15-780: Graduate AI *Lecture 4. SAT, Reductions*

Geoff Gordon (this lecture) Tuomas Sandholm TAs Byron Boots, Sam Ganzfried

Admin

HW1

- Reminder: HW1 is out
- Download from course website
- We'll provide hardcopies on request

Review

Proofs in FOL

- Proof by contradiction
- Unification, variable substitutions
- First-order resolution & factoring
- Above is a sound, complete proof system
 - Herbrand universe, propositionalizing
 - Lifting lemma

Variations on FOL & proofs

- Wh-questions (who killed JR?), answer literals
- Equality (paramodulation or axiom schema)
- Second-order logic

Knowledge engineering

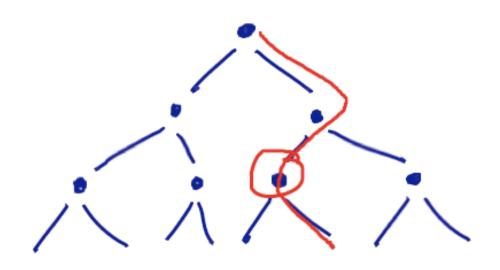
- Hierarchies (isa, partOf), inheritance
- Fluents
- Frame problem
- Debugging

Temporal Logics

QCTL*

- Quantified Computation-Tree Logic *
- FOL + representation of time + quantifiers over time

Time in QCTL*



• Statements interpreted relative to a current history and time point (h, w)

New quantifiers in QCTL*

- \circ A S = "always S"
 - S is true for (h', w) for all h' passing through w
- $\circ P \cup Q = "P until Q"$
 - there is some time v in h, with v > w, such that P holds for (h, u) for all u with w < u < v, and Q holds at (h, v)

Derived quantifiers

- \circ F P = "in the future, P" = $T \cup P$
 - also called "finally, P"
- \circ G P = "globally, P" = P U F
- E $P = "possibly, P" = \neg A \neg P$
 - labeled E for existential

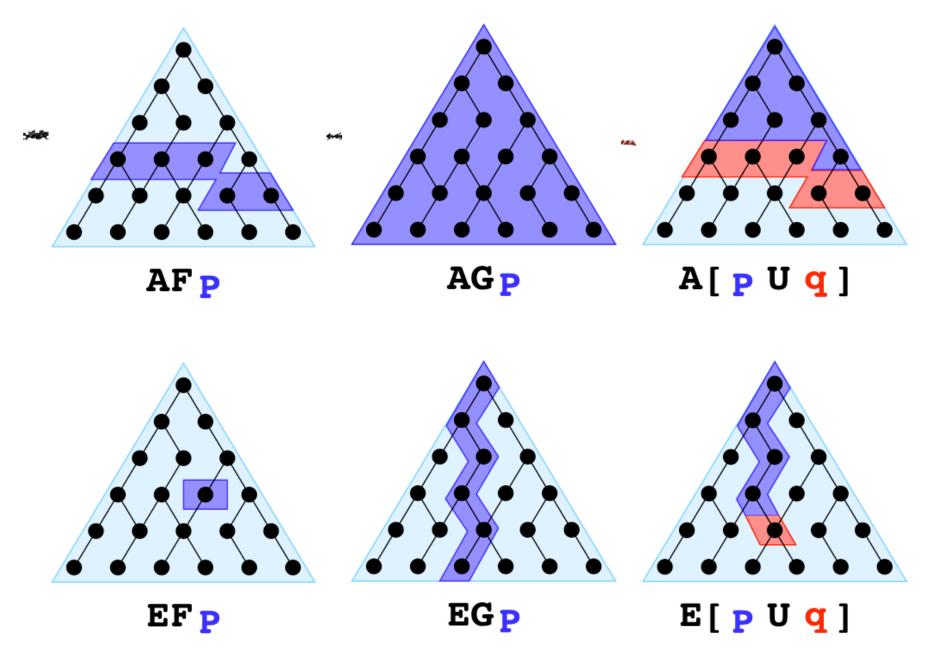


image credit: Alessandro Artale

Completeness for QCTL*

 Theorem: the set of valid formulas of QCTL* is not recursively enumerable, even if we restrict to formulas with at most two variables and only unary or 0-ary predicates.

