, all constraints of form

$$x + (1-y) + (1-z) \ge 1$$

• MAXSAT: 0-1 ILP, constraints of form

$$x + (1-y) + (1-z) \ge s_j$$

$$maximize s_1 + s_2 + \dots$$

DPLL+CL vs. branch & cut

- Both are DFS + propagation + learning
 - DFS nodes = partial assignments
 - DFS neighborhood = branch on a question (e.g., assign a variable)
 - propagation = unit resolution / LP
 - learning = clause learning / cut generation

• Unit clauses (e.g., $\neg x$, y) translate to

• Unit clauses (e.g., $\neg x$, y) translate to

$$\circ (1-x) \ge 1 \Leftrightarrow x \le 0$$

- Unit clauses (e.g., $\neg x$, y) translate to
 - $\circ (1-x) \ge 1 \Leftrightarrow x \le 0$
 - $\circ y \ge 1$

- Unit clauses (e.g., $\neg x$, y) translate to
 - $\circ (1-x) \ge 1 \Leftrightarrow x \le 0$
 - $\circ y \ge 1$
- Combined with $0 \le x \le 1$, $0 \le y \le 1$, unit clause constraints allow LP to completely determine x and y

- Unit clauses (e.g., $\neg x$, y) translate to
 - $\circ (1-x) \ge 1 \Leftrightarrow x \le 0$
 - $\circ y \ge 1$
- Combined with $0 \le x \le 1$, $0 \le y \le 1$, unit clause constraints allow LP to completely determine x and y
- So, LP is strictly stronger than unit resolution

LP and resolution

• What about more general resolutions?

$$\circ$$
 $(x \lor \neg y \lor \neg z) \land (z \lor a)$

$$\circ (x \lor \neg y \lor \neg z) \land (z \lor \neg y \lor a)$$

Cuts and clause learning

- So, LP + Gomory can duplicate any resolution
- In particular, some sequence of Gomory cuts can give us any learnable clause
 - DPLL+CL for SAT is just a special case of branch & cut

LP bounds in SAT

• What would be pros and cons of using LP relaxation to get bounds in DPLL for SAT?

Examples

Examples

- Any problem in NP, since "does MILP have solution of value z?" is NP-complete
- E.g., allocation problems like clearing combinatorial auctions

Path planning

• Find the min-cost path: 0-1 variables

Psx, Psy, Pxg, Pyg >0

Path planning

win
$$Psx + 3 Pxg + 2 Psy + Pyg$$

$$st$$

$$Psx$$

$$+ Psy$$

$$- Psx + Pxg$$

$$- Psy + Pyg = 0$$

$$- Pxg$$

$$- Pyg = -1$$

Optimal solution

$$p_{sy} = p_{yg} = 1$$
, $p_{sx} = p_{xg} = 0$, $cost 3$

Matrix form

Min
$$(1321)P$$

St
$$\begin{pmatrix}
1 & 0 & 1 & 0 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0
\end{pmatrix}$$

$$P = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}$$

Matrix form

Min (1371) P

St

$$\begin{pmatrix}
1 & 0 & 1 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & -1 & 1
\end{pmatrix}$$
 $?? p \in \{0,1\}^4$
 $\Rightarrow 0$

Example: robot exploration task assignment

• Team of robots must explore unknown area

Points of interest

Exploration plan

ILP

• Variables (all 0/1):

 $z_{ri} = robot \ r \ does \ task \ i$

 $x_{rijt} = robot \ r \ uses \ edge \ ij \ at \ step \ t$

Minimize cost = [path cost - task bonus]

$$\sum_{rijt} x_{rijt} c_{rijt} - \sum_{ri} z_{ri} b_{ri}$$

r indexes robots, i&j index tasks, t indexes steps

Constraints

- Assigned tasks: $\forall r, j, \sum_{it} x_{rijt} \geq z_{rj}$
- One edge per step: $\forall r, t, \sum_{ij} x_{rijt} = 1$
 - self-loops @ base to allow idling
- For each i, path forms a tour from base:
 - $\circ \forall r, i, t, \sum_{j} x_{rjit} = \sum_{j} x_{rij(t+1)}$
 - edges used into node = edges used out
 - except at times 0 and T

 r indexes robots, i&j index tasks, t indexes steps

Duality

Branch & bound summary

- Branch & bound idea 1: if we have a solution with profit 3, add a constraint "profit ≥ 3"
 - If we then find a solution with profit 4,
 replace constraint with "profit ≥ 4"
- B&B idea 2: use LP relaxations to get constraints like "profit ≤ 5 1/3"

Factory example

Early stopping

- So, we have a solution of profit \$4
- And we know the best solution has profit no more than \$5 1/3
- If we're lazy, we can stop now
- Can we get smarter? Or lazier?

What if we're really lazy?

- To get our bound: had to solve the LP and find its exact optimum
- Can we do less work?
- Idea: find a suboptimal solution to LP?
 - Sadly, a non-optimal feasible point in the LP relaxation gives us no useful bound

A simple bound

- Recall:
 - \circ constraint $w + d \leq 4$ (limit on wood)
 - \circ profit w + 2d
- Since $w, d \ge 0$,
 - $\circ profit = w + 2d \le 2w + 2d$
- And, doubling both sides of constraint,
 - $\circ 2w + 2d \le 8 \implies profit \le 8$

The same trick works twice

- Try other constraint (steel use)
 - $\circ 2w + 5d \le 12$
- $\circ 2*profit = 2w + 4d \le 2w + 5d \le 12$
- So profit ≤ 6

In fact it works infinitely often

- Could take any positive-weight linear combination of our constraints
 - negative weights would flip sign

$$a(w+d-4) + b(2w+5d-12) \le 0$$

 $(a+2b) w + (a+5b) d \le 4a + 12b$

Geometrically

Geometrically

Geometrically

Bound

- \circ $(a + 2b) w + (a + 5b) d \le 4a + 12b$
- $\circ profit = 1w + 2d$
- So, if $1 \le (a + 2b)$ and $2 \le (a + 5b)$, we know that profit $\le 4a + 12b$

Bound

•
$$(a + 2b) w + (a + 5b) d \le 4a + 12b$$

• $profit = [1w + 2d]$

• So, if $1 \le (a + 2b)$ and $2 \le (a + 5b)$, we know that profit $\le 4a + 12b$

Bound

•
$$(a + 2b)w + (a + 5b)d \le 4a + 12b$$

• $profit = 1w + 2d$

• So, if $1 \le (a + 2b)$ and $2 \le (a + 5b)$, we know that profit $\le 4a + 12b$

The best bound

• If we search for the tightest bound, we have an LP:

minimize 4a + 12b such that

$$a + 2b \ge 1$$

$$a + 5b \ge 2$$

$$a, b \ge 0$$

• Called the **dual**

The dual LP

The dual LP

The dual LP

Best bound, as primal constraint

Best bound, as primal constraint

Best bound, as primal constraint

Bound from dual

- a = b = 1/3 yields bound of 4a + 12b = 16/3 = 51/3
- Same as bound from original relaxation!
- No accident: dual of an LP always* has same objective value

So why bother?

- Reason 1: any feasible solution to dual yields upper bound (compared with only optimal solution to primal)
- Reason 2: dual might be easier to work with

Recap

- Each feasible point of dual is an upper bound on objective
- Each feasible point of primal is a lower bound on objective
 - for ILP, each integral feasible point

Recap

- If search in primal finds a feasible point w/ objective 4
- And approximate solution to dual has value 6
 - approximate = feasible but not optimal
- Then we know we're $\geq 66\%$ of best