I Hodkinson, F Wolter, M Zakharyaschev. Decidable and undecidable fragments of first-order branching temporal logics. Proc. 17th Annual IEEE Symposium on Logic in Computer Science (LICS 2002), pp. 393-402.

Intuition

- The length of a single future is countably infinite, and the set of all futures is uncountably infinite
- QCTL* quantifies over uncountable sets
- FOL only can quantify over countable sets
 - e.g., no FOL translation of AFP

SAT

The state of the s

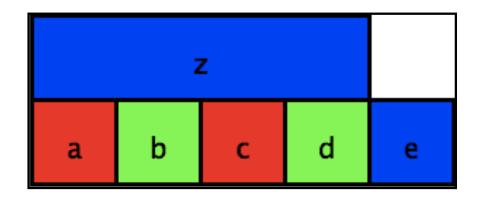
Satisfiability

- SAT is the problem of determining whether a given propositional logic sentence is satisfiable
- A decision problem: given an instance, answer yes or no
- A fundamental problem in CS

SAT is a general problem

- Many other useful decision problems reduce to SAT
- Informally, if we can solve SAT, we can solve these other problems
- So a good SAT solver is a good AI building block

Example decision problem



 k-coloring: can we color a map using only k colors in a way that keeps neighboring regions from being the same color?

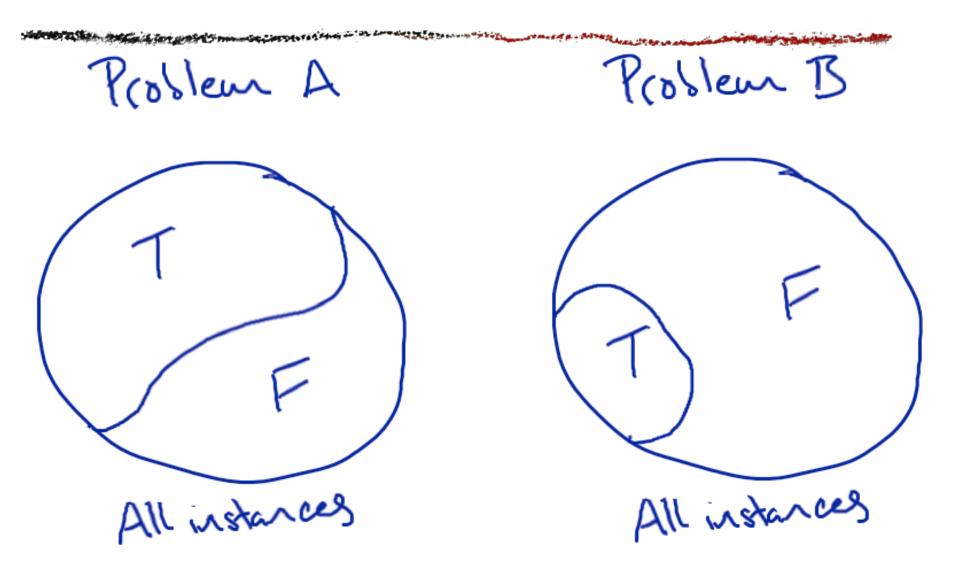
Example decision problem

- Propositional planning: given a list of operators (w/ preconditions, effects), can we apply operators in some order to achieve a desired goal?
- Have cake & eat it too example
- We'll see later how to represent as SAT