Duality w/ equality

Recall duality w/ inequality

 Take a linear combination of constraints to bound objective

•
$$(a + 2b)w + (a + 5b)d \le 4a + 12b$$

• $profit = 1w + 2d$

• So, if $1 \le (a + 2b)$ and $2 \le (a + 5b)$, we know that profit $\le 4a + 12b$

Equality example

• minimize y subject to

$$\circ \ x + y = 1$$

$$\circ 2y - z = 1$$

$$\circ x, y, z \ge 0$$

Equality example

- Want to prove bound $y \ge ...$
- Look at 2nd constraint:

$$2y - z = 1 \implies$$

$$y - z/2 = 1/2$$

- Since z ≥ 0, dropping -z/2 can only increase LHS ⇒
 - \circ $y \ge 1/2$

Duality w/ equalities

- In general, could start from any linear combination of equality constraints
 - no need to restrict to +ve combination

$$a(x + y - 1) + b(2y - z - 1) = 0$$

$$ax + (a + 2b)y - bz = a + b$$

Duality w/ equalities

$$ax + (a + 2b)y - bz = a + b$$

- As long as coefficients on LHS \leq (0, 1, 0),
 - \circ objective = $0x + 1y + 0z \ge a + b$
- So, maximize a + b subject to
 - ∘ *a* ≤ 0
 - $\circ a + 2b \le 1$
 - $\circ -b \leq 0$

Duality example

Path planning LP

• Find the min-cost path: variables

Psx, Psy, Pxg, Pyg >0

Path planning LP

Psx + 3 pxg + 2 psy +

Optimal solution

$$p_{sy} = p_{yg} = 1$$
, $p_{sx} = p_{xg} = 0$, $cost 3$

Matrix form

Min
$$(1321)P$$

St
$$\begin{pmatrix}
1 & 0 & 1 & 0 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0
\end{pmatrix}$$

$$P > 0$$

Matrix form

Min (1371)
$$P$$

St
$$\lambda_s$$

$$\lambda_x$$

$$\lambda_y$$

$$\lambda_g$$

Dual

Optimal dual solution

Any solution which adds a constant to all λs also works; $\lambda_x = 2$ also works

Interpretation

- Dual variables are prices on nodes: how much does it cost to start there?
- Dual constraints are local price constraints: edge xg (cost 3) means that node x can't cost more than 3 + price of node g

More about the dual

Dual dual

- Take the dual of an LP twice, get the original LP back (called **primal**)
- Many LP solvers will give you both primal and dual solutions at the same time for no extra cost

Recipe

- If we have an LP in matrix form,
 - maximize c'x subject to

$$Ax \leq b$$

$$x \ge 0$$

- Its dual is a similarlooking LP:
 - minimize b'y subject to

$$A'y \ge c$$

$$y \ge 0$$

 $Ax \le b$ means every component of Ax is \le corresponding component of b

Recipe with equalities

 If we have an LP with equalities,

maximize c'x s.t.

$$Ax \leq b$$

$$Ex = f$$

$$x \ge 0$$

 Its dual has some unrestricted variables:

 $minimize\ b'y + f'z\ s.t.$

$$A'y + E'z \ge c$$

$$y \ge 0$$

z unrestricted

Interpreting the dual variables

- The primal variable variables in the factory LP were how many widgets and doodads to produce
- We interpreted dual variables as multipliers for primal constraints

Dual variables as multipliers

Dual variables as prices

- "Multiplier" interpretation doesn't give much intuition
- It is often possible to interpret dual variables as prices for primal constraints

Dual variables as prices

Suppose someone offered us a quantity ε
 of wood, loosening constraint to

$$w + d \leq 4 + \varepsilon$$

 How much should we be willing to pay for this wood?

Dual variables as prices

- RHS in primal is objective in dual
- So, dual constraints stay same, previous solution a = b = 1/3 still dual feasible
 - still optimal if ε small enough
- Bound changes to $(4 + \varepsilon) a + 12 b$, difference of $\varepsilon * 1/3$
- So we should pay up to \$1/3 per unit of wood (in small quantities)