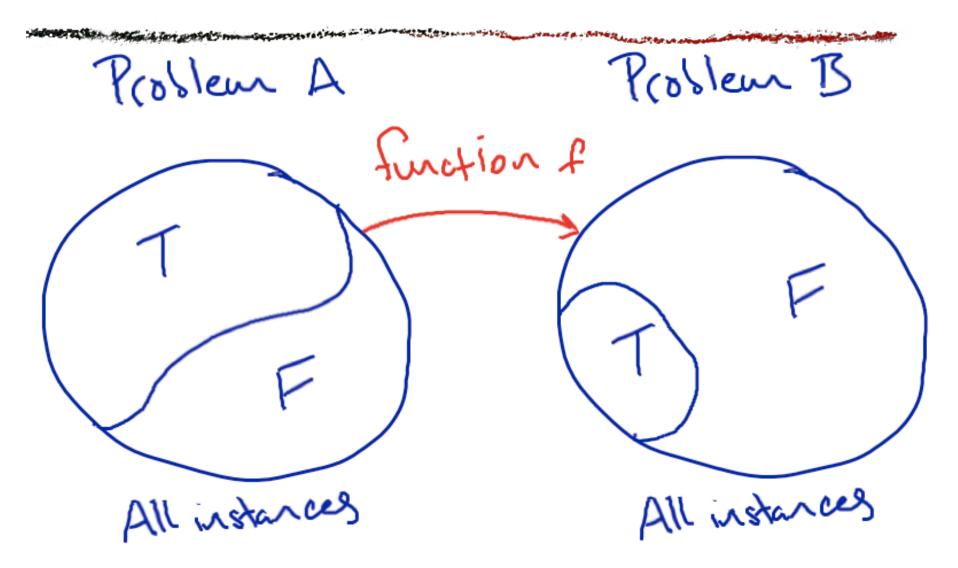
Reduction

- Loosely, "A reduces to B" means that if we can solve B then we can solve A
- More formally, A, B are decision problems (instances → truth values)
- A reduction is a poly-time function f such that, given an instance a of A
 - \circ f(a) is an instance of B, and
 - $\circ A(a) = B(f(a))$

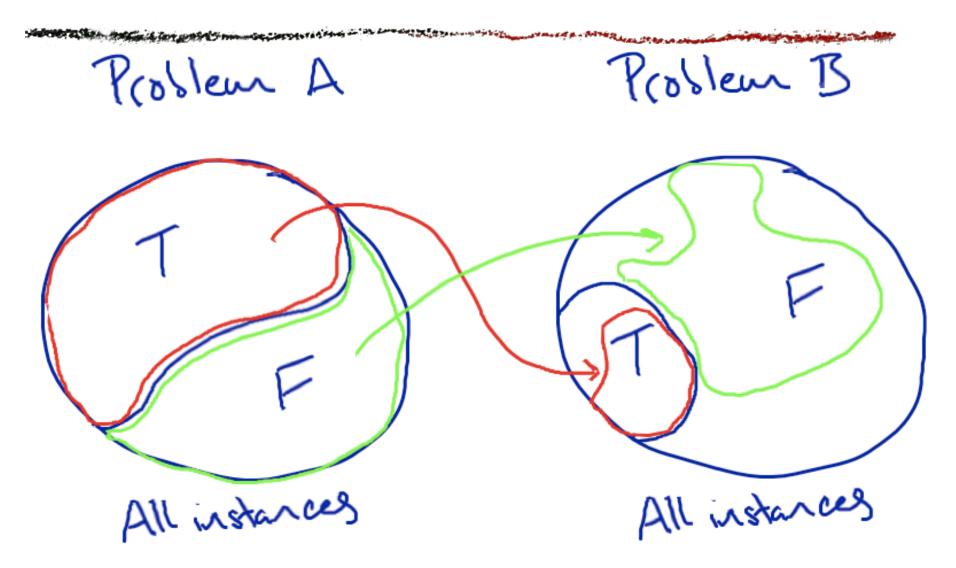
Reduction picture



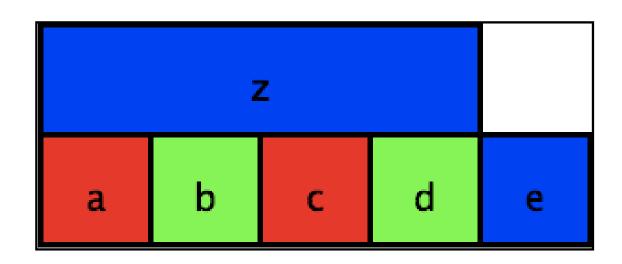
Reduction picture



Reduction picture



Back to example

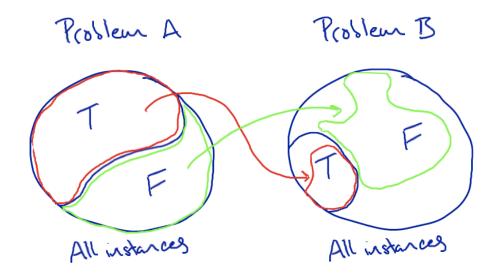


- Each square must be red, green, or blue
- Adjacent squares can't both be red (similarly, green or blue)

Back to example

- $(a_r \vee a_g \vee a_b) \wedge (b_r \vee b_g \vee b_b) \wedge (c_r \vee c_g \vee c_b) \wedge (d_r \vee d_g \vee d_b) \wedge (e_r \vee e_g \vee e_b) \wedge (z_r \vee z_g \vee z_b)$
- $\circ (\neg a_r \vee \neg b_r) \wedge (\neg a_g \vee \neg b_g) \wedge (\neg a_b \vee \neg b_b)$
- $\circ (\neg a_r \lor \neg z_r) \land (\neg a_g \lor \neg z_g) \land (\neg a_b \lor \neg z_b)$
- 0 ...

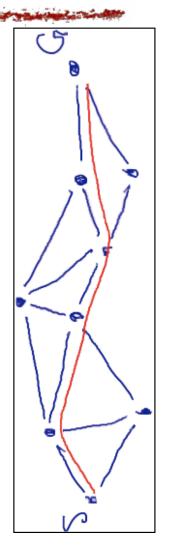
Direction of reduction



- If A reduces to B:
 - if we can solve B, we can solve A
 - so B must be at least as hard as A
- Trivially, can take an easy problem and reduce it to a hard one

Not-so-useful reduction

- Path planning reduces to SAT
- Variables: is edge e in path?
- Constraints:
 - exactly 1 path-edge touches start
 - exactly 1 path-edge touches goal
 - either 0 or 2 touch each other node



More useful: reduction to 3SAT

- We saw that decision problems can be reduced to SAT
 - is CNF formula satisfiable?
- Can reduce even further, to 3SAT
 - is 3CNF formula satisfiable?
- Useful if reducing SAT/3SAT to another problem (to show other problem hard)

SAT reduces to 3SAT

- Must get rid of long clauses
- \circ *E.g.*, ($a \lor \neg b \lor c \lor d \lor e \lor \neg f$)
- Replace with

$$(a \lor \neg b \lor x) \land (\neg x \lor c \lor y) \land (\neg y \lor d \lor z) \land (\neg z \lor e \lor \neg f)$$

NP-completeness

- S.A. Cook in 1971 proved that many useful decision problems reduce back and forth to SAT
 - showed how to simulate poly-sizememory computer w/ (very complicated, but still poly-size) SAT problem
- Equivalently, SAT is exactly as hard (in theory at least) as these other problems

S. A. Cook. The complexity of theorem-proving procedures, Proceedings of ACM STOC'71, pp. 151–158, 1971.

Cost of reduction

- Complexity theorists often ignore little things like constant factors (or even polynomial factors!)
- So, is it a good idea to reduce your decision problem to SAT?
- Answer: sometimes...

Cost of reduction

- \circ SAT is well studied \Rightarrow fast solvers
- So, if there is an efficient reduction, ability to use fast SAT solvers can be a win
 - e.g., 3-coloring
 - another example later (SATplan)
- Other times, cost of reduction is too high
 - usu. because instance gets bigger
 - will also see example later (MILP)

Choosing a reduction

- May be many reductions from problem A to problem B
- May have wildly different properties
 - e.g., solving transformed instance may take seconds vs. days